
Calculus 2008: Solutions

1. (a) The integration region is shown in the figure below:
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(b) The Jacobian of the change of coordinates is simply 2
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Therefore, the element of volume which we need to use for the integral is 1

dx dy dz = |J | dr dθ dz = r dr dθ dz.
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To compute the integral we have first to express the integrand in terms of the new
variables, that is 1

(x2 + y2)2 = (r2)2 = r4.

The next step is to describe the region of integration in terms of the new variables.
The integration region for this problem is very easy to sketch. We have a radius
1 circular cylinder centered at the origin extending between the z = 1 and z = 5
planes.

In cylindrical coordinates, the integration region is simply 2

R = {(r, z, θ) : 0 ≤ r ≤ 1, 1 ≤ z ≤ 5, 0 ≤ θ ≤ 2π},
and the integral we want to compute is therefore 1
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3
.

2. (a) Here we just have to use the chain rule

ft =
∂x

∂t
fx +

∂y

∂t
fy = (2t + 1)fx + (2t + 2)fy.

(b) Here we use the chain rule again and find 4

fs =
∂x
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fx +
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fy = (sin(s + u) + s cos(s + u))fx + u cos(s− u)fy,

and 3
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fx +
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∂u
fy = (s cos(s + u))fx + (sin(s− u)− u cos(s− u))fy.

3

Next, we want to obtain fss, fuu for the function f(x, y) = xy. The simplest way to
do this is to compute first fs and fu for this particular function. Since

fx = y = u sin(s−u), fy = x = s sin(s+u), fxx = fyy = 0, fxy = fyx = 1,

we find

fs = (sin(s + u) + s cos(s + u))u sin(s− u) + su cos(s− u) sin(s + u),

and

fu = su cos(s + u) sin(s− u) + (sin(s− u)− u cos(s− u))s sin(s + u),
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which can be simplified by using the formulae given in the exam to

fs = −u

2
(cos(2s)− cos(2u)) + su sin(2s),

3
fu = −s

2
(cos(2 s)− cos(2u))− su sin(2u).

From these expressions it is then easy to find 3

fss = 2u(s cos(2s) + sin(2s)), fuu = −2s(u cos(2u) + sin(2u)).

4

3. (a) Let the point (x, y) be a maximum of f(x, y), then

df = fxdx + fydy = 0,

since the first order partial derivatives always vanish at a maximum point. 1.5 points

Since φ(x, y) = 0, then it follows trivially that

dφ = φxdx + φydy = 0,

and therefore we can also write that 1.5 points

d(f + λφ) = df + λdφ = 0,

where λ is an arbitrary constant which we call Lagrange’s multiplier. 1 points

The previous equation is equivalent to
(
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)
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2 points

Since λ is arbitrary we can choose it so that

∂f

∂y
+ λ

∂φ

∂y
= 0.

which implies
∂f

∂x
+ λ

∂φ

∂x
= 0.

Therefore, we have now a set of 3 equations, for 3 unknowns namely

φ(x, y) = fx + λφx = fy + λφy = 0.

2 points

(b) The function we want to maximize is the profit p(x, y) and the constraint is that
the total number of speakers is at most k. We can express that as x + y = k and
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therefore our constraint is the function φ(x, y) = x + y − k = 0. The system of
equations which we need to solve is:

fx + λφx = 0 ⇒ 3x2 − 5y + λ = 0
fy + λφy = 0 ⇒ 3y2 − 5x + λ = 0

x + y − k = 0,

From the 1st two equations we get that 4 points

3x2 − 5y = 3y2 − 5x ⇒ (x− y)(3(x + y) + 5) = 0,

which has solutions x = y or x + y = −5/3. Now we have to check whether or not
these two solutions make sense. In fact, the second solutions is clearly not possible
since x and y are the numbers of speakers produced by the company in a month and
the sum of these numbers can never be negative! Thus we are left with only one
solution, x = y. 4 points

Substituting it in the constraint we get,

x = y = k/2,

and λ = k(10−3k)
4 . For these values of x and y the profit becomes:

p(k/2, k/2) =
k2(k − 5)

4
,

and this is the solution to our problem. Notice that the problem has a meaningful
solution only if k > 5. 4 points

4. (a) We try, as usual, solutions of the type y = emx. Putting this into the homoge-
neous equation we obtain

m2 − 2m + 1 = 0 ⇔ m = 1.

This gives us only one solution! So, in order to find the other independent solution,
we need to try something different. For example, take y = xeax. If we put this into
our equation we obtain:

(a + a(1 + ax))− 2(1 + ax) + x = 0 ⇔ a = 1.

Therefore u1(x) = ex and u2(x) = xex. 4 points

The Wronskian is

W (x) = u1(x)u′2(x)− u′1(x)u2(x) = ex(ex + xex)− exxex = e2x.

(b) A particular solution of the inhomogeneous equation is given by 3 points

yp = v1(x)u1(x) + v2(x)u2(x),
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with
v1(x) = −

∫
u2(x)

R(x)
W (x)

dx, v2(x) = −
∫

u1(x)
R(x)
W (x)

dx.

Here R(x) = ex

x which gives 3 points

v1(x) = −
∫

xex ex

xe2x
dx = −

∫
dx = −x,

and 4 points
v2(x) =

∫
ex ex

xe2x
dx =

∫
dx

x
= lnx.

Therefore, the general solution of the inhomogeneous equation is given by 4 points

y = (c1 + c2x)ex − xex + xex lnx = ex[(c1 + c2x)− x(1− ln x)],

for c1, c2 arbitrary constants. 2 points
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