
CALCULUS 2009: EXAM SOLUTIONS

1. (a) The integration region is the triangle in the xy-plane enclosed by the lines x = 1,
y = 0 and y = 3x. 3

Changing the order of integration we obtain 3

I =
∫ x=1

x=0
dx

∫ y=3x

y=0
xex3

dy.

The integral in y gives 2
∫ y=3x

y=0
xex3

dy =
[
yxex3

]3x

0
= 3x2ex3

.

Plugging this result into the second integral we obtain 2

I =
∫ x=1

x=0
3x2ex3

dx =
[
ex3

]1

0
= e− 1.

The last integral can be easily carried out using the change of variables t = x3.

(b)Since we are computing the volume, we need to carry out an integral of the form

V =
∫ ∫ ∫

R
dxdydz,

in the region R described by the problem. We also need to use cylindrical coordinates
x = r cos θ, y = r sin θ and z = z, so that the integral becomes

V =
∫ ∫ ∫

R
rdrdθdz,

where R is the same region, described now in terms of cylindrical coordinates. In order 1
to do the problem it is very helpful to get an idea of how the region whose volume
we want to evaluate looks. We have two surfaces: a cylinder, defined by the equation
x2 + y2 = 2ay and a cone defined by the equation z = 2a−

√
x2 + y2. We can rewrite

the equation of the cylinder as

x2 + (y − a)2 = a2.

We now see that this a circular cylinder, whose basis is centered at the point (0, a) and
has radius a.

On the other hand if we look at the cone equation, we can first of all write it as:

z − 2a = −
√

x2 + y2,

or
(z − 2a)2 − x2 − y2 = 0.

The last equation indicates that the cone is centered at the point (0, 0, 2a) in the z-axis
and the minus sign in front of the

√
x2 + y2 term in the original equation, means that

we are choosing the cone sheet that starts at (0, 0, 2a) and extends downwards (the
maximum value z can take is z = 2a). Combining all this information we can draw
the following picture:
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and the integration region is the region that is both inside the cylinder and the cone
and above the z = 0 plane.

We now write the equations of the cylinder and the cone in cylindrical coordinates:

x2 + y2 = 2ay ⇔ r = 2a sin θ,

and, looking at the picture of the cylinder above, we see that 0 ≤ θ ≤ π. The equation
of the cone becomes z = 2a− r. Therefore we can write that in the integration region
0 ≤ z ≤ 2a− r. Finally we have that 0 ≤ r ≤ 2a sin θ. 4

Therefore, the integral that we need to compute is:

V =
∫ θ=π

θ=0
dθ

∫ 2a sin θ

r=0
rdr

∫ 2a−r

z=0
dz.

The integration in z is: 2
∫ 2a−r

z=0
dz = [z]z=2a−r

z=0 = 2a− r.

Putting this into the r-integral we obtain: 1
∫ 2a sin θ

r=0
r(2a−r)dr =

[
ar2 − r3

3

]r=2a sin θ

r=0

= 4a3 sin2 θ−8a3 sin3 θ/3 = 4a3 sin2 θ(1−2/3 sin θ).

Finally, putting this into the last integral: 2
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V = 4a3

∫ θ=π

θ=0
sin2 θ(1−2/3 sin θ)dθ = 4a3

[
θ

2
+

cos θ

2
− cos(3θ)

18
− sin(2θ)

4

]θ=π

θ=0

= 4a3

(
π

2
− 8

9

)
.

where we used the identities:

sin2 θ =
1− cos(2θ)

2
,

and
sin3 θ = 1/4(3 sin θ − sin(3θ)).

2

2. (a) First of all we need to find the points at which the first order partial derivatives
vanish. These derivatives are 2

fx = (1− 2x2)e−x2+y2
, fy = 2xye−x2+y2

.

Then 1
fx = 0 ⇔ x = ± 1√

2
,

and 1
fy = 0 ⇔ x = 0 or y = 0.

That gives us 2 candidates to be stationary points, that is the points (±1/
√

2, 0) at
which both fx and fy vanish. To investigate what type of stationary points this points
are, we have to look at the second order partial derivatives: 2

fxx = 2x(−3 + 2x2)e−x2+y2
, fyy = 2x(1 + 2y2)e−x2+y2

,

fxy = fyx = 2y(1− 2x2)e−x2+y2
.

Calling A = fxx, B = fxy and C = fyy, we find:

i) For the point (1/
√

2, 0) we have 2

A = −2

√
2
e
, B = 0, C =

√
2
e
.

Then
AC −B2 = −4

e
< 0,

therefore this point is a saddle point.

ii) For the point (−1/
√

2, 0) we have 2

A = 2

√
2
e
, B = 0, C = −

√
2
e
.

Then
AC −B2 = −4

e
< 0,

therefore this point is also a saddle point.
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(b) The Taylor expansion of a function of two variables f(x, y) around a point (x0, y0)
up to second order terms is given by 2

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1
2
fxx(x0, y0)(x− x0)2 +

1
2
fyy(x0, y0)(y − y0)2 + fxy(x0, y0)(x− x0)(y − y0),

assuming fxy = fyx. In our case (x0, y0) = (0, 1) and 2

fx = 2x + y, fy = 3y2 + x, fxx = 2, fyy = 6y, fxy = fyx = 1.

Therefore 2

f(0, 1) = 1, fx(0, 1) = 1, fy(0, 1) = 3, fxx(0, 1) = 2, fyy(0, 1) = 6, fxy(0, 1) = fyx(0, 1) = 1.

So, the Taylor expansion is 2

f(x, y) = 1 + x + 3(y − 1) + x2 + 3(y − 1)2 + x(y − 1),
= 1 + x2 + xy + 3y(y − 1),

and 2

f(0.1, 1.1) = 1 + (0.1)2 + (0.1)(1.1) + 3(1.1)(0.1) = 1 + 0.01 + 0.44 = 1.45.

3. (a) Using the chain rule we have 4

∂f

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
= eu+vfx + eu−vfy,

and 4
∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
= eu+vfx − eu−vfy.

(b) From (a) we can obtain the 2nd order partial derivatives by using once more the
chain rule we have 5

∂2f

∂u2
=

∂

∂u
(eu+vfx + eu−vfy) = eu+vfx + eu+v ∂fx

∂u
+ eu−vfy + eu−v ∂fy

∂u
= eu+vfx + eu−vfy + eu+v(eu+vfxx + eu−vfyx) + eu−v(eu+vfxy + eu−vfyy)

= eu+vfx + eu−vfy + e2(u+v)fxx + e2(u−v)fyy + e2u(fxy + fyx),

and 5

∂2f

∂v2
=

∂

∂v
(eu+vfx − eu−vfy) = eu+vfx + eu+v ∂fx

∂v
+ eu−vfy − eu−v ∂fy

∂v
= eu+vfx + eu−vfy + eu+v(eu+vfxx − eu−vfyx)− eu−v(eu+vfxy − eu−vfyy)

= eu+vfx + eu−vfy + e2(u+v)fxx + e2(u−v)fyy − e2u(fxy + fyx).

Subtracting the two formulae we trivially see that 2

∂2f

∂u2
− ∂2f

∂v2
= 2e2u

(
∂2f

∂x∂y
+

∂2f

∂y∂x

)
.
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4. To obtain the general solution of the homogeneous equation we try solutions of the
type y = cemx. Substituting this solution into the equation we obtain the condition 2

m2 − 4 = 0 ⇒ m = ±2.

This means that the general solution of the homogeneous equation is of the form 2

y = c1e
2x + c2e

−2x,

therefore we identify
u1(x) = e2x, u2(x) = e−2x.

For the second part of the problem we will need the Wronskian of these solutions which
is 3

W (x) =
∣∣∣∣

u1(x) u2(x)
u′1(x) u′2(x)

∣∣∣∣ =
∣∣∣∣

e2x e−2x

2e2x −2e−2x

∣∣∣∣ = −2− 2 = −4.

Therefore the Wronskian is indeed nowhere zero.

The method of variation of parameters tells us that a particular solution of the inho-
mogeneous equation is of the form 3

y = v1(x)u1(x) + v2(x)u2(x),

with
v1(x) = −

∫
u2(x)

R(x)
W (x)

dx and v2(x) =
∫

u1(x)
R(x)
W (x)

dx.

In our case
R(x) = cos(2x), W (x) = −4,

therefore, integrating by parts twice we obtain

v1(x) =
1
4

∫
e−2x cos(2x)dx =

1
4

[
1
2
e−2x sin(2x)− 1

2
cos(2x)e−2x − 4v1(x)

]
,

which gives

v1(x) =
(− cos(2x) + sin(2x))e−2x

16
.

and 4

v2(x) = −1
4

∫
e2x cos(2x)dx = −1

4

[
1
2
e2x sin(2x) +

1
2

cos(2x)e2x + 4v2(x)
]

,

v2(x) = −(cos(2x) + sin(2x))e2x

16
.

4

Hence the general solution of the inhomogeneous equation is 2

y = c1e
2x + c2e

−2x − cos(2x)
8

.

with c1, c2 being arbitrary constants.
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