
CALCULUS 2004: EXAM SOLUTIONS

1. (a) The integration region is the lower triangle in the picture

From the picture it is easy to see that changing the order of integration we obtain the
integral

I =
∫ x=1

x=0
dx

∫ y=2x

y=0
ex2

dy.

The integral in y gives
∫ y=2x

y=0
ex2

dy =
[
yex2

]2x

0
= 2xex2

.

Plugging this result into the second integral we obtain

I =
∫ x=1

x=0
2xex2

dx =
[
ex2

]1

0
= e− 1.

(b) The polar coordinates (r, θ) are related to the Cartesian coordinates by

x = r cos θ, y = r sin θ,

and therefore the equation of the semi-circle becomes (since r is always positive)

r2 − ar sin θ = 0 ⇔ r = a sin θ.

In order to determine in which region θ takes its values it is convenient to rewrite the
equation of the circle as

x2 +
(
y − a

2

)2
=

a2

4
,

in this form we can directly see that the equation describes a circle centered at the
point (0, a/2) of radius a/2. That is the circle depicted below, were the dashed region
is the semi-circle having x ≤ 0. For any point contained on that semi-circle the angle
θ takes values

0 ≤ θ ≤ π/2.
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In the second part of the exercise we need to compute the volume

V =
∫ ∫ ∫

R
dxdydz,

where the integration region R is determined by the intersection of the ellipsoid

x2

a2
+

y2

a2
+

z2

b2
= 1,

and the cylinder
x2 + y2 − ay = 0, x ≤ 0.

The last equation is the same as for the semi-circle in the last figure. This means that
the cylinder is generated by shifting the circle above along the z axis. Since x ≤ 0 in
fact only half of the cylinder has to be considered. The cylinder and the ellipsoid are
depicted below
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In cylindrical coordinates, the equation of the ellipsoid becomes

r2

a2
+

z2

b2
= 1 ⇔ z = ±b

√
1− r2

a2
,

whereas the equation of the cylinder was already obtained above

r = a sin θ, 0 ≤ θ ≤ π/2.

The problem tells us also that we must only considered the region above the xy-plane,
that is z ≥ 0. The integration region in cylindrical coordinates is then

R =

{
(r, θ, z) | 0 ≤ r ≤ a sin θ, 0 ≤ θ ≤ π/2, 0 ≤ z ≤ b

√
1− r2

a2

}
,

The element of volume in cylindrical coordinates is

dx dy dz = r dr dθ dz,

and therefore the volume is

V =
∫ θ=π/2

θ=0
dθ

∫ r=a sin θ

r=0
r dr

∫ z=b
√

1−r2/a2

z=0
dz.

The integral in z gives
∫ z=b

√
1−r2/a2

z=0
dz = b

√
1− r2/a2.

Plugging this into the r-integral we have
∫ r=a sin θ

r=0
rb

√
1− r2/a2dr,

changing variables to t = 1− r2/a2 we obtain

dt = −2r/a2dr.

The integration limit r = 0 corresponds to t = 1 and r = a sin θ corresponds to
t = 1− sin2 θ = cos2 θ, so that the integral becomes

−a2b

2

∫ t=cos2 θ

t=1
t1/2dt = −a2b

3

[
t3/2

]t=cos2 θ

t=1
= −a2b

3
(cos3 θ − 1).

Substituting this result into the θ-integral we obtain

V =
a2b

3

∫ θ=π/2

θ=0
(1− cos3 θ)dθ =

a2b

3

∫ θ=π/2

θ=0
(1− cos θ(1− sin2 θ))dθ

=
a2b

3

∫ θ=π/2

θ=0
(1− cos θ + cos θ sin2 θ)dθ =

a2b

3

[
θ − sin θ +

sin3 θ

3

]θ=π/2

θ=0

=
a2b

3

(
π

2
− 1 +

1
3

)
=

a2b

18
(3π − 4) .
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2. (a) For this function the first order partial derivatives are

fx = 3x2 + y2 − 24x + 21,

fy = 2xy − 4y.

The first thing we have to do is finding the points at which these derivatives vanish

fy = 0 ⇒ y(x− 2) = 0 ⇒ y = 0 or x = 2.

For y = 0 (which is one of the solutions of the previous equation) fx will vanish if

fx(x, y = 0) = 0 = 3x2 − 24x + 21 = 0 ⇒ x =
24± 18

6
= 7, 1,

and for x = 2 (which is the other solution of fy = 0) we would obtain

fx(x = 2, y) = 0 = 12 + y2 − 48 + 21 ⇒ y = ±
√

15.

Therefore, putting all these solutions together we have the following 4 points:

(x, y) = (1, 0), (7, 0), (2,
√

15) and (2,−
√

15).

The next step is to compute the second order partial derivatives

A = fxx = 6x− 24,

B = fxy = fyx = 2y,

C = fyy = 2x− 4,

therefore
AC −B2 = (6x− 24)(2x− 4)− 4y2,

and we have to study the sign of this quantity in order to classify the stationary points
of the function:

The point (1, 0): At this point

AC −B2 = (6− 24)(2− 4) = 36 > 0,

A = 6− 24 = −18 < 0,

therefore this point is a maximum.

The point (7, 0): At this point

AC −B2 = (42− 24)(14− 4) = 180 > 0,

A = 42− 24 = 18 > 0,

therefore this point is a minimum.

The point (2,
√

15): At this point

AC −B2 = (12− 24)(4− 4)− 60 = −60 < 0,
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therefore this point is a saddle point.

The point (2,−√15): At this point

AC −B2 = (12− 24)(4− 4)− 60 = −60 < 0,

therefore this point is also a saddle point.

(b) The Taylor expansion of a function of two variables f(x, y) around a point (x0, y0)
up to second order terms is given by

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1
2
fxx(x0, y0)(x− x0)2 +

1
2
fyy(x0, y0)(y − y0)2 + fxy(x0, y0)(x− x0)(y − y0),

assuming fxy = fyx. In our case (x0, y0) = (−1,−1) and

fx = (1 + x + y)ex−y, fy = (1− x− y)ex−y, fxx = (2 + x + y)ex−y,

fyy = (−2 + x + y)ex−y, fxy = fyx = −(x + y)ex−y.

Therefore

fx(−1,−1) = −1, fy(−1,−1) = 3, fxx(−1,−1) = 0,

fyy(−1,−1) = −4, fxy(−1,−1) = fyx(−1,−1) = 2,

and f(−1,−1) = −2. With this we obtain the following Taylor expansion

f(x, y) = −2− (x + 1) + 3(y + 1)− 2(y + 1)2 + 2(y + 1)(x + 1)
= y + x− 2y2 + 2xy.

Therefore, the approximate value of f(−0.9,−1.05) is

f(−0.9,−1.05) ' −0.9− 1.05− 2(1.05)2 + 2(0.9)(1.05) = −2.265.

The Taylor expansion in terms of the displacements h and k is obtained simply by
replacing x = x0 + h = h− 1 and y = y0 + k = k − 1 in our final formula. It gives

f(h, k) = k + h− 2− 2(k − 1)2 + 2(k − 1)(h− 1).

3. To obtain the general solution of the homogeneous equation we try solutions of the
type y = cemx. Substituting this solution into the equation we obtain the condition

m2 + 4 = 0 ⇒ m = ±2i.

This means that the general solution of the homogeneous equation is of the form

y = c1 sin(2x) + c2 cos(2x),

therefore we identify

u1(x) = sin(2x), u2(x) = cos(2x).
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For the second part of the problem we will need the Wronskian of these solutions which
is

W (x) =
∣∣∣∣

u1(x) u2(x)
u′1(x) u′2(x)

∣∣∣∣ =
∣∣∣∣

sin(2x) cos(2x)
2 cos(2x) −2 sin(2x)

∣∣∣∣ = −2 sin2(2x)− 2 cos2(2x) = −2.

Therefore the Wronskian is indeed nowhere zero.

The method of variation of parameters tells us that a particular solution of the inho-
mogeneous equation is of the form

y = v1(x)u1(x) + v2(x)u2(x),

with
v1(x) = −

∫
u2(x)

R(x)
W (x)

dx and v2(x) =
∫

u1(x)
R(x)
W (x)

dx.

In our case
R(x) = tan(2x), W (x) = −2,

therefore

v1(x) =
1
2

∫
cos(2x)tan(2x)dx =

1
2

∫
sin(2x)dx =

1
4

cos(2x).

v2(x) = −1
2

∫
sin(2x) tan(2x)dx = −1

2

∫
sin2(2x)
cos(2x)

dx.

A possible way of doing this integral is to change variables as

t = sin(2x), dt = 2 cos(2x)dx.

The integral in the new variables becomes

v2(x) = −1
4

∫
t2

1− t2
dt =

1
4

∫
1− t2 − 1

1− t2
dt =

1
4

∫ (
1− 1

1− t2

)
dt =

t

4
− 1

4

∫
1

1− t2
dt

=
t

4
− 1

8

∫ (
1

1− t
+

1
1 + t

)
dt =

t

4
− 1

8
(− ln |1− t|+ ln |1 + t|) =

t

4
− 1

8
ln

∣∣∣∣
1 + t

1− t

∣∣∣∣

=
sin(2x)

4
− 1

8
ln

∣∣∣∣
1 + sin(2x)
1− sin(2x)

∣∣∣∣ .

Hence the general solution of the inhomogeneous equation is

y = c1 sin(2x) + c2 cos(2x) +
1
2

sin(2x) cos(2x)− cos(2x)
8

ln
∣∣∣∣
1 + sin(2x)
1− sin(2x)

∣∣∣∣

with c1, c2 being arbitrary constants.
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4. (a) Here we simply have to use the chain rule

∂f

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r
= cos θfx + sin θfy,

and

∂f

∂θ
=

∂f

∂x

∂x

∂θ
+

∂f

∂y

∂y

∂θ
= −r sin θfx + r cos θfy.

(b) In order to prove the identity we need to compute the second order partial derivatives
for a function f = V using the results of part (a). We obtain

Vrr =
∂

∂r
(cos θVx + sin θVy) = cos θ

∂Vx

∂r
+ sin θ

∂Vy

∂r
= cos θ(cos θVxx + sin θVyx) + sin θ(cos θVxy + sin θVyy),
= cos2 θVxx + sin2 θVyy + 2 sin θ cos θVxy,

Vθθ =
∂

∂θ
(−r sin θVx + r cos θVy)

= −r cos θVx − r sin θ
∂Vx

∂θ
− r sin θVy + r cos θ

∂Vy

∂θ
= −r cos θVx − r sin θVy − r sin θ(−r sin θVxx + r cos θVyx)
+ r cos θ(−r sin θVxy + r cos θVyy) = −r cos θVx − r sin θVy

+ r2 sin2 θVxx + r2 cos2 θVyy − 2r2 sin θ cos θVxy,

and therefore

Vrr +
1
r2

Vθθ +
1
r
Vr = cos θ(cos θVxx + sin θVyx) + sin θ(cos θVxy + sin θVyy)

+
1
r2

(−r cos θVx − r sin θVy + r2 sin2 θVxx + r2 cos2 θVyy − 2r2 sin θ cos θVxy)

+
1
r
(cos θVx + sin θVy) = Vxx + Vyy.
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