Section A: Calculus

1. (a) Sketch integration region for the double integral

$$
I=\int_{x=1}^{x=3} d x \int_{y=0}^{y=\ln x}(x+y) d y
$$

By changing the order of integration, evaluate I.
(b) Employ cylindrical coordinates to obtain the volume of the region bounded by the ellipsoid:

$$
4\left(x^{2}+y^{2}\right)+(z-1)^{2}=1
$$

and the planes $z=0$ and $z=3 / 4$. Recall that the Jacobian determinant for cylindrical coordinates is $|J|=r$.
2. (a) Find and classify the stationary points (maxima, minima and saddle points) of the function

$$
f(x, y)=(x-y) e^{x y}
$$

(b) Use the method of Lagrange multipliers to find the points on the circle

$$
(x-2)^{2}+(y+1)^{2}=4
$$

which are at maximum and minimum distance from the origin. In each case, compute also the value of the Lagrange multiplier.
3. (a) Consider the following transformation of coordinates

$$
x=u v+u^{3}, \quad y=u v+v^{3}
$$

in two dimensional space. Let $f(x, y)$ be a twice differentiable function of x and y. Use the chain rule to obtain $f_{u u}=\frac{\partial^{2} f}{\partial u^{2}}$ and $f_{v v}=\frac{\partial^{2} f}{\partial v^{2}}$ in terms of $f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}, f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}$ and $f_{x y}=\frac{\partial^{2} f}{\partial x \partial y}$.
(b) [Not seen] Let $z=f(x, y)$ be an implicit function of two variables defined by

$$
3 y z^{2}-3 y^{2}+4=e^{4 x z}
$$

Compute $\partial z / \partial x, \partial z / \partial y$. Obtain the numerical value of z and its first order partial derivatives at $(x, y)=(1,0)$.
4. (a) Determine the functions $u_{1}(x)$ and $u_{2}(x)$ such that $y=c_{1} u_{1}(x)+c_{2} u_{2}(x)$ is the general solution of the homogeneous second-order differential equation

$$
y^{\prime \prime}-9 y=0
$$

where c_{1}, c_{2} are arbitrary constants. Compute the Wronskian determinant.
(b) Use the method of variation of parameters to find a particular solution of the inhomogeneous second-order differential equation

$$
y^{\prime \prime}-9 y=\frac{6}{\sinh (3 x)}
$$

Hence determine the general solution of this inhomogeneous equation.

