
Calculus Exam Resit 2007: Solutions

1. (a) The integration region is the triangle in the xy-plane enclosed by the lines x = 1,
y = 0 and y = x. 3

Changing the order of integration we obtain 3

I =
∫ x=1

x=0
dx

∫ y=x

y=0
x sin(2x3)dy.

The integral in y gives 2
∫ y=x

y=0
x sin(2x3)dy =

[
yx sin(2x3)

]x

0
= x2 sin(2x3).

Plugging this result into the second integral we obtain 2

I =
∫ x=1

x=0
x2 sin(2x3)dx =

[
−1

6
cos(2x3)

]1

0

=
1− cos(2)

6
= 0.236024...

The last integral can be easily carried out using the change of variables t = x3.

(b) The Jacobian of the change of coordinates is simply

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂r

∂x

∂θ

∂x

∂φ

∂y

∂r

∂y

∂θ

∂y

∂φ

∂z

∂r

∂z

∂θ

∂z

∂φ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

cos θ sinφ −r sin θ sinφ r cos θ cosφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cosφ 0 −r sinφ

∣∣∣∣∣∣

= −r2 cos2 θ sin3 φ− r2 sin2 θ cos2 φ sinφ− r2 cos2 θ cos2 φ sinφ

− r2 sin2 θ sin3 φ = −r2 sin3 φ(cos2 θ + sin2 θ)− r2 cos2 φ sinφ(cos2 θ + sin2 θ)
= −r2 sin3 φ− r2 cos2 φ sinφ = −r2 sinφ(sin2 φ + cos2 φ) = −r2 sinφ.

Therefore the Jacobian of the transformation is

dx dy dz = |J | dr dθ dφ = r2 sinφdr dθ dφ.

4

The integration region for this problem is very easy to sketch. It consists of 2 spheres
centered at the origin, one of radius 2 and the other of radius 3. The volume we want
to compute is just the volume in between the two spheres (as seen in the picture). An
easy way of computing this is simply to compute the volume of each sphere and them
subtract the volume of the smallest sphere from that of the largest one.
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In spherical coordinates, the equations of the two spheres are simply r = 2 and r = 3,
therefore the integration region for the smallest sphere is

R1 = {(r, z, θ) : 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π},
and for the radius 3 sphere

R2 = {(r, z, θ) : 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π},
and the integrals we want to compute are simply

V1 =
∫ r=2

r=0
r2dr

∫ θ=2π

θ=0
dθ

∫ φ=π

φ=0
sinφdφ and V2 =

∫ r=3

r=0
r2dr

∫ θ=2π

θ=0
dθ

∫ φ=π

φ=0
sinφdφ

4

The various integrals can be carried out separately and give
∫ r=2

r=0
r2dr =

[
r3

3

]2

0

=
8
3
,

∫ r=3

r=0
r2dr =

[
r3

3

]3

0

= 9,

∫ θ=2π

θ=0
dθ = 2π,

∫ φ=π

φ=0
sinφdφ = [− cosφ]π0 = 2.

Therefore
V1 = (2π)(8/3)(2) =

32π

3
, V2 = (2π)(9)(2) = 36π,

therefore, the required volume is:

V = V2 − V1 =
76π

3
.

2
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2. (a) First of all we need to find the points at which the first order partial derivatives
vanish. These derivatives are

fx = 6x2 − 6y, fy = −6x + 6y.

Then
fx = 0 ⇔ x2 = y,

and
fy = 0 ⇔ x = y.

The two derivatives vanish simultaneously only if x = y = 0 or x = y = 1. Therefore,
we have two points to study: (0, 0) and (1, 1). The second order partial derivatives are:

fxx = 12x, fyy = 6,

fxy = fyx = −6.

4

For the point (0, 0) we find:

fxxfyy − f2
xy = −36 < 0,

therefore, the point is a saddle point. 3

For the point (1, 1) we find:

fxxfyy − f2
xy = (12)(6)− 36 = 36 > 0,

since fxx(1, 1) = 12 > 0 the point is a minimum. 3

(b) The Taylor expansion of a function of two variables f(x, y) around a point (x0, y0)
up to second order terms is given by 2

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1
2
fxx(x0, y0)(x− x0)2 +

1
2
fyy(x0, y0)(y − y0)2 + fxy(x0, y0)(x− x0)(y − y0),

assuming fxy = fyx. In our case (x0, y0) = (0, 0) and 2

fx = y(1− x2)e−(x2+y2)/2, fy = x(1− y2)e−(x2+y2)/2, fxx = xy(x2 − 3)e−(x2+y2)/2,

fyy = xy(y2 − 3)e−(x2+y2)/2, fxy = fyx = (1− x2)(1− y2)e−(x2+y2)/2.

Therefore 2
f(0, 0) = 0, fx(0, 0) = 0, fy(0, 0) = 0, fxx(0, 0) = 0,

fyy(0, 0) = 0, fxy(0, 0) = fyx(0, 0) = 1.

Hence the Taylor expansion is just 2

f(x, y) = xy.
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Since fx(0, 0) = fy(0, 0) = 0 we know that the point is an stationary point of the
function. In addition we have that

fxx(0, 0)fyy(0, 0)− fxy(0, 0)2 = −1 < 0,

and therefore (0, 0) is a saddle point of f(x, y). 2

3. (a) Since G = 0 also its total differential dG = 0 must vanish. By definition

dG = Gxdx + Gydy + Gzdz = 0,

and in addition, z is a function of x and y, therefore its differential is given by

dz =
(

∂z

∂x

)
dx +

(
∂z

∂y

)
dy.

If we substitute dz into dG we obtain the equation

dG = 0 =
(

Gx + Gz
∂z

∂x

)
dx +

(
Gy + Gz

∂z

∂y

)
dy.

Since x and y are independent variables, the equation above implies that each of the
factors has to vanish separately, that is

Gx + Gz
∂z

∂x
= Gy + Gz

∂z

∂y
= 0.

Therefore we obtain,
∂z

∂x
= −Gx

Gz
,

∂z

∂y
= −Gy

Gz
.

6

Employing now these formulae for G(x, y, z) = sin(xy) + cos(yz) we obtain

∂z

∂x
=

cos(xy)
sin(yz)

,
∂z

∂y
=

x cos(xy)
y sin(yz)

.

4

(b) The function we need to minimize in this case is the distance from a point in the
line (which we want to determine) to the point (3, 0). The distance square function is
given by:

f(x, y) = (x− 3)2 + y2.

The point (x, y) must be a point on the line y = x, therefore our constraint is φ(x, y) =
y − x = 0.

The partial derivatives of f and φ are:

fx = 2(x− 3), fy = 2y, φx = −1, φy = 1.

Therefore, the system of equations which we need to solve is:

y − x = 0,
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2(x− 3)− λ = 0,

2y + λ = 0.

From the two last equations, we obtain: 5

λ = −2y = 2(x− 3)

and using the first equation to substitute y = x the equation above becomes:

2(2x− 3) = 0,

which has only one solution x = 3/2. Therefore there is only one point which solves
the problem, that is (x, y) = (3/2, 3/2) which corresponds to λ = −3. The square of
the distance from this point to the line y = x is,

f(3/2, 3/2) = 9/2.

5

4. To obtain the general solution of the homogeneous equation we try solutions of the
type y = cemx. Substituting this solution into the equation we obtain the condition 2

m2 + 1 = 0 ⇒ m = ±i.

This means that the general solution of the homogeneous equation is of the form 2

y = c1 sin(x) + c2 cos(x),

therefore we identify
u1(x) = sin(x), u2(x) = cos(x).

For the second part of the problem we will need the Wronskian of these solutions which
is 3

W (x) =
∣∣∣∣

u1(x) u2(x)
u′1(x) u′2(x)

∣∣∣∣ =
∣∣∣∣

sin(x) cos(x)
cos(x) − sin(x)

∣∣∣∣
= − sin2 x− cos2 x = −1.

Therefore the Wronskian is indeed nowhere zero.

The method of variation of parameters tells us that a particular solution of the inho-
mogeneous equation is of the form 3

y = v1(x)u1(x) + v2(x)u2(x),

with
v1(x) = −

∫
u2(x)

R(x)
W (x)

dx and v2(x) =
∫

u1(x)
R(x)
W (x)

dx.

In our case
R(x) = e−x + 4 + 2x, W (x) = −1,
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therefore 4

v1(x) =
∫

(e−x + 4 + 2x) cos(x)dx =
∫

e−x cos(x)dx +
∫

4 cos(x)dx + 2
∫

x cos(x)dx,

Integrating by parts twice, we find
∫

e−x cos(x)dx =
e−x(sin(x)− cos(x))

2
.

Integrating by parts once we obtain

2
∫

x cos(x)dx = 2(cos(x) + x sin(x)).

Therefore

v1(x) =
e−x(sin(x)− cos(x))

2
+ 2(cos(x) + x sin(x)) + 4 sin(x)

=
sin(x)

2
(e−x + 4x + 8) +

cos(x)
2

(4− e−x).

4

Similarly,

v2(x) = −
∫

(e−x + 4 + 2x) sin(x)dx =
sin(x)

2
(e−x − 4) +

cos(x)
2

(e−x + 8 + 4x).

Hence the general solution of the inhomogeneous equation (after simplifying several
terms) is 2

y = c1 sin(x) + c2 cos(x) +
1
2
(e−x + 8 + 4x).

with c1, c2 being arbitrary constants.

Linear Algebra Exam Resit 2007: Solutions

5. (a) i. Need to check that conditions (S1)-(S3) are satisfied.
(S1) (0, 0, 0) ∈ V as 0 + 0 = 0.
(S2) If (x, y, z), (x′, y′, z′) ∈ V (i.e. x+ y = z and x′+ y′ = z′) then (x, y, z)+
(x′, y′, z′) = (x + x′, y + y′, z + z′) ∈ V as

(x + x′) + (y + y′) = (x + y) + (x′ + y′) = z + z′

(S3) If (x, y, z) ∈ V (i.e. x+y = z) and λ ∈ R then λ(x, y, z) = (λx, λy, λz) ∈
V as

λx + λy = λ(x + y) = λz.
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ii. V can be written as {(x, y, x + y) | x, y ∈ R}. A basis for V is given by
{(1, 0, 1), (0, 1, 1)}. It is a spanning set as

(x, y, x + y) = x(1, 0, 1) + y(0, 1, 1) ∀x, y ∈ R

and it is also linearly independent as these two vectors are not multiple of
each other.

iii. Using (ii) we see that the dimension of V is 2.
[9]

(b) W is not a subspace of R3 as, for example, condition (S3) fails. Take (1, 0, 1) ∈ W
and λ = 2 then λ(1, 0, 1) = (2, 0, 2) /∈ W as 2 + 0 6= 22.

[3]

(c) i. Is this set linearly independent? No, as

(2, 2,−3) = (1, 0, 0) + (1, 2,−3).

Is it a spanning set for R3? No as this set contains (at most) two linearly
independent vectors, which is not enough to span R3. Alternatively, write

(a, b, c) = λ1(1, 0, 0) + λ2(1, 2,−3) + λ3(2, 2,−3).

This is equivalent to 



a = λ1 + λ2 + 2λ3

b = 2λ2 + 2λ3

c = −3λ2 − 3λ3

and implies b
2 = − c

3 . So in particular, (0, 1, 1) is not in the span of these
three vectors.
As it is not linearly independent (and not spanning), it is not a basis for R3.

ii. Is it linearly independent? Write

λ1(5, 2, 1) + λ2(0, 7, 3) = (0, 0, 0)

This is equivalent to the system of equations




5λ1 = 0
2λ1 + 7λ2 = 0
λ1 + 3λ2 = 0

The only solution is λ1 = λ2 = 0. Thus this set is linearly independent.
Is it a spanning set for R3? No as we need at least 3 vectors to span R3.
As it is not spanning, it is not a basis.

[8]
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6. (a) A map f : V → W is linear if and only if the following two conditions are satisfied:

(i) f(u + v) = f(u) + f(v) ∀u, v ∈ V

(ii) f(λv) = λf(v) ∀v ∈ V, λ ∈ R
[2]

(b) Let f : V → W be a linear map from a vector space V to a vector space W . The
image of f is defined by Im f = {w ∈ W : w = f(v) for some v ∈ V }. The kernel
of f is defined by Ker f = {v ∈ V : f(v) = 0}. The rank of f is the dimension of
the image of f . The nullity of f is the dimension of the kernel of f .
The rank-nullity theorem says that if V is finite dimensional then we have

dimV = rank f + nullity f.

[4]

(c) i.

f(
(

a b
c d

)
+

(
a′ b′

c′ d′

)
) = f(

(
a + a′ b + b′

c + c′ d + d′

)
)

= (a + a′, b + b′)
= (a, b) + (a′, b′)

= f(
(

a b
c d

)
) + f(

(
a′ b′

c′ d′

)
).

f(λ
(

a b
c d

)
) = f(

(
λa λb
λc λd

)
)

= (λa, λb) = λ(a, b)

= λf(
(

a b
c d

)
).

[4]
ii.

Ker f = {
(

a b
c d

)
| (a, b) = (0, 0)}

= {
(

0 0
c d

)
| c, d ∈ R} 6= {

(
0 0
0 0

)
}

So f is not injective.

A basis for Ker f is given by {
(

0 0
1 0

)
,

(
0 0
0 1

)
} (clearly spanning and
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linearly independent).
The Rank-Nullity theorem says

dimM(2, 2) = 2 + rank f

and as dimM(2, 2) = 4 we get that dim Im f = 2. As Im f is a subspace of
R2 of dimension 2, we must have Im f = R2. So f is surjective and Im f has
a basis given by {(1, 0), (0, 1)}.

[6]

(d) (x, y) = x(1, 1) + (y − x)(0, 1) so we must have

f(x, y) = xf(1, 1) + (y − x)f(0, 1)
= x(1, 2, 3) + (y − x)(0, 1, 5)
= (x, 2x, 3x) + (0, y − x, 5y − 5x)
= (x, x + y, 5y − 2x).

[4]

7. (a) An eigenvector for an n × n matrix A is a vector x ∈ Rn such that Ax = λx
for some λ ∈ R. An eigenvalue for A is a real number λ such that there exists a
non-zero vector x ∈ Rn with Ax = λx.

[3]

(b) Suppose A has n linearly independent eigenvectors then there exists an invertible
matrix P (whose columns are these eigenvectors) such that P−1AP is diagonal.

[3]

(c)

det




2− λ 2 2
2 2− λ 2
2 2 2− λ


 = 0

This gives
λ2(6− λ)2 = 0.

Thus the eigenvalues of A are 0 and 6.
[3]

When λ = 0 we have



2 2 2
2 2 2
2 2 2







x
y
z


 =




0
0
0


 .

Thus the eigenspace is given by

sA(0) = {(x, y,−x− y) : x, y ∈ R}
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with basis given by {(1, 0,−1), (0, 1,−1)} (clearly spanning and linearly indepen-
dent).

[3]

When λ = 6 we have


−4 2 2

2 −4 2
2 2 −4







x
y
z


 =




0
0
0


 .

Thus the eigenspace is given by

sA(−1) = {(x, x, x) : x ∈ R}
with basis given by {(1, 1, 1)} (clearly spanning and linearly independent).

[3]

P =




1 0 1
0 1 1

−1 −1 1


 , P−1 =

1
3




2 −1 −1
−1 2 −1

1 1 1


 .

P−1AP =




0 0 0
0 0 0
0 0 6


 .

[5]

8. (a) (i) For all x, y ∈ R3 we have

〈x, y〉 = 2x1y1 + 2x2y2 + 2x3y3

= 2y1x1 + 2y2x2 + 2y3x3

= 〈y, x〉.
(ii) For all x, y, z ∈ R3 we have

〈x + y, z〉 = 2(x1 + y1)z1 + 2(x2 + y2)z2 + 2(x3 + y3)z3

= (2x1z1 + 2x2z2 + 2x3z3) + (2y1z1 + 2y2z2 + 2y3z3)
= 〈x, z〉+ 〈y, z〉.

(iii) For all x, y ∈ R3, λ ∈ R we have

〈λx, y〉 = 2(λx1)y1 + 2(λx2)y2 + 2(λx3)y3

= λ(2x1y1 + 2x2y2 + 2x3y3) = λ〈x, y〉.
(iv) For all x ∈ R3 we have 〈x, x〉 = 2x2

1 + 2x2
2 + 2x2

3 ≥ 0 and we have equality if
and only if x = (0, 0, 0).

[6]
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(b) The norm of a vector x is given by ||x|| =
√

2x2
1 + 2x2

2 + 2x2
3.

||(1, 0, 0)|| = √
2. [2]

(c) Two vectors x and y are orthogonal if and only if 〈x, y〉 = 0. The two vectors
(1, 0, 0) and (0, 1, 1) are orthogonal as

〈(1, 0, 0), (0, 1, 1)〉 = 2.1.0 + 2.0.1 + 2.0.1 = 0.

[2]

(d) A set of vectors is orthonormal if they are pairwise orthogonal and they all have
norm 1. The vectors (1, 0, 0) and (0, 1, 1) are already orthogonal so all that is left
to do is to divide them by their respective norm.

||(1, 0, 0)|| =
√

2 and ||(0, 1, 1)|| = 2

so we get

v1 =
1√
2
(1, 0, 0) = (

1√
2
, 0, 0)

and
v2 =

1
2
(0, 1, 1) = (0,

1
2
,
1
2
)

i.e. a = 1√
2

and b = 1
2 .

[4]

(e) First define

w3 = (1, 2, 1)− 〈(1, 2, 1),v1〉v1 − 〈(1, 2, 1),v2〉v2

= (1, 2, 1)− 2√
2
(

1√
2
, 0, 0)− 3(0,

1
2
,
1
2
)

= (0,
1
2
,−1

2
).

Now
||(0, 1

2
,−1

2
)|| = 1

so we have v3 = w3 = (0, 1
2 ,−1

2).
[6]
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