Section A: Calculus

1. (a) Sketch the region of integration in the double integral

$$
I=\int_{y=0}^{y=2} d y \int_{x=y / 2}^{x=1} \cos \left(x^{2}\right) d x
$$

By changing the order of integration, evaluate I.
(b) The cylindrical coordinates (r, θ, z) are related to the Cartesian coordinates (x, y, z) by

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad z=z
$$

Obtain the Jacobian determinant of the transformation from Cartesian to cylindrical coordinates. Hence use cylindrical coordinates to compute the integral

$$
V=\iiint_{R}\left(x^{2}+y^{2}\right)^{2} d x d y d z
$$

on a region R corresponding to a circular cylinder of radius 1 centered at the origin and located above the $z=1$ plane and below the $z=5$ plane.
2. (a) Find and classify the stationary points (maxima, minima and saddle points) of the function

$$
f(x, y)=x e^{-x^{2}+y^{2}}
$$

(b) Compute the Taylor's expansion of the function

$$
f(x, y)=x^{2}+x y+y^{3}
$$

around the point $(0,1)$ including up to second order terms. Hence estimate the value of the function at the point $(0.1,1.1)$.
3. Consider the following transformation of coordinates

$$
x=e^{u+v}, \quad y=e^{u-v}
$$

in two dimensional space. Let $f(x, y)$ be a twice differentiable function of x and y.
(a) Use the chain rule to express the first order partial derivatives of f with respect to u and v in terms of the first order partial derivatives of f with respect to x and y.
(b) Likewise, use the chain rule to find $\partial^{2} f / \partial u^{2}$ and $\partial^{2} f / \partial v^{2}$. Hence show that

$$
\frac{\partial^{2} f}{\partial u^{2}}-\frac{\partial^{2} f}{\partial v^{2}}=2 e^{2 u}\left(\frac{\partial^{2} f}{\partial x \partial y}+\frac{\partial^{2} f}{\partial y \partial x}\right) .
$$

4. Determine the functions $u_{1}(x), u_{2}(x)$ such that $y(x)=c_{1} u_{1}(x)+c_{2} u_{2}(x)$ is the general solution of the following homogeneous second-order differential equation

$$
y^{\prime \prime}-4 y=0,
$$

where c_{1}, c_{2} are arbitrary constants. Show that the Wronskian of u_{1}, u_{2} is nowhere zero.
Use the method of variation of parameters to find a particular solution of the inhomogeneous second-order differential equation

$$
y^{\prime \prime}-4 y=\cosh (2 x) .
$$

Hence determine the general solution of this inhomogeneous equation.

