Section A: Calculus

1. (a) Sketch the region of integration in the double integral

$$
I=\int_{y=0}^{y=2} d y \int_{x=y / 2}^{x=1} e^{x^{2}} d x .
$$

By changing the order of integration, evaluate I.
(b) The cylindrical coordinates (r, θ, z) are related to the Cartesian coordinates (x, y, z) by

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad z=z
$$

Obtain the Jacobian determinant of the transformation from Cartesian to cylindrical coordinates. Hence use cylindrical coordinates to compute the integral

$$
V=\iiint_{R}\left(x^{2}+y^{2}\right)^{3} d x d y d z
$$

on a region R corresponding to a circular cylinder of radius 1 centered at the origin and located above the $z=1$ plane and below the $z=5$ plane.
2. (a) Find and classify the stationary points (maxima, minima and saddle points) of the function

$$
f(x, y)=4 x y-x^{4}-y^{4} .
$$

(b) Compute the Taylor's expansion of the function

$$
f(x, y)=(x+y) e^{x-y}
$$

around the point $(0,1)$ including up to second order terms. Hence estimate the value of the function at the point $(0.1,1.1)$.

Turn over...
3. Consider the following transformation of coordinates

$$
x=\frac{u^{2}-v^{2}}{2}, \quad y=u v
$$

in two dimensional space. Let $f(x, y)$ be a twice differentiable function of x and y.
(a) Use the chain rule to express the first order partial derivatives of f with respect to u and v in terms of the first order partial derivatives of f with respect to x and y.
(b) Likewise, use the chain rule to find $\partial^{2} f / \partial u^{2}$ and $\partial^{2} f / \partial v^{2}$. Hence show that

$$
\frac{\partial^{2} f}{\partial u^{2}}+\frac{\partial^{2} f}{\partial v^{2}}=\left(u^{2}+v^{2}\right)\left(\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}\right) .
$$

4. Determine the functions $u_{1}(x), u_{2}(x)$ such that $y(x)=c_{1} u_{1}(x)+c_{2} u_{2}(x)$ is the general solution of the following homogeneous second-order differential equation

$$
y^{\prime \prime}-4 y^{\prime}+5 y=0,
$$

where c_{1}, c_{2} are arbitrary constants. Show that the Wronskian of u_{1}, u_{2} is nowhere zero.
Use the method of variation of parameters to find a particular solution of the inhomogeneous second-order differential equation

$$
y^{\prime \prime}-4 y^{\prime}+5 y=\frac{e^{2 x}}{\sin x}
$$

Hence determine the general solution of this inhomogeneous equation.

Turn over...

Section B: Linear Algebra

In the following questions, $M(2,2)$ and P_{n} denote the vector spaces over \mathbb{R} of all realvalued 2×2 matrices and all polynomials of degree at most n with real coefficients respectively.
5. (a) Determine whether the following subsets are subspaces (giving reasons for your answers).
i. $U=\{(x, y, x+y) \mid x, y \in \mathbb{R}\}$ in \mathbb{R}^{3}
ii. $V=\{A \in M(2,2) \mid \operatorname{det} A=1\}$ in $M(2,2)$
iii. $W=\left\{p(x) \in P_{2} \left\lvert\, \frac{d}{d x}(p(x))=0\right.\right\}$ in P_{2}
(b) Find a basis for the real vector space \mathbb{R}^{3} containing the vector $(1,2,3)$.
(c) Do the following sets form a basis for \mathbb{R}^{3} ? If not, determine whether they are linearly independent, a spanning set for \mathbb{R}^{3}, or neither.
i. $\{(5,0,0),(6,2,0),(5,3,1),(3,1,0)\}$
ii. $\{(1,2,5),(-1,-1,-1)\}$
6. (a) Let V, W be two real vector spaces and let $f: V \rightarrow W$ be a linear map. Define what is meant by the image, the kernel, the rank and the nullity of f and state the Rank-Nullity theorem.
(b) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be a linear map with $\operatorname{rank} f=3$. Determine whether the map is injective, surjective, both or neither. Justify your answer.
(c) Consider the map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
f(x, y, z)=(2 x+y, y+2 z, 0)
$$

i. Show that f is linear.
ii. Write down the matrix representing f with respect to the standard ordered basis $\left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\mathbf{3}}\right\}$ of \mathbb{R}^{3}.
iii. Determine whether f is injective, surjective, both or neither and find a basis for the kernel of f and a basis for the image of f.
7. (a) Let A be a real $n \times n$ matrix. Define what is meant by an eigenvector and an eigenvalue for A.
(b) State the diagonalization theorem for matrices.
(c) Let $A=\left(\begin{array}{rrr}-1 & -1 & 0 \\ 0 & 1 & 0 \\ 2 & 1 & 1\end{array}\right)$. Use the diagonalization theorem to find an invertible 3×3 matrix $P\left(\right.$ and $\left.P^{-1}\right)$ such that $P^{-1} A P$ is diagonal.
(d) Calculate A^{100}.
8. Consider the real vector space P_{2} with real inner product given by

$$
\langle p(x), q(x)\rangle=p_{0} q_{0}+p_{1} q_{1}+p_{2} q_{2}
$$

for $p(x)=p_{0}+p_{1} x+p_{2} x^{2}, q(x)=q_{0}+q_{1} x+q_{2} x^{2} \in P_{2}$.
(a) Define the norm of a vector $p(x)=p_{0}+p_{1} x+p_{2} x^{2} \in P_{2}$ with respect to the above inner product. What is the norm of $x^{2}+x+3$?
(b) When do we say that two vectors $p(x), q(x) \in P_{2}$ are orthogonal (with respect to the above norm)? Are x^{2} and $2 x+5$ orthogonal?
(c) What is an orthonormal set of vectors in P_{2} (with respect to the above norm)? Is $\left\{x^{2}, \frac{1}{\sqrt{2}}(1+x), \frac{1}{\sqrt{2}}(1-x)\right\}$ an orthonormal set? Justify your answer.
(d) Use the Gram-Schmidt process to construct an orthonormal basis for P_{2} starting from the basis

$$
\left\{2+3 x^{2},-1+5 x^{2}, 10-7 x+2 x^{2}\right\}
$$

Internal Examiners: Dr O. Castro-Alvaredo, Dr M. De Visscher External Examiners: Professor M.E. O'Neill, Professor J. Billingham

