Section A: Calculus

1. (a) Sketch the region of integration in the double integral

$$I = \int_0^2 dy \int_{y/2}^1 e^{x^2} dx.$$

By changing the order of integration, evaluate I.

(b) Show that the equation of the semi-circle $x^2 + y^2 - ay = 0$, $x \ge 0$ in the polar coordinates takes the form

$$r = a\sin\theta; \ \ 0 \le \theta \le \frac{\pi}{2}.$$

Hence using the cylindrical coordinates find the volume of the solid that is inside of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{b^2} = 1$$

above the xy-plane, and inside of the vertical cylinder $x^2 + y^2 - ay = 0$, $x \ge 0$.

2. (a) Find and classify the stationary points of the function

$$f(x,y) = x^3 + xy^2 - 12x^2 - 2y^2 + 21x.$$

(b) Use Taylor's theorem to expand the function $f(x, y) = (x + y)e^{(x-y)}$ up to second-order terms in the components h, k of the displacements around the point (-1, -1). Hence estimate the value of the function f at the point (-0.9, -1.05).

Turn over ...

3. Determine functions $y_1(x)$ and $y_2(x)$ in order that $y(x) = Ay_1(x) + By_2(x)$ is the general solution of the second-order differential equation

$$\frac{d^2y}{dx^2} + 4y = 0,$$

where A, B are arbitrary constants. Show that the Wronskian of the functions $y_1(x)$ and $y_2(x)$ is nowhere zero.

Use the method of variation of constants to find a particular solution of the inhomogeneous differential equation

$$\frac{d^2y}{dx^2} + 4y = \tan(2x).$$

Hence determine the general solution of this inhomogeneous equation.

- 4. (a) Use the transformation $x = r \cos \theta$, $y = r \sin \theta$ to express partial derivatives with respect to x, y in terms of partial derivatives with respect to r, θ .
 - (b) If V is a differentiable function of x, y, show that

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = \frac{\partial^2 V}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{1}{r} \frac{\partial V}{\partial r}.$$

Section B: Linear Algebra

In the following questions M(2,2) and P_n denote the vector spaces over \mathbb{R} of all real-valued 2×2 matrices and of all polynomials of degree at most *n* with real coefficients respectively.

- (a) Determine which of the following sets are subspaces (giving reasons 5. for your answers).
 - (i) $A = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_1 \ge x_2 \ge 0\}.$
 - (ii) $B = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M(2,2) : a + 2b c d = 0 \}.$ (iii) $C = \{ f(x) \in P_n : f(0) + f(1) = 1 \}.$

 - (b) For each of the following sets, either prove or disprove that it is a basis for \mathbb{R}^3 (you should state clearly any theorems or other standard results that you use). For those sets which are not bases, determine whether they are linearly independent, a spanning set for \mathbb{R}^3 , or neither.
 - (i) $S_1 = \{(7, 9, 3), (0, 0, 1)\}.$
 - (ii) $S_2 = \{(2, 1, 0, -1), (1, 1, 1, 1), (2, 3, 6, 8)\}.$
 - (iii) $S_3 = \{(3, 5, 1), (2, 1, 1), (1, 1, 8)\}.$
 - (iv) $S_4 = \{(0, 0, 0), (1, 0, 1), (0, -1, 0)\}.$
 - (c) Is it always the case that if S and T are bases for a vector space Vthen so is their intersection $S \cap T$?
- 6. Consider the following elements of M(2,2):

$$F_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, F_2 = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}, F_3 = \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix}.$$

- (a) Show that $\langle A, B \rangle = \operatorname{tr}(B^T A)$ defines an inner product on M(2, 2).
- (b) Verify that $\{F_1, F_2, F_3\}$ is an orthogonal set with respect to the above inner product. Write down an orthonormal set which can be obtained from this one.
- (c) Let G be the matrix

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right).$$

Using the fact that $\{F_1, F_2, F_3, G\}$ is a basis for M(2, 2) (or otherwise), find a matrix F_4 such that $\{F_1, F_2, F_3, F_4\}$ is an orthonormal basis for M(2,2).

Turn over . . .

7. Let A be the matrix

$$\begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}.$$

State the diagonalisation theorem, and use it to determine matrices P, P^{-1} and D such that $D = P^{-1}AP$ is diagonal. How many different diagonal matrices D can be obtained in this manner?

- 8. (a) Determine which of the following maps are linear (giving reasons for your answers).
 - (i) $f : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ $(x_1, x_2, x_3) \longmapsto (x_1 + x_2, x_2 x_3, x_2).$ (ii) $f : P_2 \longrightarrow P_3$ $p(x) \longmapsto p(2x + 1).$ (iii) $f : M(2, 2) \longrightarrow \mathbb{R}$ $A \longmapsto \operatorname{tr}(A).$
 - (b) Define the rank and nullity of a linear map, and state carefully a theorem that relates the two.
 - (c) Let $f: P_n \longrightarrow P_n$ be the map

$$f: p(x) \longmapsto p(x) - p(1).$$

Find bases for the image and kernel of f, stating carefully any theorems that you use. (You may assume that f is linear, and may use without proof that dim $P_n = n + 1$.)

Internal Examiners:	Prof. J. Mathon
	Dr A. G. Cox
External Examiners:	Professor D. J. Needham
	Professor M. E. O'Neill