Section A: Calculus

1. (a) Sketch the region of integration in the double integral

$$
I=\int_{0}^{2} d y \int_{y / 2}^{1} e^{x^{2}} d x
$$

By changing the order of integration, evaluate I.
(b) Show that the equation of the semi-circle $x^{2}+y^{2}-a y=0, \quad x \geq 0$ in the polar coordinates takes the form

$$
r=a \sin \theta ; \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

Hence using the cylindrical coordinates find the volume of the solid that is inside of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1
$$

above the $x y$-plane, and inside of the vertical cylinder $x^{2}+y^{2}-a y=$ $0, x \geq 0$.
2. (a) Find and classify the stationary points of the function

$$
f(x, y)=x^{3}+x y^{2}-12 x^{2}-2 y^{2}+21 x .
$$

(b) Use Taylor's theorem to expand the function $f(x, y)=(x+y) e^{(x-y)}$ up to second-order terms in the components h, k of the displacements around the point $(-1,-1)$. Hence estimate the value of the function f at the point $(-0.9,-1.05)$.
3. Determine functions $y_{1}(x)$ and $y_{2}(x)$ in order that $y(x)=A y_{1}(x)+B y_{2}(x)$ is the general solution of the second-order differential equation

$$
\frac{d^{2} y}{d x^{2}}+4 y=0
$$

where A, B are arbitrary constants. Show that the Wronskian of the functions $y_{1}(x)$ and $y_{2}(x)$ is nowhere zero.

Use the method of variation of constants to find a particular solution of the inhomogeneous differential equation

$$
\frac{d^{2} y}{d x^{2}}+4 y=\tan (2 x)
$$

Hence determine the general solution of this inhomogeneous equation.
4. (a) Use the transformation $x=r \cos \theta, y=r \sin \theta$ to express partial derivatives with respect to x, y in terms of partial derivatives with respect to r, θ.
(b) If V is a differentiable function of x, y, show that

$$
\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=\frac{\partial^{2} V}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \theta^{2}}+\frac{1}{r} \frac{\partial V}{\partial r}
$$

Section B: Linear Algebra

In the following questions $M(2,2)$ and P_{n} denote the vector spaces over \mathbb{R} of all real-valued 2×2 matrices and of all polynomials of degree at most n with real coefficients respectively.
5. (a) Determine which of the following sets are subspaces (giving reasons for your answers).
(i) $A=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1} \geq x_{2} \geq 0\right\}$.
(ii) $B=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M(2,2): a+2 b-c-d=0\right\}$.
(iii) $C=\left\{f(x) \in P_{n}: f(0)+f(1)=1\right\}$.
(b) For each of the following sets, either prove or disprove that it is a basis for \mathbb{R}^{3} (you should state clearly any theorems or other standard results that you use). For those sets which are not bases, determine whether they are linearly independent, a spanning set for \mathbb{R}^{3}, or neither.
(i) $S_{1}=\{(7,9,3),(0,0,1)\}$.
(ii) $S_{2}=\{(2,1,0,-1),(1,1,1,1),(2,3,6,8)\}$.
(iii) $S_{3}=\{(3,5,1),(2,1,1),(1,1,8)\}$.
(iv) $S_{4}=\{(0,0,0),(1,0,1),(0,-1,0)\}$.
(c) Is it always the case that if S and T are bases for a vector space V then so is their intersection $S \cap T$?
6. Consider the following elements of $M(2,2)$:

$$
F_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right), F_{2}=\left(\begin{array}{rr}
1 & -1 \\
2 & 0
\end{array}\right), F_{3}=\left(\begin{array}{rr}
1 & -1 \\
-1 & 3
\end{array}\right) .
$$

(a) Show that $\langle A, B\rangle=\operatorname{tr}\left(B^{T} A\right)$ defines an inner product on $M(2,2)$.
(b) Verify that $\left\{F_{1}, F_{2}, F_{3}\right\}$ is an orthogonal set with respect to the above inner product. Write down an orthonormal set which can be obtained from this one.
(c) Let G be the matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

Using the fact that $\left\{F_{1}, F_{2}, F_{3}, G\right\}$ is a basis for $M(2,2)$ (or otherwise), find a matrix F_{4} such that $\left\{F_{1}, F_{2}, F_{3}, F_{4}\right\}$ is an orthonormal basis for $M(2,2)$.
7. Let A be the matrix

$$
\left(\begin{array}{rrr}
3 & 1 & 1 \\
2 & 4 & 2 \\
-1 & -1 & 1
\end{array}\right)
$$

State the diagonalisation theorem, and use it to determine matrices P, P^{-1} and D such that $D=P^{-1} A P$ is diagonal. How many different diagonal matrices D can be obtained in this manner?
8. (a) Determine which of the following maps are linear (giving reasons for your answers).
(i) $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3} \quad\left(x_{1}, x_{2}, x_{3}\right) \longmapsto\left(x_{1}+x_{2}, x_{2} x_{3}, x_{2}\right)$.
(ii) $f: P_{2} \longrightarrow P_{3} \quad p(x) \longmapsto p(2 x+1)$.
(iii) $f: M(2,2) \longrightarrow \mathbb{R} \quad A \longmapsto \operatorname{tr}(A)$.
(b) Define the rank and nullity of a linear map, and state carefully a theorem that relates the two.
(c) Let $f: P_{n} \longrightarrow P_{n}$ be the map

$$
f: p(x) \longmapsto p(x)-p(1)
$$

Find bases for the image and kernel of f, stating carefully any theorems that you use. (You may assume that f is linear, and may use without proof that $\operatorname{dim} P_{n}=n+1$.)

Internal Examiners: Prof. J. Mathon
Dr A. G. Cox
External Examiners: Professor D. J. Needham
Professor M. E. O'Neill

