Calculus 2008: Solutions

1. (a) The integration region is shown in the figure below:

3 points
The integral is simply

$$
\begin{gathered}
\int_{y=-1}^{y=1} \int_{x=y-3}^{x=y^{2}}(x+y) d x d y=\int_{y=-1}^{y=1}\left[\frac{x^{2}}{2}+y x\right]_{x=y-3}^{x=y^{2}} d y \\
=\int_{y=-1}^{y=1}\left(\frac{y^{4}}{2}+y^{3}-\frac{(y-3)^{2}}{2}-y(y-3)\right) d y=\left[\frac{y^{5}}{10}+\frac{y^{4}}{4}-\frac{(y-3)^{3}}{6}-\frac{y^{3}}{3}+\frac{3 y^{2}}{2}\right]_{-1}^{1} \\
=\frac{1}{10}+\frac{1}{4}-\frac{(-2)^{3}}{6}-\frac{1}{3}+\frac{3}{2}+\frac{1}{10}-\frac{1}{4}+\frac{(-4)^{3}}{6}-\frac{1}{3}-\frac{3}{2}=\frac{1}{5}-\frac{2}{3}+\frac{4}{3}-\frac{32}{3}=\frac{1}{5}-10=-\frac{49}{5} .
\end{gathered}
$$

(b) The Jacobian of the change of coordinates is simply

$$
J=\left|\begin{array}{ccc}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z}
\end{array}\right|=\left|\begin{array}{ccc}
\cos \theta & -r \sin \theta & 0 \\
\sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta=r .
$$

Therefore, the element of volume which we need to use for the integral is

$$
d x d y d z=|J| d r d \theta d z=r d r d \theta d z .
$$

To compute the integral we have first to express the integrand in terms of the new variables, that is

$$
\left(x^{2}+y^{2}\right)^{2}=\left(r^{2}\right)^{2}=r^{4} .
$$

The next step is to describe the region of integration in terms of the new variables. The integration region for this problem is very easy to sketch. We have a radius 1 circular cylinder centered at the origin extending between the $z=1$ and $z=5$ planes.

In cylindrical coordinates, the integration region is simply

$$
R=\{(r, z, \theta): 0 \leq r \leq 1, \quad 1 \leq z \leq 5, \quad 0 \leq \theta \leq 2 \pi\},
$$

and the integral we want to compute is therefore

$$
V=\int_{r=0}^{r=1} r^{5} d r \int_{\theta=0}^{\theta=2 \pi} d \theta \int_{z=1}^{z=5} d z .
$$

The various integrals can be carried out separately and give

$$
\int_{r=0}^{r=1} r^{5} d r=\left[\frac{r^{6}}{6}\right]_{0}^{1}=\frac{1}{6}, \quad \int_{\theta=0}^{\theta=2 \pi} d \theta=2 \pi, \quad \int_{z=1}^{z=5} d z=5-1=4 .
$$

Therefore

$$
V=(2 \pi)(1 / 6)(4)=\frac{4 \pi}{3}
$$

2. (a) Here we just have to use the chain rule

$$
f_{t}=\frac{\partial x}{\partial t} f_{x}+\frac{\partial y}{\partial t} f_{y}=(2 t+1) f_{x}+(2 t+2) f_{y}
$$

(b) Here we use the chain rule again and find

$$
f_{s}=\frac{\partial x}{\partial s} f_{x}+\frac{\partial y}{\partial s} f_{y}=(\sin (s+u)+s \cos (s+u)) f_{x}+u \cos (s-u) f_{y},
$$

and

$$
\begin{equation*}
f_{u}=\frac{\partial x}{\partial u} f_{x}+\frac{\partial y}{\partial u} f_{y}=(s \cos (s+u)) f_{x}+(\sin (s-u)-u \cos (s-u)) f_{y} . \tag{3}
\end{equation*}
$$

Next, we want to obtain $f_{s s}, f_{u u}$ for the function $f(x, y)=x y$. The simplest way to do this is to compute first f_{s} and f_{u} for this particular function. Since
$f_{x}=y=u \sin (s-u), \quad f_{y}=x=s \sin (s+u), \quad f_{x x}=f_{y y}=0, \quad f_{x y}=f_{y x}=1$,
we find

$$
f_{s}=(\sin (s+u)+s \cos (s+u)) u \sin (s-u)+s u \cos (s-u) \sin (s+u),
$$

and

$$
f_{u}=s u \cos (s+u) \sin (s-u)+(\sin (s-u)-u \cos (s-u)) s \sin (s+u),
$$

which can be simplified by using the formulae given in the exam to

$$
\begin{aligned}
f_{s} & =-\frac{u}{2}(\cos (2 s)-\cos (2 u))+s u \sin (2 s), \\
f_{u} & =-\frac{s}{2}(\cos (2 s)-\cos (2 u))-s u \sin (2 u) .
\end{aligned}
$$

From these expressions it is then easy to find

$$
f_{s s}=2 u(s \cos (2 s)+\sin (2 s)), \quad f_{u u}=-2 s(u \cos (2 u)+\sin (2 u)) .
$$

3. (a) Let the point (x, y) be a maximum of $f(x, y)$, then

$$
d f=f_{x} d x+f_{y} d y=0
$$

since the first order partial derivatives always vanish at a maximum point. Since $\phi(x, y)=0$, then it follows trivially that

$$
d \phi=\phi_{x} d x+\phi_{y} d y=0,
$$

and therefore we can also write that

$$
d(f+\lambda \phi)=d f+\lambda d \phi=0,
$$

where λ is an arbitrary constant which we call Lagrange's multiplier.
The previous equation is equivalent to

$$
\left(\frac{\partial f}{\partial x}+\lambda \frac{\partial \phi}{\partial x}\right) d x+\left(\frac{\partial f}{\partial y}+\lambda \frac{\partial \phi}{\partial y}\right) d y=0 .
$$

Since λ is arbitrary we can choose it so that

$$
\frac{\partial f}{\partial y}+\lambda \frac{\partial \phi}{\partial y}=0
$$

which implies

$$
\frac{\partial f}{\partial x}+\lambda \frac{\partial \phi}{\partial x}=0 .
$$

Therefore, we have now a set of 3 equations, for 3 unknowns namely

$$
\phi(x, y)=f_{x}+\lambda \phi_{x}=f_{y}+\lambda \phi_{y}=0 .
$$

(b) The function we want to maximize is the profit $p(x, y)$ and the constraint is that the total number of speakers is at most k. We can express that as $x+y=k$ and
therefore our constraint is the function $\phi(x, y)=x+y-k=0$. The system of equations which we need to solve is:

$$
\begin{aligned}
& f_{x}+\lambda \phi_{x}=0 \quad \Rightarrow \quad 3 x^{2}-5 y+\lambda=0 \\
& f_{y}+\lambda \phi_{y}=0 \quad \Rightarrow \quad 3 y^{2}-5 x+\lambda=0 \\
& x+y-k=0
\end{aligned}
$$

$$
3 x^{2}-5 y=3 y^{2}-5 x \quad \Rightarrow \quad(x-y)(3(x+y)+5)=0
$$

which has solutions $x=y$ or $x+y=-5 / 3$. Now we have to check whether or not these two solutions make sense. In fact, the second solutions is clearly not possible since x and y are the numbers of speakers produced by the company in a month and the sum of these numbers can never be negative! Thus we are left with only one solution, $x=y$.
Substituting it in the constraint we get,

$$
x=y=k / 2
$$

and $\lambda=\frac{k(10-3 k)}{4}$. For these values of x and y the profit becomes:

$$
p(k / 2, k / 2)=\frac{k^{2}(k-5)}{4}
$$

and this is the solution to our problem. Notice that the problem has a meaningful solution only if $k>5$.
4. (a) We try, as usual, solutions of the type $y=e^{m x}$. Putting this into the homogeneous equation we obtain

$$
m^{2}-2 m+1=0 \quad \Leftrightarrow \quad m=1
$$

This gives us only one solution! So, in order to find the other independent solution, we need to try something different. For example, take $y=x e^{a x}$. If we put this into our equation we obtain:

$$
(a+a(1+a x))-2(1+a x)+x=0 \quad \Leftrightarrow \quad a=1
$$

Therefore $u_{1}(x)=e^{x}$ and $u_{2}(x)=x e^{x}$.
The Wronskian is

$$
W(x)=u_{1}(x) u_{2}^{\prime}(x)-u_{1}^{\prime}(x) u_{2}(x)=e^{x}\left(e^{x}+x e^{x}\right)-e^{x} x e^{x}=e^{2 x}
$$

(b) A particular solution of the inhomogeneous equation is given by

$$
y_{p}=v_{1}(x) u_{1}(x)+v_{2}(x) u_{2}(x)
$$

with

$$
v_{1}(x)=-\int u_{2}(x) \frac{R(x)}{W(x)} d x, \quad v_{2}(x)=-\int u_{1}(x) \frac{R(x)}{W(x)} d x
$$

Here $R(x)=\frac{e^{x}}{x}$ which gives

$$
v_{1}(x)=-\int x e^{x} \frac{e^{x}}{x e^{2 x}} d x=-\int d x=-x
$$

and

$$
v_{2}(x)=\int e^{x} \frac{e^{x}}{x e^{2 x}} d x=\int \frac{d x}{x}=\ln x
$$

Therefore, the general solution of the inhomogeneous equation is given by

$$
y=\left(c_{1}+c_{2} x\right) e^{x}-x e^{x}+x e^{x} \ln x=e^{x}\left[\left(c_{1}+c_{2} x\right)-x(1-\ln x)\right]
$$

for c_{1}, c_{2} arbitrary constants.

