CALCULUS 2000: EXAM SOLUTIONS

1. (a) The integration region is the triangle enclosed by the lines $y=\pi / 2, x=0$ and $x=y$. Changing the order of integration we obtain the integral

$$
I=\int_{x=0}^{\pi / 2} \sqrt{1-k^{2} \sin ^{2} x} d x \int_{y=x}^{\pi / 2} \cos (2 y) d y
$$

the integral in y gives

$$
\int_{y=x}^{\pi / 2} \cos (2 y) d y=\frac{1}{2}[\sin (2 y)]_{x}^{\pi / 2}=\frac{1}{2}(0-\sin (2 x))=-\frac{1}{2} \sin (2 x) .
$$

Plugging this result into I we obtain

$$
I=-\frac{1}{2} \int_{x=0}^{\pi / 2} \sqrt{1-k^{2} \sin ^{2} x} \sin (2 x) d x
$$

In order to do this integral it is convenient to introduce the change of variables

$$
t=k \sin x \quad \Leftrightarrow \quad d t=k \cos x d x
$$

and use the identity $\sin (2 x)=2 \cos x \sin x$. We obtain then

$$
I=-\frac{1}{k^{2}} \int_{t=0}^{t=k} t \sqrt{1-t^{2}} d t=\frac{1}{k^{2}}\left[\frac{1}{3}\left(1-t^{2}\right)^{3 / 2}\right]_{0}^{k}=\frac{\left(1-k^{2}\right)^{3 / 2}-1}{3 k^{2}} .
$$

(b) We start by computing the Jacobian

$$
J=\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
-v / u^{2} & 1 / u \\
0 & 1
\end{array}\right|=-\frac{v}{u^{2}} .
$$

Therefore

$$
d x d y=|J| d u d v=\frac{v}{u^{2}} d u d v
$$

Now we have to transform the function we want to integrate,

$$
\frac{y^{2}}{x^{2}} e^{y / x}=u^{2} e^{u}
$$

and we have to find the new integration region

$$
\begin{aligned}
& 0 \leq x \leq 1 \quad \Leftrightarrow \quad 0 \leq v \leq u, \\
& 0 \leq y \leq x \quad \Leftrightarrow \quad 0 \leq u \leq 1 .
\end{aligned}
$$

Therefore the integral we need to compute is

$$
I=\int_{u=0}^{u=1} e^{u} d u \int_{v=0}^{v=u} v d v .
$$

The first integral is

$$
\int_{v=0}^{v=u} v d v=\left[\frac{v^{2}}{2}\right]_{v=0}^{v=u}=\frac{u^{2}}{2}
$$

and so

$$
I=\frac{1}{2} \int_{u=0}^{u=1} u^{2} e^{u} d u
$$

This integral can be done by using integration by parts twice

$$
\begin{aligned}
\int_{u=0}^{u=1} u^{2} e^{u} d u & =\left[u^{2} e^{u}\right]_{0}^{1}-\int_{u=0}^{u=1} 2 u e^{u} d u=e-\int_{u=0}^{u=1} 2 u e^{u} d u \\
& =e-\left[2 u e^{u}\right]_{0}^{1}+\int_{u=0}^{u=1} 2 e^{u} d u=e-2 e+\int_{u=0}^{u=1} 2 e^{u} d u \\
& =\left[2 e^{u}\right]_{0}^{1}-e=2 e-2-e=e-2
\end{aligned}
$$

Therefore

$$
I=\frac{e-2}{2}
$$

2. (a) The Taylor expansion of a function of two variables $f(x, y)$ around a point $\left(x_{0}, y_{0}\right)$ up to second order terms is given by

$$
\begin{aligned}
f(x, y) & =f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& +\frac{1}{2} f_{x x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)^{2}+\frac{1}{2} f_{y y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)^{2}+f_{x y}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)\left(y-y_{0}\right)
\end{aligned}
$$

First we need to compute the 1st and 2nd order partial derivatives

$$
\begin{aligned}
f_{x} & =2 e^{2 x+3 y}\left(8 x+8 x^{2}-3 y-6 x y+3 y^{2}\right) \\
f_{y} & =3 e^{2 x+3 y}\left(-2 x+8 x^{2}+2 y-6 x y+3 y^{2}\right) \\
f_{x x} & =4 e^{2 x+3 y}\left(4+16 x+8 x^{2}-6 y-6 x y+3 y^{2}\right) \\
f_{y y} & =3 e^{2 x+3 y}\left(2-12 x+24 x^{2}+12 y-18 x y+9 y^{2}\right) \\
f_{x y} & =f_{y x}=6 e^{2 x+3 y}\left(-1+6 x+8 x^{2}-y-6 x y+3 y^{2}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
f_{x}(0,0) & =0, \quad f_{y}(0,0)=0, \quad f_{x x}(0,0)=16, \\
f_{y y}(0,0) & =6, \quad f_{x y}(0,0)=f_{y x}(0,0)=-6,
\end{aligned}
$$

and $f(0,0)=0$. With this we obtain the following Taylor expansion

$$
f(x, y)=8 x^{2}+3 y^{2}-6 x y
$$

To obtain the expansion in terms of the displacements h and k we only need to set $x=x_{0}+h$ and $y=y_{0}+k$. Since in this case $x_{0}=y_{0}=0$,

$$
f(h, k)=8 h^{2}+3 k^{2}-6 h k
$$

The problem also asks what we can conclude about the nature of the point $(0,0)$. Since both first order derivatives vanish at that point we know that it must be either a maximum, a minimum or a saddle point. To know which one it is we need to compute:

$$
f_{x x}(0,0) f_{y y}(0,0)-f_{x y}(0,0)^{2}=(16)(6)-6^{2}=60>0
$$

Since $f_{x x}(0,0)=16>0$ the point is in fact a minimum of the function.
(b) In this case our constraint is

$$
\begin{equation*}
\phi(x, y, z)=x^{3}+y^{3}+z^{3}-1=0 \tag{0.1}
\end{equation*}
$$

and the corresponding partial derivatives of f and ϕ are

$$
\begin{aligned}
& f_{x}=z y, \quad f_{y}=x z, \quad f_{z}=x y, \\
& \phi_{x}=3 x^{2}, \quad \phi_{y}=3 y^{2}, \quad \phi_{z}=3 z^{2} .
\end{aligned}
$$

Therefore we need to solve the following system of equations

$$
\begin{aligned}
x^{3}+y^{3}+z^{3}-1 & =0, \\
z y+\lambda 3 x^{2} & =0 \\
z x+\lambda 3 y^{2} & =0 \\
x y+\lambda 3 z^{2} & =0
\end{aligned}
$$

The last three equations are solved by $x=y=z$ and $\lambda=-1 / 3$, which when plugged into the first equation gives the condition

$$
3 x^{3}=1 \Rightarrow x=\sqrt[3]{\frac{1}{3}}
$$

In addition, the equations admit also the solutions $(0,0,1),(1,0,0)$ and $(0,1,0)$ with $\lambda=0$. At these points $f=0$ and this is the minimum value of this function for points satisfying (0.1) and $x, y, z \geq 0$. The maximum value of f subject to (0.1) is therefore $1 / 3$.
3. To obtain the general solution of the homogeneous equation we try solutions of the type $y=c e^{m x}$. Substituting this solution into the equation we obtain the condition

$$
m^{2}-4 m+5=0 \Rightarrow m=2 \pm i
$$

This means that the general solution of the homogeneous equation is of the form

$$
y=c_{1} e^{2 x} \cos x+c_{2} e^{2 x} \sin x
$$

therefore we identify

$$
u_{1}(x)=e^{2 x} \cos x, \quad u_{2}(x)=e^{2 x} \sin x
$$

For the second part of the problem we will need the Wronskian of these solutions which is

$$
\begin{aligned}
W(x) & =\left|\begin{array}{cc}
u_{1}(x) & u_{2}(x) \\
u_{1}^{\prime}(x) & u_{2}^{\prime}(x)
\end{array}\right|=\left|\begin{array}{cc}
e^{2 x} \cos x & e^{2 x} \sin x \\
2 e^{2 x} \cos x-e^{2 x} \sin x & 2 e^{2 x} \sin x+e^{2 x} \cos x
\end{array}\right| \\
& =e^{4 x} \cos x(2 \sin x+\cos x)-e^{4 x} \sin x(2 \cos x-\sin x)=e^{4 x}
\end{aligned}
$$

Therefore the Wronskian is indeed nowhere zero for finite values of x.
The method of variation of parameters tells us that a particular solution of the inhomogeneous equation is of the form

$$
y=v_{1}(x) u_{1}(x)+v_{2}(x) u_{2}(x)
$$

with

$$
v_{1}(x)=-\int u_{2}(x) \frac{R(x)}{W(x)} d x \quad \text { and } \quad v_{2}(x)=\int u_{1}(x) \frac{R(x)}{W(x)} d x
$$

In our case

$$
R(x)=\frac{e^{2 x}}{\sin x}, \quad W(x)=e^{4 x}
$$

therefore

$$
\begin{aligned}
& v_{1}(x)=-\int d x=-x \\
& v_{2}(x)=\int \frac{\cos x}{\sin x} d x=\ln |\sin x|
\end{aligned}
$$

Hence the general solution of the inhomogeneous equation is

$$
y=e^{2 x}\left(c_{1} \cos x+c_{2} \sin x-x \cos x+\ln |\sin x| \sin x\right)
$$

with c_{1}, c_{2} being arbitrary constants.
4. Calling

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}, \quad y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
$$

and plugging $y^{\prime \prime}$ into the differential equation we obtain,

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n+2}=0
$$

which can be rewritten as

$$
\sum_{k=0}^{\infty}(k+2)(k+1) a_{k+2} x^{k}+\sum_{k=2}^{\infty} a_{k-2} x^{k}=0
$$

by introducing $k=n-2$ in the first sum and $k=n+2$ in the second sum. Putting terms of the same order in x together we obtain

$$
2 a_{2}+6 a_{3} x+\sum_{k=2}^{\infty}\left((k+2)(k+1) a_{k+2}+a_{k-2}\right) x^{k}=0
$$

comparing terms with the same power of x we obtain

$$
a_{2}=a_{3}=0
$$

and for $k=2,3, \ldots$

$$
(k+2)(k+1) a_{k+2}+a_{k-2}=0 \quad \Leftrightarrow \quad a_{k+2}=-\frac{a_{k-2}}{(k+2)(k+1)}
$$

Now we just have to use the formula to determine the first 4 non-vanishing terms in the y-series. We find

$$
\begin{aligned}
& k=2: a_{4}=-\frac{a_{0}}{12} \\
& k=3: a_{5}=-\frac{a_{1}}{20}
\end{aligned}
$$

We have seen above that a_{2} and a_{3} vanish, therefore also a_{6} and a_{7} will vanish. Thus the 4 first non-vanishing terms in the series will be

$$
y=a_{0}+a_{1} x-\frac{a_{0}}{12} x^{4}-\frac{a_{1}}{20} x^{5}+\cdots
$$

and in order to fix a_{0} and a_{1} we will need two initial conditions. For example, if $y(0)=y^{\prime}(0)=1$, then we would have

$$
y(0)=a_{0}=1
$$

and

$$
y^{\prime}(0)=a_{1}=1
$$

