
CALCULUS 2002: EXAM SOLUTIONS

1. To obtain the general solution of the homogeneous equation we try solutions of the
type y = cemx. Substituting this solution into the equation we obtain the condition

m2 − 4m + 5 = 0 ⇒ m = 2± i.

This means that the general solution of the homogeneous equation is of the form

y = c1e
2x cosx + c2e

2x sinx,

therefore we identify

u1(x) = e2x cosx, u2(x) = e2x sinx.

For the second part of the problem we will need the Wronskian of these solutions which
is

W (x) =
∣∣∣∣

u1(x) u2(x)
u′1(x) u′2(x)

∣∣∣∣ =
∣∣∣∣

e2x cosx e2x sinx
2e2x cosx− e2x sinx 2e2x sinx + e2x cosx

∣∣∣∣
= e4x cosx(2 sinx + cos x)− e4x sinx(2 cosx− sinx) = e4x.

Therefore the Wronskian is indeed nowhere zero for finite values of x.

The method of variation of parameters tells us that a particular solution of the inho-
mogeneous equation is of the form

y = v1(x)u1(x) + v2(x)u2(x),

with
v1(x) = −

∫
u2(x)

R(x)
W (x)

dx and v2(x) =
∫

u1(x)
R(x)
W (x)

dx.

In our case

R(x) =
2e2x

sinx
, W (x) = e4x,

therefore

v1(x) = −2
∫

dx = −2x,

v2(x) = 2
∫

cosx

sinx
dx = 2 ln | sinx|.

Hence the general solution of the inhomogeneous equation is

y = e2x(c1 cosx + c2 sinx− 2x cosx + 2 ln(sinx) sin x),

with c1, c2 being arbitrary constants.
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2. Calling

y =
∞∑

n=0

anxn,

then

y′ =
∞∑

n=1

nanxn−1, y′′ =
∞∑

n=2

n(n− 1)anxn−2,

and plugging y′′ into the differential equation we obtain,
∞∑

n=2

n(n− 1)anxn−2 +
∞∑

n=0

anxn+2 = 0,

which can be rewritten as
∞∑

k=0

(k + 2)(k + 1)ak+2x
k +

∞∑

k=2

ak−2x
k = 0,

by introducing k = n − 2 in the first sum and k = n + 2 in the second sum. Putting
terms of the same order in x together we obtain

2a2 + 6a3x +
∞∑

k=2

((k + 2)(k + 1)ak+2 + ak−2)xk = 0,

comparing terms with the same power of x we obtain

a2 = a3 = 0,

and for k = 2, 3, . . .

(k + 2)(k + 1)ak+2 + ak−2 = 0 ⇔ ak+2 = − ak−2

(k + 2)(k + 1)
.

Now we just have to use the formula to determine the first 4 non-vanishing terms in
the y-series. We find

k = 2 : a4 = −a0

12
,

k = 3 : a5 = −a1

20
.

We have seen above that a2 and a3 vanish, therefore also a6 and a7 will vanish. Thus
the 4 first non-vanishing terms in the series will be

y = a0 + a1x− a0

12
x4 − a1

20
x5 + · · ·

and in order to fix a0 and a1 we will need two initial conditions. For example, if
y(0) = y′(0) = 1, then we would have

y(0) = a0 = 1,

and
y′(0) = a1 = 1.
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3. (a) The integration region is the triangle formed by the intersection of the lines y = x,
y = 0 and x = 1. Once we have identified the integration region, it is easy to change
the order of integration to write I equivalently as

I =
∫ x=1

x=0
dx

∫ y=x

y=0
cos

(
πx2

2

)
dy.

The integral
∫ y=x

y=0
cos

(
πx2

2

)
dy =

[
y cos

(
πx2

2

)]x

0

= x cos
(

πx2

2

)
− 0 = x cos

(
πx2

2

)
,

is trivial to do, since the argument does not depend on y. Now the second integral
is also very easy to do, since we have the product of the cosine of a function and the
derivative of that function, therefore

I =
∫ x=1

x=0
x cos

(
πx2

2

)
dx =

[
1
π

sin
(

πx2

2

)]1

0

=
1
π
− 0 =

1
π

.

If you do not realize how to do the integral directly, you can also change variables to
t = πx2/2 which gives dt = πxdx and allows you to rewrite the integral above as

I =
∫ x=1

x=0
x cos

(
πx2

2

)
dx =

1
π

∫ t=π/2

t=0
cos(t) dt =

1
π

[sin(t)]π/2
0 =

1
π

.

(b) We start by computing the Jacobian

J =

∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣
−v/u2 1/u

0 1

∣∣∣∣ = − v

u2
.

Therefore
dx dy = |J |du dv =

v

u2
du dv.

Now we have to transform the function we want to integrate,

y2

x2
ey/x = u2eu,

and we have to find the new integration region

0 ≤ x ≤ 1 ⇔ 0 ≤ v ≤ u,

0 ≤ y ≤ x ⇔ 0 ≤ u ≤ 1.

Therefore the integral we need to compute is

I =
∫ u=1

u=0
eudu

∫ v=u

v=0
v dv.
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The first integral is ∫ v=u

v=0
v dv =

[
v2

2

]v=u

v=0

=
u2

2
,

and so

I =
1
2

∫ u=1

u=0
u2eudu.

This integral can be done by using integration by parts twice
∫ u=1

u=0
u2eudu =

[
u2eu

]1

0
−

∫ u=1

u=0
2ueudu = e−

∫ u=1

u=0
2ueudu

= e− [2ueu]10 +
∫ u=1

u=0
2eudu = e− 2e +

∫ u=1

u=0
2eudu

= [2eu]10 − e = 2e− 2− e = e− 2.

Therefore
I =

e− 2
2

.

4. (a) The Taylor expansion of a function of two variables f(x, y) around a point (x0, y0)
up to second order terms is given by

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1
2
fxx(x0, y0)(x− x0)2 +

1
2
fyy(x0, y0)(y − y0)2 + fxy(x0, y0)(x− x0)(y − y0).

First we need to compute the 1st and 2nd order partial derivatives

fx = 2e2x+3y
(
8x + 8x2 − 3y − 6xy + 3y2

)
,

fy = 3e2x+3y
(−2x + 8x2 + 2y − 6xy + 3y2

)
,

fxx = 4e2x+3y
(
4 + 16x + 8x2 − 6y − 6xy + 3y2

)
,

fyy = 3e2x+3y
(
2− 12x + 24x2 + 12y − 18xy + 9y2

)
,

fxy = fyx = 6e2x+3y
(−1 + 6x + 8x2 − y − 6xy + 3y2

)
.

Therefore

fx(0, 0) = 0, fy(0, 0) = 0, fxx(0, 0) = 16,
fyy(0, 0) = 6, fxy(0, 0) = fyx(0, 0) = −6,

and f(0, 0) = 0. With this we obtain the following Taylor expansion

f(x, y) = 8x2 + 3y2 − 6xy.

To obtain the expansion in terms of the displacements h and k we only need to set
x = x0 + h and y = y0 + k. Since in this case x0 = y0 = 0,

f(h, k) = 8h2 + 3k2 − 6hk.
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The problem also asks what we can conclude about the nature of the point (0, 0).
Since both first order derivatives vanish at that point we know that it must be either a
maximum, a minimum or a saddle point. To know which one it is we need to compute:

fxx(0, 0)fyy(0, 0)− fxy(0, 0)2 = (16)(6)− 62 = 60 > 0.

Since fxx(0, 0) = 16 > 0 the point is in fact a minimum of the function.

(b) In this case our constraint is

φ(x, y) = y2 + x2 + 4xy − 4 = 0, (0.1)

and the function we want to minimize is the distance from the point (0, 0, 1) to a point
(x, y, 0) in the curve above. The square of the distance is the function

f(x, y) = x2 + y2 + 1,

and the key thing to notice in the problem is that the curve lies on the xy-plane and
therefore the point which is closest to (0, 0, 1) and lies in the curve (0.1) has coordinate
z = 0. This means that we have a problem of Lagrange multipliers but we only have
equations in x and y. The corresponding partial derivatives of f and φ are

fx = 2x, fy = 2y,

φx = 2x + 4y, φy = 2y + 4x.

Therefore we need to solve the following system of equations

y2 + x2 + 4xy − 4 = 0 = 0,
2x + λ(2x + 4y) = 0,

2y + λ(2y + 4x) = 0.

The last two equations give

λ = − x

x + 2y
= − y

y + 2x
.

and from this equality we obtain

x(y + 2x) = y(x + 2y) ⇒ x2 = y2 ⇒ x = ±y.

For x = y we obtain λ = −1/2 and for x = −y we have λ = 1. Substituting x = y into
the constraint (0.1) we obtain

6x2 − 4 = 0 ⇒ x2 =
2
3

⇒ x = y = ±
√

2
3
.

Taking now the other solution x = −y and substituting it into (0.1) we obtain

−2x2 − 4 = 0 ⇒ x2 = −2,
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and this solution does not make sense, since it gives x, y imaginary. Therefore the only
sensible solutions to the problem are

x = y =

√
2
3
, x = y = −

√
2
3
.

and substituting them into the square distance f(x, y) we see that they give us the
same distance

d =

√
f(±

√
2
3
,±

√
2
3
) =

√
7
3
.

Therefore there are two points contained in the curve (0.1) which are both at the same
distance from (0, 0, 1) and this is also the shortest distance.
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