Calculus 2008: Solutions

1. (a) The integration region is shown in the figure below:
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(b) The Jacobian of the change of coordinates is simply
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Therefore, the element of volume which we need to use for the integral is
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To compute the integral we have first to express the integrand in terms of the new
variables, that is

(l‘Q + y2)2 — (T2)2 — 7“4.
The next step is to describe the region of integration in terms of the new variables.
The integration region for this problem is very easy to sketch. We have a radius
1 circular cylinder centered at the origin extending between the z = 1 and 2z = 5
planes.

In cylindrical coordinates, the integration region is simply
R={(r,z0): 0<r<1, 1<z<5 0<60<27),

and the integral we want to compute is therefore

r=1 =27 z=5
V= / rPdr / de / dz.
r=0 0=0 z=1

The various integrals can be carried out separately and give

r=1 71 1 o=2m z=5
/ rodr = [] = -, / df = 2, / dz=5—-1=4.
r=0 6], 6 =0 =1

Therefore
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. (a) Here we just have to use the chain rule

9 9
fo= S bot B dy = @+ D fo+ (2t +2);.

(b) Here we use the chain rule again and find

Fu= 08t 9Ly = (sin(s + ) + s cos(s + u)) o +wcos(s — )y,

and

fu= 9 gt 22 gy = (scos(s + ) fu + (sin(s —u) — ucos(s — u)) .

Next, we want to obtain fsgs, fu for the function f(z,y) = xy. The simplest way to
do this is to compute first f; and f, for this particular function. Since

fo =y = usin(s—u), fy = x = ssin(s+u), Joz = fyy =0, Joy = fyae =1,
we find

fs = (sin(s + u) + scos(s + u))usin(s — u) + sucos(s — u) sin(s + u),
and

fu = sucos(s + u)sin(s —u) + (sin(s — u) — ucos(s — u))ssin(s + u),



which can be simplified by using the formulae given in the exam to

fs = —g (cos(2s) — cos(2u)) + susin(2s),

fu= —g (cos(25) — cos(2u)) — susin(2u).
From these expressions it is then easy to find

fss = 2u(s cos(2s) + sin(2s)), Juu = —2s(ucos(2u) + sin(2u)).

3. (a) Let the point (z,y) be a maximum of f(z,y), then
df = fedz + fydy =0,

since the first order partial derivatives always vanish at a maximum point.

Since ¢(z,y) = 0, then it follows trivially that
d = d,dz + ¢,y = O,
and therefore we can also write that
d(f +Ap) =df + A\dgp =0,

where A is an arbitrary constant which we call Lagrange’s multiplier.

The previous equation is equivalent to

of 0o of o _

Since A is arbitrary we can choose it so that

N

— 4+ A=—=0.

y + oy
which implies

N

Ox + )\81’ =0.

Therefore, we have now a set of 3 equations, for 3 unknowns namely

O(@,y) = fo+ Aby = fy + Ap, = 0.

(b) The function we want to maximize is the profit p(z,y) and the constraint is that
the total number of speakers is at most k. We can express that as x +y = k and
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therefore our constraint is the function ¢(z,y) = z +y — k = 0. The system of
equations which we need to solve is:

fe+Xp, = 0 = 322-5y4+A=0
JytAp, = 0 = 3y —5r+A=0

r+y—k = 0,

From the 1st two equations we get that

3z% — 5y = 3y? — bz = (x—y)B(z+y)+5) =0,

which has solutions z = y or x + y = —5/3. Now we have to check whether or not
these two solutions make sense. In fact, the second solutions is clearly not possible
since x and y are the numbers of speakers produced by the company in a month and
the sum of these numbers can never be negative! Thus we are left with only one

solution, = = y.

Substituting it in the constraint we get,
r=y= k/2a
and A = w. For these values of  and y the profit becomes:

k*(k —5)

plk/2,k/2) = 2,

and this is the solution to our problem. Notice that the problem has a meaningful

solution only if & > 5.

. (a) We try, as usual, solutions of the type y = e™*. Putting this into the homoge-
neous equation we obtain

m2—2m+1=0 < m=1.

This gives us only one solution! So, in order to find the other independent solution,
we need to try something different. For example, take y = ze®®. If we put this into
our equation we obtain:

(a+a(l+azx))—214+az)+2=0 < a=1.

Therefore u;(z) = e* and ua(z) = ze®.

The Wronskian is
W (z) = up(z)uh(z) — vy (z)ua(z) = (¥ + ze”) — e“xe” = **.
(b) A particular solution of the inhomogeneous equation is given by

Yp = vi(z)ur(z) + vo(x)uz(x),



with

vi(x) = —/uQ(:J:)W(x) dz, va(x) = —/ul(g;)W(x)) dx.
Here R(z) = £ which gives

and

Therefore, the general solution of the inhomogeneous equation is given by
y = (c1 + ca)e® —ze® + ze®Inz = e"[(c1 + o) — (1 — Inx)],

for c¢1, co arbitrary constants.
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