
CALCULUS 2000: EXAM SOLUTIONS

1. (a) The integration region is the triangle enclosed by the lines y = π/2, x = 0 and
x = y. Changing the order of integration we obtain the integral

I =
∫ π/2

x=0

√
1− k2 sin2 xdx

∫ π/2

y=x
cos(2y)dy,

the integral in y gives
∫ π/2

y=x
cos(2y)dy =

1
2

[sin(2y)]π/2
x =

1
2
(0− sin(2x)) = −1

2
sin(2x).

Plugging this result into I we obtain

I = −1
2

∫ π/2

x=0

√
1− k2 sin2 x sin(2x)dx.

In order to do this integral it is convenient to introduce the change of variables

t = k sinx ⇔ dt = k cosxdx,

and use the identity sin(2x) = 2 cosx sinx. We obtain then

I = − 1
k2

∫ t=k

t=0
t
√

1− t2dt =
1
k2

[
1
3
(1− t2)3/2

]k

0

=
(1− k2)3/2 − 1

3k2
.

(b) We start by computing the Jacobian

J =

∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣
−v/u2 1/u

0 1

∣∣∣∣ = − v

u2
.

Therefore
dx dy = |J |du dv =

v

u2
du dv.

Now we have to transform the function we want to integrate,

y2

x2
ey/x = u2eu,

and we have to find the new integration region

0 ≤ x ≤ 1 ⇔ 0 ≤ v ≤ u,

0 ≤ y ≤ x ⇔ 0 ≤ u ≤ 1.

Therefore the integral we need to compute is

I =
∫ u=1

u=0
eudu

∫ v=u

v=0
v dv.
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The first integral is ∫ v=u

v=0
v dv =

[
v2

2

]v=u

v=0

=
u2

2
,

and so

I =
1
2

∫ u=1

u=0
u2eudu.

This integral can be done by using integration by parts twice
∫ u=1

u=0
u2eudu =

[
u2eu

]1

0
−

∫ u=1

u=0
2ueudu = e−

∫ u=1

u=0
2ueudu

= e− [2ueu]10 +
∫ u=1

u=0
2eudu = e− 2e +

∫ u=1

u=0
2eudu

= [2eu]10 − e = 2e− 2− e = e− 2.

Therefore
I =

e− 2
2

.

2. (a) The Taylor expansion of a function of two variables f(x, y) around a point (x0, y0)
up to second order terms is given by

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1
2
fxx(x0, y0)(x− x0)2 +

1
2
fyy(x0, y0)(y − y0)2 + fxy(x0, y0)(x− x0)(y − y0).

First we need to compute the 1st and 2nd order partial derivatives

fx = 2e2x+3y
(
8x + 8x2 − 3y − 6xy + 3y2

)
,

fy = 3e2x+3y
(−2x + 8x2 + 2y − 6xy + 3y2

)
,

fxx = 4e2x+3y
(
4 + 16x + 8x2 − 6y − 6xy + 3y2

)
,

fyy = 3e2x+3y
(
2− 12x + 24x2 + 12y − 18xy + 9y2

)
,

fxy = fyx = 6e2x+3y
(−1 + 6x + 8x2 − y − 6xy + 3y2

)
.

Therefore

fx(0, 0) = 0, fy(0, 0) = 0, fxx(0, 0) = 16,
fyy(0, 0) = 6, fxy(0, 0) = fyx(0, 0) = −6,

and f(0, 0) = 0. With this we obtain the following Taylor expansion

f(x, y) = 8x2 + 3y2 − 6xy.

To obtain the expansion in terms of the displacements h and k we only need to set
x = x0 + h and y = y0 + k. Since in this case x0 = y0 = 0,

f(h, k) = 8h2 + 3k2 − 6hk.
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The problem also asks what we can conclude about the nature of the point (0, 0).
Since both first order derivatives vanish at that point we know that it must be either a
maximum, a minimum or a saddle point. To know which one it is we need to compute:

fxx(0, 0)fyy(0, 0)− fxy(0, 0)2 = (16)(6)− 62 = 60 > 0.

Since fxx(0, 0) = 16 > 0 the point is in fact a minimum of the function.

(b) In this case our constraint is

φ(x, y, z) = x3 + y3 + z3 − 1 = 0, (0.1)

and the corresponding partial derivatives of f and φ are

fx = zy, fy = xz, fz = xy,

φx = 3x2, φy = 3y2, φz = 3z2.

Therefore we need to solve the following system of equations

x3 + y3 + z3 − 1 = 0,
zy + λ3x2 = 0,

zx + λ3y2 = 0,

xy + λ3z2 = 0.

The last three equations are solved by x = y = z and λ = −1/3, which when plugged
into the first equation gives the condition

3x3 = 1 ⇒ x = 3

√
1
3
.

In addition, the equations admit also the solutions (0, 0, 1), (1, 0, 0) and (0, 1, 0) with
λ = 0. At these points f = 0 and this is the minimum value of this function for points
satisfying (0.1) and x, y, z ≥ 0. The maximum value of f subject to (0.1) is therefore
1/3.

3. To obtain the general solution of the homogeneous equation we try solutions of the
type y = cemx. Substituting this solution into the equation we obtain the condition

m2 − 4m + 5 = 0 ⇒ m = 2± i.

This means that the general solution of the homogeneous equation is of the form

y = c1e
2x cosx + c2e

2x sinx,

therefore we identify

u1(x) = e2x cosx, u2(x) = e2x sinx.
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For the second part of the problem we will need the Wronskian of these solutions which
is

W (x) =
∣∣∣∣

u1(x) u2(x)
u′1(x) u′2(x)

∣∣∣∣ =
∣∣∣∣

e2x cosx e2x sinx
2e2x cosx− e2x sinx 2e2x sinx + e2x cosx

∣∣∣∣
= e4x cosx(2 sinx + cos x)− e4x sinx(2 cosx− sinx) = e4x.

Therefore the Wronskian is indeed nowhere zero for finite values of x.

The method of variation of parameters tells us that a particular solution of the inho-
mogeneous equation is of the form

y = v1(x)u1(x) + v2(x)u2(x),

with
v1(x) = −

∫
u2(x)

R(x)
W (x)

dx and v2(x) =
∫

u1(x)
R(x)
W (x)

dx.

In our case

R(x) =
e2x

sinx
, W (x) = e4x,

therefore

v1(x) = −
∫

dx = −x,

v2(x) =
∫

cosx

sinx
dx = ln | sinx|.

Hence the general solution of the inhomogeneous equation is

y = e2x(c1 cosx + c2 sinx− x cosx + ln | sinx| sinx),

with c1, c2 being arbitrary constants.

4. Calling

y =
∞∑

n=0

anxn,

then

y′ =
∞∑

n=1

nanxn−1, y′′ =
∞∑

n=2

n(n− 1)anxn−2,

and plugging y′′ into the differential equation we obtain,

∞∑

n=2

n(n− 1)anxn−2 +
∞∑

n=0

anxn+2 = 0,

which can be rewritten as
∞∑

k=0

(k + 2)(k + 1)ak+2x
k +

∞∑

k=2

ak−2x
k = 0,
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by introducing k = n − 2 in the first sum and k = n + 2 in the second sum. Putting
terms of the same order in x together we obtain

2a2 + 6a3x +
∞∑

k=2

((k + 2)(k + 1)ak+2 + ak−2)xk = 0,

comparing terms with the same power of x we obtain

a2 = a3 = 0,

and for k = 2, 3, . . .

(k + 2)(k + 1)ak+2 + ak−2 = 0 ⇔ ak+2 = − ak−2

(k + 2)(k + 1)
.

Now we just have to use the formula to determine the first 4 non-vanishing terms in
the y-series. We find

k = 2 : a4 = −a0

12
,

k = 3 : a5 = −a1

20
.

We have seen above that a2 and a3 vanish, therefore also a6 and a7 will vanish. Thus
the 4 first non-vanishing terms in the series will be

y = a0 + a1x− a0

12
x4 − a1

20
x5 + · · ·

and in order to fix a0 and a1 we will need two initial conditions. For example, if
y(0) = y′(0) = 1, then we would have

y(0) = a0 = 1,

and
y′(0) = a1 = 1.
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