CALCULUS 2007: EXAM SOLUTIONS

1. (a) The integration region is the triangle in the $x y$-plane enclosed by the lines $x=1$, $y=0$ and $y=3 x$.
Changing the order of integration we obtain

$$
I=\int_{x=0}^{x=1} d x \int_{y=0}^{y=3 x} x e^{x^{3}} d y
$$

The integral in y gives

$$
\int_{y=0}^{y=3 x} x e^{x^{3}} d y=\left[y x e^{x^{3}}\right]_{0}^{3 x}=3 x^{2} e^{x^{3}}
$$

Plugging this result into the second integral we obtain

$$
I=\int_{x=0}^{x=1} 3 x^{2} e^{x^{3}} d x=\left[e^{x^{3}}\right]_{0}^{1}=e-1
$$

The last integral can be easily carried out using the change of variables $t=x^{3}$.
(b) The Jacobian of the change of coordinates is simply

$$
J=\left|\begin{array}{ccc}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z}
\end{array}\right|=\left|\begin{array}{ccc}
\cos \theta & -r \sin \theta & 0 \\
\sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta=r
$$

Therefore, the element of volume which we need to use for the integral is

$$
d x d y d z=|J| d r d \theta d z=r d r d \theta d z
$$

The integration region for this problem is quite easy to sketch. We have two circular cylinders of radii 2 and 3 centered at the origin extending between $z=0$ and $z=3$. The volume we want to compute is half of the volume contained between the two cylinders and the given planes. It is half, because the problem says that $y>0$. The integration region is therefore the dashed volume in the picture below

In cylindrical coordinates, the integration region is simply

$$
R=\{(r, z, \theta): 2 \leq r \leq 3, \quad 0 \leq z \leq 3, \quad 0 \leq \theta \leq \pi\}
$$

and the integral we want to compute is therefore

$$
V=\int_{r=2}^{r=3} r d r \int_{\theta=0}^{\theta=\pi} d \theta \int_{z=0}^{z=3} d z
$$

The various integrals can be carried out separately and give

$$
\int_{r=2}^{r=3} r d r=\left[\frac{r^{2}}{2}\right]_{2}^{3}=\frac{5}{2}, \quad \int_{\theta=0}^{\theta=\pi} d \theta=\pi, \quad \int_{z=0}^{z=3} d z=3
$$

Therefore

$$
V=(\pi)(5 / 2)(3)=\frac{15 \pi}{2}
$$

2. (a) First of all we need to find the points at which the first order partial derivatives vanish. These derivatives are

$$
f_{x}=2 a x+b y, \quad f_{y}=2 c y+b x
$$

Then

$$
f_{x}=0 \quad \Leftrightarrow \quad x=-\frac{b y}{2 a}
$$

and

$$
f_{y}=0 \quad \Leftrightarrow \quad x=-\frac{2 c y}{b}
$$

The two derivatives vanish simultaneously only if $x=y=0$. Therefore, we have a single point to study: $(0,0)$. To investigate what type of stationary point this point is, we have to look at the second order partial derivatives:

$$
\begin{gathered}
f_{x x}=2 a, \quad f_{y y}=2 c, \\
f_{x y}=b .
\end{gathered}
$$

For the point $(0,0)$ we find that:

$$
f_{x x} f_{y y}-f_{x y}^{2}=4 a c-b^{2}>0,
$$

and since $f_{x x}>0$ we conclude that the point is a minimum.
If $a<0$, then

$$
f_{x x} f_{y y}-f_{x y}^{2}=4 a c-b^{2}<0,
$$

and the point would be a saddle point.
(b) The Taylor expansion of a function of two variables $f(x, y)$ around a point $\left(x_{0}, y_{0}\right)$ up to second order terms is given by

$$
\begin{align*}
f(x, y) & =f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& +\frac{1}{2} f_{x x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)^{2}+\frac{1}{2} f_{y y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)^{2}+f_{x y}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)\left(y-y_{0}\right), \tag{2}
\end{align*}
$$

$$
\begin{gathered}
f_{x}=e^{x+y}(1+x) y, \quad f_{y}=e^{x+y} x(1+y), \quad f_{x x}=e^{x+y}(2+x) y, \\
f_{y y}=e^{x+y} x(2+y), \quad f_{x y}=f_{y x}=e^{x+y}(1+x)(1+y) .
\end{gathered}
$$

Therefore

$$
\begin{gather*}
f(0,0)=0, \quad f_{x}(0,0)=0, \quad f_{y}(0,0)=0, \quad f_{x x}(0,0)=0, \\
f_{y y}(0,0)=0, \quad f_{x y}(0,0)=f_{y x}(0,0)=1 . \tag{2}
\end{gather*}
$$

Hence the Taylor expansion is just

$$
f(x, y)=x y .
$$

Since $f_{x}(0,0)=f_{y}(0,0)=0$ we know that the point is an stationary point of the function. In addition we have that

$$
f_{x x}(0,0) f_{y y}(0,0)-f_{x y}(0,0)^{2}=-1<0,
$$

and therefore $(0,0)$ is a saddle point of $f(x, y)$.
3. (a) Since $G=0$ also its total differential $d G=0$ must vanish. By definition

$$
d G=G_{x} d x+G_{y} d y+G_{z} d z=0
$$

and in addition, z is a function of x and y, therefore its differential is given by

$$
d z=\left(\frac{\partial z}{\partial x}\right) d x+\left(\frac{\partial z}{\partial y}\right) d y .
$$

If we substitute $d z$ into $d G$ we obtain the equation

$$
d G=0=\left(G_{x}+G_{z} \frac{\partial z}{\partial x}\right) d x+\left(G_{y}+G_{z} \frac{\partial z}{\partial y}\right) d y
$$

Since x and y are independent variables, the equation above implies that each of the factors has to vanish separately, that is

$$
G_{x}+G_{z} \frac{\partial z}{\partial x}=G_{y}+G_{z} \frac{\partial z}{\partial y}=0 .
$$

Therefore we obtain,

$$
\frac{\partial z}{\partial x}=-\frac{G_{x}}{G_{z}}, \quad \quad \frac{\partial z}{\partial y}=-\frac{G_{y}}{G_{z}} .
$$

Employing now these formulae for $G(x, y, z)=\sin (x y z)$ we obtain

$$
\frac{\partial z}{\partial x}=-\frac{z}{x}, \quad \frac{\partial z}{\partial y}=-\frac{z}{y} .
$$

(b) First, we compute the partial derivatives of f and ϕ, where $\phi(x, y)=x^{2}-y^{2}-1=0$:

$$
\begin{equation*}
f_{x}=6, \quad f_{y}=1, \quad \phi_{x}=2 x, \quad \phi_{y}=-2 y . \tag{2}
\end{equation*}
$$

Therefore, the system of equations which we need to solve is:

$$
\begin{gathered}
x^{2}-y^{2}-1=0, \\
6+2 \lambda x=0, \\
1-2 \lambda y=0 .
\end{gathered}
$$

From the two last equations, we obtain:

$$
\lambda=\frac{1}{2 y}, \quad \lambda=-\frac{3}{x},
$$

therefore

$$
\frac{1}{2 y}=-\frac{3}{x} \quad \Leftrightarrow \quad x=-6 y .
$$

Plugging this constraint into $\phi(x, y)=0$ we obtain:

$$
y^{2}(36-1)=1 \quad \Leftrightarrow \quad y= \pm \frac{1}{\sqrt{35}}
$$

The corresponding values of λ are

$$
\lambda= \pm \frac{\sqrt{35}}{2}
$$

The maximum value of $f(x, y)$ corresponds to $y=-1 / \sqrt{35}$ and $x=6 / \sqrt{35}$, with $\lambda=\sqrt{35} / 2$ and is

$$
f(6 / \sqrt{35},-1 / \sqrt{35})=\sqrt{35}
$$

and the minimum value is

$$
f(-6 / \sqrt{35}, 1 / \sqrt{35})=-\sqrt{35}
$$

4. To obtain the general solution of the homogeneous equation we try solutions of the type $y=c e^{m x}$. Substituting this solution into the equation we obtain the condition

$$
m^{2}+8 m+25=0 \Rightarrow m=-4 \pm 3 i
$$

This means that the general solution of the homogeneous equation is of the form

$$
y=e^{-4 x}\left(c_{1} \sin (3 x)+c_{2} \cos (3 x)\right)
$$

therefore we identify

$$
u_{1}(x)=e^{-4 x} \sin (3 x), \quad u_{2}(x)=e^{-4 x} \cos (3 x) .
$$

For the second part of the problem we will need the Wronskian of these solutions which is

$$
\begin{aligned}
W(x) & =\left|\begin{array}{cc}
u_{1}(x) & u_{2}(x) \\
u_{1}^{\prime}(x) & u_{2}^{\prime}(x)
\end{array}\right|=\left|\begin{array}{cc}
e^{-4 x} \sin (3 x) & e^{-4 x} \cos (3 x) \\
-4 e^{-4 x} \sin (3 x)+3 e^{-4 x} \cos (3 x) & -4 e^{-4 x} \cos (3 x)-3 e^{-4 x} \sin (3 x)
\end{array}\right| \\
& =-4 e^{-8 x} \sin (3 x) \cos (3 x)-3 e^{-8 x} \sin ^{2}(3 x)+4 e^{-8 x} \sin (3 x) \cos (3 x)-3 e^{-8 x} \cos ^{2}(3 x)=-3 e^{-8 x} .
\end{aligned}
$$

Therefore the Wronskian is indeed nowhere zero (for finite values of x).
The method of variation of parameters tells us that a particular solution of the inhomogeneous equation is of the form

$$
y=v_{1}(x) u_{1}(x)+v_{2}(x) u_{2}(x)
$$

with

$$
v_{1}(x)=-\int u_{2}(x) \frac{R(x)}{W(x)} d x \quad \text { and } \quad v_{2}(x)=\int u_{1}(x) \frac{R(x)}{W(x)} d x
$$

In our case

$$
R(x)=e^{-2 x}, \quad W(x)=-3 e^{-8 x}
$$

therefore

$$
v_{1}(x)=\frac{1}{3} \int e^{2 x} \cos (3 x) d x
$$

Integrating by parts twice, it is possible to prove that

$$
v_{1}(x)=\frac{e^{2 x}(2 \cos (3 x)+3 \sin (3 x))}{39}
$$

and

$$
v_{2}(x)=-\frac{1}{3} \int e^{2 x} \sin (3 x) d x=\frac{-e^{2 x}(-3 \cos (3 x)+2 \sin (3 x))}{39}
$$

which can be obtained also integrating by parts. Hence the general solution of the inhomogeneous equation is

$$
\begin{aligned}
y & =e^{-4 x}\left(c_{1} \sin (3 x)+c_{2} \cos (3 x)\right)+\sin (3 x) \frac{e^{-2 x}(2 \cos (3 x)+3 \sin (3 x))}{39} \\
& -\cos (3 x) \frac{e^{-2 x}(-3 \cos (3 x)+2 \sin (3 x))}{39}=e^{-4 x}\left(c_{1} \sin (3 x)+c_{2} \cos (3 x)\right)+\frac{e^{-2 x}}{13}
\end{aligned}
$$

with c_{1}, c_{2} being arbitrary constants.

