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Section A: Calculus

1. (a) Sketch the region of integration in the double integral

I =

∫ 1

0

dy

∫ 1

y

ex

x
dx.

By changing the order of integration, evaluate I.

(b) The region R in the positive octant (x ≥ 0, y ≥ 0, z ≥ 0) is bounded
by the surface y = 4x2 and by the planes x = 0, y = 4, z = 0 and
z = 2. Evaluate the volume integral∫ ∫ ∫

R

2x dx dy dz.

2. (a) Find and classify the stationary points of the function

f(x, y) = x3 + xy2 − 12x2 − 2y2 + 21x.

(b) Use Taylor’s theorem to expand the function f(x, y) = (x + y)e(x−y)

up to second-order terms in the components h, k of the displacements
around the point (−1,−1). Hence estimate the value of the function
f at the point (−0.9,−1.05).

Turn over . . .



3. Determine functions y1(x) and y2(x) in order that y(x) = Ay1(x)+By2(x)
is the general solution of the second-order differential equation

d2y

dx2
− y = 0,

where A, B are arbitrary constants. Show that the Wronskian of the
functions y1(x) and y2(x) is nowhere zero.

Use the method of variation of constants to find a particular solution of
the inhomogeneous differential equation

d2y

dx2
− y =

1

ex + 1
.

Hence determine the general solution of this inhomogeneous equation.

4. (a) Use the transformation x = r cos θ, y = r sin θ to express partial
derivatives with respect to x, y in terms of partial derivatives with
respect to r, θ.

If V is a differentiable function of x, y, show that(
∂V

∂x

)2

+

(
∂V

∂y

)2

=

(
∂V

∂r

)2

+
1

r2

(
∂V

∂θ

)2

.

(b) Given that F (x, y, z) = 0 defines z implicitly as a function of x
and y, derive the formulae for ∂z/∂x and ∂z/∂y in terms of partial
derivatives of F .

If z tan x− xy2z3 = 2xyz, determine ∂z/∂x and ∂z/∂y.

Turn over . . .



Section B: Linear Algebra

5. (a) Let A be the matrix  1 −2 2
8 11 −8
4 4 −1

 .

By finding a basis of eigenvectors, determine an invertible matrix P
and its inverse P−1 such that P−1AP is diagonal.

(b) State the Cayley-Hamilton theorem, and verify it for the above ma-
trix.

6. (a) Determine which of the following sets are subspaces of Rn (giving
reasons for your answers).

(i) A = {(x1, x2, . . . , xn) ∈ Rn : x1 = 0 or xn = 0},
(ii) B = {(x1, x2, . . . , xn) ∈ Rn : x1 + 2xn = 0},
(iii) C = {(x1, x2, . . . , xn) ∈ Rn :

∑n
i=1 xi = 1}.

(b) For each of the following sets, either prove or disprove that it is a
basis for R3 (you should state clearly any theorems or other standard
results that you use). For those sets which are not bases, determine
whether they are linearly independent, a spanning set, or neither.

(i) S1 = {(1, 2, 3), (2, 3, 4)},
(ii) S2 = {(5, 3, 2), (8, 1, 4), (2, 3, 6)},
(iii) S3 = {(5, 8, 11), (1, 1, 1), (1,−1,−3)}.

(c) Is the space spanned by the set S1 a subspace of the space spanned
by S3? Give reasons for your answer.

Turn over . . .



7. (a) State carefully the definition of a real inner product, and say what it
means for two vectors to be orthogonal.

(b) Let M(2, 2) be the (real) vector space of all real 2× 2 matrices, and
let

E1 =

(
1 1
0 0

)
, E2 =

(
1 0
1 0

)
, E3 =

(
0 1
1 1

)
, E4 =

(
1 1
1 0

)
.

Form an orthonormal basis of M(2, 2) from these elements with re-
spect to the inner product given by 〈A, B〉 = tr(BT A). (You may
assume that {E1, E2, E3, E4} is a basis of M(2, 2).)

8. (a) Let Pn(x) denote the real vector space of all polynomials of degree at
most n in x with real coefficients. Determine which of the following
maps are linear (giving reasons for your answers).

(i) f : P2(x) −→ P2(x) p(x) 7−→ p(x + 1),

(ii) f : P3(x) −→ P2(x) p(x) 7−→ p(1)p(2) + d
dx

(p)(x),

(iii) f : P2(x) −→ P2(x) p(x) 7−→ xp(0) + p(1).

(b) Let {e1, e2, . . . , en} be the standard basis of Rn, and f : R2 −→ R3

be the linear map given on the standard basis by

f(e1) = 2e2 + e3 and f(e2) = e1 + 3e2 + 5e3.

Determine the matrix of this map with respect to the bases
{3e1 − e2, 2e1 + 3e2} of R2 and {e1, e1 + e2, e1 − e2 − e3} of R3.

(c) Is the map f in (b) an isomorphism? Give a reason for your answer.
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