CALCULUS 1999: EXAM SOLUTIONS

1. (a) The integration region is the dashed area below. Notice that the curve $y=\sqrt{1-x^{2}}$ can alss

In polar coordinates we have

$$
x=r \cos \theta \quad y=r \sin \theta,
$$

and the element of surface is

$$
d x d y=r d r d \theta .
$$

Looking at the integration region it is easy to see that in polar coordinates it corresponds to

$$
R:=\{(r, \theta) \mid 0 \leq \theta \leq \pi / 2, \quad 0 \leq r \leq 1\} .
$$

Finally, in polar coordinates, the function inside the integral becomes

$$
e^{-\left(x^{2}+y^{2}\right)}=e^{-r^{2}} .
$$

So the integral is

$$
I=\int_{\theta=0}^{\theta=\pi / 2} d \theta \int_{r=0}^{r=1} r e^{-r^{2}} d r .
$$

The integral in r is simply

$$
\int_{r=0}^{r=1} r e^{-r^{2}} d r=-\frac{1}{2}\left[e^{-r^{2}}\right]_{0}^{1}=\frac{1-e^{-1}}{2}=\frac{e-1}{2 e} .
$$

Therefore

$$
I=\frac{e-1}{2 e} \int_{\theta=0}^{\theta=\pi / 2} d \theta=\frac{e-1}{2 e}[\theta]_{0}^{\pi / 2}=\frac{\pi(e-1)}{4 e} .
$$

(b) As usual we start by sketching the integration region

From the picture and the information given by the problem we can deduce that the integration region is

$$
R=\left\{(x, y, z): 0 \leq x \leq 1, \quad 4 x^{2} \leq y \leq 4, \quad 0 \leq z \leq 2\right.
$$

The integral is

$$
I=2 \int_{x=0}^{x=1} x d x \int_{y=4 x^{2}}^{4} d y \int_{z=0}^{2} d z
$$

The integral in z is

$$
\int_{z=0}^{2} d z=[z]_{0}^{2}=2
$$

The integral in y is

$$
\int_{y=4 x^{2}}^{4} d y=[y]_{4 x^{2}}^{4}=4\left(1-x^{2}\right)
$$

Therefore, the final result is

$$
I=16 \int_{x=0}^{x=1} x\left(1-x^{2}\right) d x=16\left[\frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{1}=16\left(\frac{1}{2}-\frac{1}{4}\right)=4
$$

2. (a) For this function the first order partial derivatives are

$$
\begin{aligned}
f_{x} & =3 x^{2}+y^{2}-24 x+21 \\
f_{y} & =2 x y-4 y
\end{aligned}
$$

The first thing we have to do is finding the points at which these derivatives vanish

$$
f_{y}=0 \Rightarrow y(x-2)=0 \Rightarrow y=0 \quad \text { or } \quad x=2
$$

For $y=0$ (which is one of the solutions of the previous equation) f_{x} will vanish if

$$
f_{x}(x, y=0)=0=3 x^{2}-24 x+21=0 \Rightarrow x=\frac{24 \pm 18}{6}=7,1
$$

and for $x=2$ (which is the other solution of $f_{y}=0$) we would obtain

$$
f_{x}(x=2, y)=0=12+y^{2}-48+21 \quad \Rightarrow \quad y= \pm \sqrt{15} .
$$

Therefore, putting all these solutions together we have the following 4 points:

$$
(x, y)=(1,0),(7,0),(2, \sqrt{15}) \quad \text { and } \quad(2,-\sqrt{15})
$$

The next step is to compute the second order partial derivatives

$$
\begin{aligned}
A & =f_{x x}=6 x-24 \\
B & =f_{x y}=f_{y x}=2 y \\
C & =f_{y y}=2 x-4
\end{aligned}
$$

therefore

$$
A C-B^{2}=(6 x-24)(2 x-4)-4 y^{2}
$$

and we have to study the sign of this quantity in order to classify the stationary points of the function:

The point (1, 0): At this point

$$
\begin{aligned}
A C-B^{2} & =(6-24)(2-4)=36>0 \\
A & =6-24=-18<0
\end{aligned}
$$

therefore this point is a maximum.
The point (7,0): At this point

$$
\begin{aligned}
A C-B^{2} & =(42-24)(14-4)=180>0 \\
A & =42-24=18>0
\end{aligned}
$$

therefore this point is a minimum.
The point $(2, \sqrt{15})$: At this point

$$
A C-B^{2}=(12-24)(4-4)-60=-60<0
$$

therefore this point is a saddle point.
The point $(2,-\sqrt{15})$: At this point

$$
A C-B^{2}=(12-24)(4-4)-60=-60<0
$$

therefore this point is also a saddle point.
(b) The Taylor expansion of a function of two variables $f(x, y)$ around a point $\left(x_{0}, y_{0}\right)$ up to second order terms is given by

$$
\begin{aligned}
f(x, y) & =f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& +\frac{1}{2} f_{x x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)^{2}+\frac{1}{2} f_{y y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)^{2}+f_{x y}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)\left(y-y_{0}\right)
\end{aligned}
$$

assuming $f_{x y}=f_{y x}$. In our case $\left(x_{0}, y_{0}\right)=(-1,-1)$ and

$$
\begin{aligned}
f_{x} & =(1+x+y) e^{x-y}, \quad f_{y}=(1-x-y) e^{x-y}, \quad f_{x x}=(2+x+y) e^{x-y} \\
f_{y y} & =(-2+x+y) e^{x-y}, \quad f_{x y}=f_{y x}=-(x+y) e^{x-y}
\end{aligned}
$$

Therefore

$$
\begin{array}{r}
f_{x}(-1,-1)=-1, \quad f_{y}(-1,-1)=3, \quad f_{x x}(-1,-1)=0 \\
f_{y y}(-1,-1)=-4, \quad f_{x y}(-1,-1)=f_{y x}(-1,-1)=2
\end{array}
$$

and $f(-1,-1)=-2$. With this we obtain the following Taylor expansion

$$
\begin{aligned}
f(x, y) & =-2-(x+1)+3(y+1)-2(y+1)^{2}+2(y+1)(x+1) \\
& =y+x-2 y^{2}+2 x y
\end{aligned}
$$

Therefore, the approximate value of $f(-0.9,-1.05)$ is

$$
f(-0.9,-1.05) \simeq-0.9-1.05-2(1.05)^{2}+2(0.9)(1.05)=-2.265
$$

The Taylor expansion in terms of the displacements h and k is obtained simply by replacing $x=x_{0}+h=h-1$ and $y=y_{0}+k=k-1$ in our final formula. It gives

$$
f(h, k)=k+h-2-2(k-1)^{2}+2(k-1)(h-1) .
$$

3. To obtain the general solution of the homogeneous equation we try solutions of the type $y=c e^{m x}$. Substituting this solution into the equation we obtain the condition

$$
m^{2}+1=0 \Rightarrow m= \pm i
$$

This means that the general solution of the homogeneous equation is of the form

$$
y=c_{1} \sin (x)+c_{2} \cos (x)
$$

therefore we identify

$$
u_{1}(x)=\sin (x), \quad u_{2}(x)=\cos (x)
$$

For the second part of the problem we will need the Wronskian of these solutions which is

$$
W(x)=\left|\begin{array}{cc}
u_{1}(x) & u_{2}(x) \\
u_{1}^{\prime}(x) & u_{2}^{\prime}(x)
\end{array}\right|=\left|\begin{array}{cc}
\sin (x) & \cos (x) \\
\cos (x) & -\sin (x)
\end{array}\right|=-\sin ^{2}(x)-\cos ^{2}(x)=-1
$$

Therefore the Wronskian is indeed nowhere zero.
The method of variation of parameters tells us that a particular solution of the inhomogeneous equation is of the form

$$
y=v_{1}(x) u_{1}(x)+v_{2}(x) u_{2}(x)
$$

with

$$
v_{1}(x)=-\int u_{2}(x) \frac{R(x)}{W(x)} d x \quad \text { and } \quad v_{2}(x)=\int u_{1}(x) \frac{R(x)}{W(x)} d x
$$

In our case

$$
R(x)=x+\frac{1}{\cos x}, \quad W(x)=-1
$$

therefore

$$
\begin{aligned}
v_{1}(x) & =\int(x \cos x+1) d x=x+\int x \cos x d x=x+x \sin x-\int \sin x d x=x+x \sin x+\cos x \\
v_{2}(x) & =-\int(x \sin x+\tan x) d x=\ln |\cos x|-\int x \sin x d x=\ln |\cos x|+x \cos x-\int \cos x d x \\
& =\ln |\cos x|+x \cos x-\sin x
\end{aligned}
$$

where for both integrals we have used integration by parts. Hence the general solution of the inhomogeneous equation is

$$
\begin{aligned}
y & =c_{1} \sin x+c_{2} \cos (x)+\sin x(x+x \sin x+\cos x)+\cos x(\ln |\cos x|+x \cos x-\sin x) \\
& =c_{1} \sin x+c_{2} \cos x+x(1+\sin x)+\cos x \ln |\cos x|
\end{aligned}
$$

with c_{1}, c_{2} being arbitrary constants.
4. Here we need to use the chain rule for a function of two variables x, y which are changed to two new variables u, v. The relevant identities are

$$
\begin{align*}
\frac{\partial f}{\partial u} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \tag{0.1}\\
\frac{\partial f}{\partial v} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v} \tag{0.2}
\end{align*}
$$

For $x=(u+v) / 2$ and $y=\left(u^{2}+v^{2}\right) / 4$ we have

$$
\frac{\partial x}{\partial u}=\frac{\partial x}{\partial v}=\frac{1}{2}, \quad \frac{\partial y}{\partial u}=\frac{u}{2}, \quad \frac{\partial y}{\partial v}=\frac{v}{2}
$$

Plugging these derivatives into (0.1)-(0.2) we obtain

$$
\begin{aligned}
\frac{\partial f}{\partial u} & =\frac{1}{2} f_{x}+\frac{u}{2} f_{y} \\
\frac{\partial f}{\partial v} & =\frac{1}{2} f_{x}+\frac{v}{2} f_{y}
\end{aligned}
$$

therefore

$$
\frac{\partial f}{\partial u}+\frac{\partial f}{\partial v}=\frac{1}{2} f_{x}+\frac{u}{2} f_{y}+\frac{1}{2} f_{x}+\frac{v}{2} f_{y}=f_{x}+\frac{u+v}{2} f_{y}=f_{x}+x f_{y}
$$

as we wanted to prove. To prove the second identity we need to compute second order partial derivatives

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial u^{2}} & =\frac{1}{2} \frac{\partial}{\partial u}\left(f_{x}+u f_{y}\right)=\frac{1}{2} \frac{\partial f_{x}}{\partial u}+\frac{1}{2} f_{y}+\frac{u}{2} \frac{\partial f_{y}}{\partial u} \\
& =\frac{1}{4}\left(f_{x x}+u f_{y x}\right)+\frac{1}{2} f_{y}+\frac{u}{4}\left(f_{x y}+u f_{y y}\right) \\
\frac{\partial^{2} f}{\partial v^{2}} & =\frac{1}{2} \frac{\partial}{\partial v}\left(f_{x}+v f_{y}\right)=\frac{1}{2} \frac{\partial f_{x}}{\partial v}+\frac{1}{2} f_{y}+\frac{v}{2} \frac{\partial f_{y}}{\partial v} \\
& =\frac{1}{4}\left(f_{x x}+v f_{y x}\right)+\frac{1}{2} f_{y}+\frac{v}{4}\left(f_{x y}+v f_{y y}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial u^{2}}+\frac{\partial^{2} f}{\partial v^{2}} & =\frac{1}{4}\left(f_{x x}+u f_{y x}\right)+\frac{1}{2} f_{y}+\frac{u}{4}\left(f_{x y}+u f_{y y}\right)+\frac{1}{4}\left(f_{x x}+v f_{y x}\right)+\frac{1}{2} f_{y}+\frac{v}{4}\left(f_{x y}+v f_{y y}\right) \\
& =\frac{1}{2} f_{x x}+\frac{u+v}{2} f_{x y}+\frac{u^{2}+v^{2}}{4} f_{y y}+f_{y} \\
& =\frac{1}{2} f_{x x}+x f_{x y}+y f_{y y}+f_{y}
\end{aligned}
$$

as we wanted to prove.
(b) Let us consider an implicit function of two variables $z=f(x, y)$ and assume the existence of a constraint

$$
F(x, y, z)=0
$$

which relates the function z to the two independent variables x and y. Since $F=0$ it is clear that also its total differential $d F=0$ must vanish. However the total differential is by definition

$$
\begin{equation*}
d F=\left(\frac{\partial F}{\partial x}\right) d x+\left(\frac{\partial F}{\partial y}\right) d y+\left(\frac{\partial F}{\partial z}\right) d z=0 \tag{0.3}
\end{equation*}
$$

and in addition, z is a function of x and y, therefore its differential is given by

$$
\begin{equation*}
d z=\left(\frac{\partial z}{\partial x}\right) d x+\left(\frac{\partial z}{\partial y}\right) d y \tag{0.4}
\end{equation*}
$$

If we substitute (0.4) into (0.3) we obtain the equation

$$
\begin{equation*}
d F=0=\left(\frac{\partial F}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}\right) d x+\left(\frac{\partial F}{\partial y}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial y}\right) d y \tag{0.5}
\end{equation*}
$$

Since x and y are independent variables, equation (0.5) implies that each of the factors has to vanish separately, that is

$$
\frac{\partial F}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=\frac{\partial F}{\partial y}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial y}=0
$$

Therefore we obtain,

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=-\frac{\left(\frac{\partial F}{\partial x}\right)}{\left(\frac{\partial F}{\partial z}\right)}=-\frac{F_{x}}{F_{z}} \\
& \frac{\partial z}{\partial y}=-\frac{\left(\frac{\partial F}{\partial y}\right)}{\left(\frac{\partial F}{\partial z}\right)}=-\frac{F_{y}}{F_{z}}
\end{aligned}
$$

Employing now these formulae for the function $F(x, y, z)=\cos (x+y)+\sin (y+z)=0$, we obtain

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=\frac{\sin (x+y)}{\cos (y+z)}
$$

and

$$
\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{-\sin (x+y)+\cos (y+z)}{\cos (y+z)}=\frac{\sin (x+y)}{\cos (y+z)}-1
$$

