Section A: Calculus

1. (a) Sketch integration region for the double integral

$$
I=\int_{y=0}^{y=3} d y \int_{x=y / 3}^{x=1} x e^{x^{3}} d x
$$

By changing the order of integration, evaluate I.
(b) Use a triple integral and cylindrical coordinates to obtain the volume of the region R which lies above the $z=0$ plane, inside the cone $z=2 a-\sqrt{x^{2}+y^{2}}$ and inside the cylinder $x^{2}+y^{2}=2 a y$, where a is a constant. Recall that the Jacobian determinant for cylindrical coordinates is $|J|=r$.
2. (a) Find and classify the stationary points (maxima, minima and saddle points) of the function

$$
f(x, y)=x e^{-x^{2}+y^{2}}
$$

(b) Compute the Taylor's expansion of the function

$$
f(x, y)=x^{2}+x y+y^{3}
$$

around the point $(0,1)$ including up to second order terms. Hence estimate the value of the function at the point $(0.1,1.1)$.
3. Consider the following transformation of coordinates

$$
x=e^{u+v}, \quad y=e^{u-v}
$$

in two dimensional space. Let $f(x, y)$ be a twice differentiable function of x and y.
(a) Use the chain rule to express the first order partial derivatives of f with respect to u and v in terms of the first order partial derivatives of f with respect to x and y.
(b) Likewise, use the chain rule to find $\partial^{2} f / \partial u^{2}$ and $\partial^{2} f / \partial v^{2}$. Hence show that

$$
\frac{\partial^{2} f}{\partial u^{2}}-\frac{\partial^{2} f}{\partial v^{2}}=2 e^{2 u}\left(\frac{\partial^{2} f}{\partial x \partial y}+\frac{\partial^{2} f}{\partial y \partial x}\right)
$$

4. Determine the functions $u_{1}(x), u_{2}(x)$ such that $y(x)=c_{1} u_{1}(x)+c_{2} u_{2}(x)$ is the general solution of the following homogeneous second-order differential equation

$$
y^{\prime \prime}-4 y=0
$$

where c_{1}, c_{2} are arbitrary constants. Show that the Wronskian of u_{1}, u_{2} is nowhere zero.
Use the method of variation of parameters to find a particular solution of the inhomogeneous secondorder differential equation

$$
y^{\prime \prime}-4 y=\cos (2 x)
$$

Hence determine the general solution of this inhomogeneous equation.

