1. (a) [10 points] Sketch the region bounded by the curves $y=-1, y=1, y-x=3$ and $x=y^{2}$. Let this region be the integration region R for the integral below. Evaluate the integral.

$$
I=\iint_{R}(x+y) d x d y
$$

(b) [10 points] The cylindrical coordinates (r, θ, z) are related to the Cartesian coordinates (x, y, z) by

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad z=z .
$$

Obtain the Jacobian determinant of the transformation from Cartesian to cylindrical coordinates. Hence use cylindrical coordinates to compute the integral

$$
V=\iiint_{R}\left(x^{2}+y^{2}\right)^{2} d x d y d z
$$

on a region R corresponding to a circular cylinder of radius 1 centered at the origin and bounded above by the $z=1$ plane and below by the $z=5$ plane.
2. (a) [4 points] Let $f(x, y)$ be a function of two variables and consider the following change of variables:

$$
x=t^{2}+t+1 \quad \text { and } \quad y=t^{2}+2 t+3,
$$

Use the chain rule to obtain f_{t} in terms of f_{x} and f_{y}.
(b) [16 points] Consider now the change of variables:

$$
x=s \sin (s+u) \quad \text { and } \quad y=u \sin (s-u),
$$

Obtain f_{s} and f_{u} in terms of f_{x} and f_{y}.
Obtain $f_{s s}$ and $f_{u u}$ in terms of s and u if $f(x, y)=x y$.

Note: Simplify your expressions as much as possible. The following formulae may be useful:

$$
\begin{aligned}
\cos (s+u) \sin (s-u)+\cos (s-u) \sin (s+u) & =\sin (2 s) \\
\cos (s+u) \sin (s-u)-\cos (s-u) \sin (s+u) & =-\sin (2 u) \\
2 \sin (s-u) \sin (s+u) & =\cos (2 u)-\cos (2 s)
\end{aligned}
$$

Turn over...
3. (a) [8 points] Consider the problem of finding the maximum value of a given function $f(x, y)$ subject to a constraint of the form $\phi(x, y)=0$. Explain the method of Lagrange multipliers and how it can be applied to solve this kind of problem.
(b) [12 points] Use the method of Lagrange multipliers to solve the following problem: A music company sells two types of speakers. The profit for selling x speakers of type A and y speakers of type B is given by the function $p(x, y)=x^{3}+y^{3}-5 x y$. In a given month, the company manufactures at most k speakers, where k is a certain constant. Use the method of Lagrange multipliers to compute the maximum profit that the company can make in a given month.
4. (a) [7 points] Determine the functions $u_{1}(x)$ and $u_{2}(x)$ such that $y=c_{1} u_{1}(x)+$ $c_{2} u_{2}(x)$ is the general solution of the homogeneous second-order differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

where c_{1}, c_{2} are arbitrary constants. Compute the Wronskian of u_{1}, u_{2}.
(b) [13 points] Use the method of variation of parameters to find a particular solution of the inhomogeneous second-order differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x}
$$

Hence determine the general solution of this inhomogeneous equation.

Internal Examiner: Dr O. Castro-Alvaredo

