CALCULUS 2004: EXAM SOLUTIONS

1. (a) The integration region is the lower triangle in the picture

Yy y =2x

From the picture it is easy to see that changing the order of integration we obtain the

integral
=1 y=2x R
I= / dx / e” dy.
=0 y=0

y=2z 2
/ ex2dy = [ye“’j} = 22",
y 0
Plugging this result into the second integral we obtain

z=1 2 2 1
I:/ 2xexdx:[ex} =e— 1.
x=0 0

The integral in y gives

(b) The polar coordinates (r,#) are related to the Cartesian coordinates by
T =rcosb, y =rsinf,

and therefore the equation of the semi-circle becomes (since r is always positive)

r? —arsinf=0 < r=asind.
In order to determine in which region 6 takes its values it is convenient to rewrite the

equation of the circle as
2

9 a\? a
oy - 5) s
in this form we can directly see that the equation describes a circle centered at the
point (0,a/2) of radius a/2. That is the circle depicted below, were the dashed region
is the semi-circle having x < 0. For any point contained on that semi-circle the angle
f takes values
0<60<m/2



8=mn/2

|

In the second part of the exercise we need to compute the volume

V—///da:dydz,
R

where the integration region R is determined by the intersection of the ellipsoid

12 y2 22

ZtEtET
and the cylinder
22 +y* —ay =0, xz <0.

The last equation is the same as for the semi-circle in the last figure. This means that
the cylinder is generated by shifting the circle above along the z axis. Since z < 0 in
fact only half of the cylinder has to be considered. The cylinder and the ellipsoid are
depicted below




In cylindrical coordinates, the equation of the ellipsoid becomes

2 2 / 2
r z T

whereas the equation of the cylinder was already obtained above
r=asinf, 0<60<m7/2.

The problem tells us also that we must only considered the region above the xy-plane,
that is z > 0. The integration region in cylindrical coordinates is then

2
R:{(r,9,2)|0§r§asin9, 0<6<m/2, nggwal—Z},
a

The element of volume in cylindrical coordinates is
dedydz =rdrdfdz,

and therefore the volume is

0=m/2 r=asin 0 z=by/1—72/a?
V= / do / rdr / dz.
6=0 r=0 z

=0

The integral in 2z gives

z=by/1—72/a?
/ dz = b\/1—1r2/a?.

=0
Plugging this into the r-integral we have

r=asin 0
/ rby/1 —r2/a?dr,
I8

=0

changing variables to t = 1 — 72/a? we obtain
dt = —2r/a?dr.

The integration limit r = 0 corresponds to ¢ = 1 and r = asin€ corresponds to
t =1 —sin? 6 = cos?f, so that the integral becomes
a2b t=cos® 6 t=cos? 6 2

2
_a’ 124 — 970 1372 _ o 3p_q
5 ] tH=dt 3 [t i|t:1 3 (cos® O —1).

Substituting this result into the #-integral we obtain

2y O0=m/2 2y O0=m/2
v = 27 (1—C0839)d9—a/
3 Jo=o 3 Jo=o
a2b O0=m/2 2

b
= (1 — cos @ + cosfsin?0)dh = av
3 Jo—o 3

2 2
- “b<”—1+1)=ab(3w—4).

(1 — cosf(1 — sin?0))do

. 0=m/2
sin> @ m/

[9 —sinf +
6=0
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2. (a) For this function the first order partial derivatives are
fo = 32%+y® —24x +21,
fy = 2zy—4y.
The first thing we have to do is finding the points at which these derivatives vanish
fy=0 = ylz-2)=0 =y=0 or x=2.

For y = 0 (which is one of the solutions of the previous equation) f, will vanish if

24+18
— =

felz,y=0)=0=32> —242+21=0 = = = 7.1,

and for = 2 (which is the other solution of f, = 0) we would obtain
folz=29)=0=12+¢%>—48+21 = y=+V15.
Therefore, putting all these solutions together we have the following 4 points:
(z,y) = (1,0), (7,0), (2,v/15) and (2,—V15).
The next step is to compute the second order partial derivatives

A = [ =6x—24,
B = fmy = fyx = 2y,
C = fyy=2x—4,
therefore
AC — B? = (62 — 24)(2z — 4) — 49/,
and we have to study the sign of this quantity in order to classify the stationary points
of the function:

The point (1,0): At this point

AC — B? (6 —24)(2 —4) =36 > 0,
A = 6-24=-18<0,

therefore this point is a maximum.

The point (7,0): At this point

AC — B* = (42—24)(14 —4) =180 > 0,
A = 42-24=18>0,

therefore this point is a minimum.

The point (2,/15): At this point

AC — B? = (12— 24)(4 — 4) — 60 = —60 < 0,
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therefore this point is a saddle point.
The point (2,—+/15): At this point

AC — B? = (12— 24)(4 — 4) — 60 = —60 < 0,

therefore this point is also a saddle point.

(b) The Taylor expansion of a function of two variables f(x,y) around a point (zg, yo)
up to second order terms is given by

flzy) = f(zo,y0) + fe(z0,y0)(x — z0) + fy (%0, %0) (¥ — Yo)

+ %fm(%a Yo)(z — m0)? + %fyy(ﬂﬂoa Y0) (¥ — y0)? + fuy(z0,90) (= — 20)(y — v0),

assuming fry = fyz. In our case (zo,y0) = (—1,—1) and

fo = (I+tx+ye™, fi=0-2-y)e"Y fuo=Q2+z+y)e Y
fyy = (_2+$+y)ew_ya fzy = fyz = _(x_‘_y)ex—y'
Therefore

fz(_la_l) = -1, fy(_17_1):37 f:m:<_17_1):07
fyy(_L_l) = _47 fmy(_la_l):fyz(_ly_l)ZQa

and f(—1,—1) = —2. With this we obtain the following Taylor expansion

flz,y) = —2—(z+1D)+3@y+1)-2y+1)*+2(y+1)(z+1)
= y+xz—2°+ 2zy.

Therefore, the approximate value of f(—0.9, —1.05) is
£(=0.9,—1.05) ~ —0.9 — 1.05 — 2(1.05)% + 2(0.9)(1.05) = —2.265.

The Taylor expansion in terms of the displacements h and k is obtained simply by
replacing x =xg+h=h—1and y =yo+ k = k — 1 in our final formula. It gives

fhk)=k+h—-2-2(k—1)2+2(k—1)(h—1).

. To obtain the general solution of the homogeneous equation we try solutions of the
type y = ce™*. Substituting this solution into the equation we obtain the condition

m?+4=0=m=+£2i.
This means that the general solution of the homogeneous equation is of the form
y = c1sin(2z) + ¢ cos(2z),
therefore we identify

ui(x) = sin(2z), ug(z) = cos(2x).



For the second part of the problem we will need the Wronskian of these solutions which

is

2(z) ’: ‘ sin(2z) cos(2z)
5(x) 2cos(2z) —2sin(2x)

Therefore the Wronskian is indeed nowhere zero.

S

S

&
g8

= —2sin?(2z) — 2cos?(2x) =

—2.

The method of variation of parameters tells us that a particular solution of the inho-

mogeneous equation is of the form

y = vi(@)ur(x) + v2(z)uz(z),

with

n(z) = — / w(@)phde  and () = / (@)

In our case

therefore
1 1 . 1
vi(z) = 2/005(2x)tan(2x)da: = 2/81n(2x)dm = 1605(2:15).
1/ 1 [ sin?(2z)
UQ(ZU) = —2/Sln(2ﬂ7) tan(Qx)dx— _2/(508(2x)dx

A possible way of doing this integral is to change variables as
t = sin(2x), dt = 2 cos(2z)dzx.

The integral in the new variables becomes

1 2 1 f1—-t2—-1 1 1 t
v2() 4/1—752 4/ 1- 2 4/( 1—t2> 1

1

1
= ——dt
4/1—t2

t 1 1 1 t 1 t

= -—= —+—)dt=———-(—In|1 —¢{+In|1+¢ 7—71
4 8/<1—t+1—|—t> ;g i+t =

_sin(2z) 1, |1+ sin(2x)

B 4 8 |1 —sin(2z)

Hence the general solution of the inhomogeneous equation is
1 2 1+ sin(2
y = c1sin(2x) + ¢y cos(2x) + 3 sin(2x) cos(2x) — cos(2) In ’ 1 j:12223

with c1, co being arbitrary constants.

1+t
1—t



4. (a) Here we simply have to use the chain rule

of _ 0jor 0oy _ .
a 8x8r+8y8r_cosefx+smgfy’

and
o _ oo afoy
0 8x69+8y09_ rsin@f, +rcosff,.

(b) In order to prove the identity we need to compute the second order partial derivatives
for a function f =V using the results of part (a). We obtain

Vip = 867“ (cos OV, +sinfV,)) = cos 988; + sin 968‘?

= cos0(cos OV, + sinfV,,) + sin O(cos OV, + sin 0Vy,),
= co0s? OV, + sin® OVyy + 25sin 6 cos OV,

Voo = 889 (—rsinfV, + rcos V)
.0V, . oV,
= —TCOS@V;B—TSIDQW —r51n9Vy+rcosﬁa—Gy

—rcos OV, — rsin 0V, — rsin§(—rsin V,, + r cos 0V,;)
7 cos §(—rsin 0V, + rcos 0V,,) = —rcos OV, — rsin 0V,

r?sin? OV, + 1% cos® OVyy — 212 sin 0 cos OVay,

+ +

and therefore
1 1
Vir + =5Vag + =Vi = cos8(cos OV + sin0Vy,) + sin0(cos Vzy + sin 0V,
r r
1
+ ﬁ(—r cos OV, — rsin 0V, + r?sin? 0V, + 72 cos? OVyy — 212 sin 6 cos OVay)

1
+ —(cosOVy +sin V) = Vyp + Vyyy.
,



