
CALCULUS 2007: EXAM SOLUTIONS

1. (a) The integration region is the triangle in the xy-plane enclosed by the lines x = 1,
y = 0 and y = 3x. 3

Changing the order of integration we obtain 3

I =
∫ x=1

x=0
dx

∫ y=3x

y=0
xex3

dy.

The integral in y gives 2
∫ y=3x

y=0
xex3

dy =
[
yxex3

]3x

0
= 3x2ex3

.

Plugging this result into the second integral we obtain 2

I =
∫ x=1

x=0
3x2ex3

dx =
[
ex3

]1

0
= e− 1.

The last integral can be easily carried out using the change of variables t = x3.

(b) The Jacobian of the change of coordinates is simply 2

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂r

∂x

∂θ

∂x

∂z

∂y

∂r

∂y

∂θ

∂y

∂z

∂z

∂r

∂z

∂θ

∂z

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣
= r cos2 θ + r sin2 θ = r.

Therefore, the element of volume which we need to use for the integral is 1

dx dy dz = |J | dr dθ dz = r dr dθ dz.

The integration region for this problem is quite easy to sketch. We have two circular
cylinders of radii 2 and 3 centered at the origin extending between z = 0 and z = 3.
The volume we want to compute is half of the volume contained between the two
cylinders and the given planes. It is half, because the problem says that y > 0. The
integration region is therefore the dashed volume in the picture below
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In cylindrical coordinates, the integration region is simply 4

R = {(r, z, θ) : 2 ≤ r ≤ 3, 0 ≤ z ≤ 3, 0 ≤ θ ≤ π},

and the integral we want to compute is therefore 1

V =
∫ r=3

r=2
rdr

∫ θ=π

θ=0
dθ

∫ z=3

z=0
dz.

The various integrals can be carried out separately and give 1

∫ r=3

r=2
rdr =

[
r2

2

]3

2

=
5
2
,

∫ θ=π

θ=0
dθ = π,

∫ z=3

z=0
dz = 3.

Therefore 1
V = (π)(5/2)(3) =

15π
2

.

2. (a) First of all we need to find the points at which the first order partial derivatives
vanish. These derivatives are 1

fx = 2ax + by, fy = 2cy + bx.

Then 1
fx = 0 ⇔ x = − by

2a
,
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and 1
fy = 0 ⇔ x = −2cy

b
.

The two derivatives vanish simultaneously only if x = y = 0. Therefore, we have a
single point to study: (0, 0). To investigate what type of stationary point this point is,
we have to look at the second order partial derivatives: 2

fxx = 2a, fyy = 2c,

fxy = b.

For the point (0, 0) we find that:

fxxfyy − f2
xy = 4ac− b2 > 0,

and since fxx > 0 we conclude that the point is a minimum. 3

If a < 0, then
fxxfyy − f2

xy = 4ac− b2 < 0,

and the point would be a saddle point. 2

(b) The Taylor expansion of a function of two variables f(x, y) around a point (x0, y0)
up to second order terms is given by 2

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1
2
fxx(x0, y0)(x− x0)2 +

1
2
fyy(x0, y0)(y − y0)2 + fxy(x0, y0)(x− x0)(y − y0),

assuming fxy = fyx. In our case (x0, y0) = (0, 0) and 2

fx = ex+y (1 + x) y, fy = ex+yx (1 + y) , fxx = ex+y (2 + x) y,

fyy = ex+yx (2 + y) , fxy = fyx = ex+y (1 + x) (1 + y) .

Therefore 2
f(0, 0) = 0, fx(0, 0) = 0, fy(0, 0) = 0, fxx(0, 0) = 0,

fyy(0, 0) = 0, fxy(0, 0) = fyx(0, 0) = 1.

Hence the Taylor expansion is just 2

f(x, y) = xy.

Since fx(0, 0) = fy(0, 0) = 0 we know that the point is an stationary point of the
function. In addition we have that

fxx(0, 0)fyy(0, 0)− fxy(0, 0)2 = −1 < 0,

and therefore (0, 0) is a saddle point of f(x, y). 2
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3. (a) Since G = 0 also its total differential dG = 0 must vanish. By definition

dG = Gxdx + Gydy + Gzdz = 0,

and in addition, z is a function of x and y, therefore its differential is given by

dz =
(

∂z

∂x

)
dx +

(
∂z

∂y

)
dy.

If we substitute dz into dG we obtain the equation

dG = 0 =
(

Gx + Gz
∂z

∂x

)
dx +

(
Gy + Gz

∂z

∂y

)
dy.

Since x and y are independent variables, the equation above implies that each of the
factors has to vanish separately, that is

Gx + Gz
∂z

∂x
= Gy + Gz

∂z

∂y
= 0.

Therefore we obtain,
∂z

∂x
= −Gx

Gz
,

∂z

∂y
= −Gy

Gz
.
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Employing now these formulae for G(x, y, z) = sin(xyz) we obtain

∂z

∂x
= − z

x
,

∂z

∂y
= −z

y
.
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(b) First, we compute the partial derivatives of f and φ, where φ(x, y) = x2−y2−1 = 0:
1

fx = 6, fy = 1, φx = 2x, φy = −2y.

Therefore, the system of equations which we need to solve is: 2

x2 − y2 − 1 = 0,

6 + 2λx = 0,

1− 2λy = 0.

From the two last equations, we obtain: 2

λ =
1
2y

, λ = −3
x

,

therefore
1
2y

= −3
x

⇔ x = −6y.

Plugging this constraint into φ(x, y) = 0 we obtain: 2
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y2(36− 1) = 1 ⇔ y = ± 1√
35

.

The corresponding values of λ are 1

λ = ±
√

35
2

.

The maximum value of f(x, y) corresponds to y = −1/
√

35 and x = 6/
√

35, with
λ =

√
35/2 and is 2

f(6/
√

35,−1/
√

35) =
√

35,

and the minimum value is

f(−6/
√

35, 1/
√

35) = −
√

35.

4. To obtain the general solution of the homogeneous equation we try solutions of the
type y = cemx. Substituting this solution into the equation we obtain the condition 2

m2 + 8m + 25 = 0 ⇒ m = −4± 3i.

This means that the general solution of the homogeneous equation is of the form 2

y = e−4x(c1 sin(3x) + c2 cos(3x)),

therefore we identify

u1(x) = e−4x sin(3x), u2(x) = e−4x cos(3x).

For the second part of the problem we will need the Wronskian of these solutions which
is 3

W (x) =
∣∣∣∣

u1(x) u2(x)
u′1(x) u′2(x)

∣∣∣∣ =
∣∣∣∣

e−4x sin(3x) e−4x cos(3x)
−4e−4x sin(3x) + 3e−4x cos(3x) −4e−4x cos(3x)− 3e−4x sin(3x)

∣∣∣∣
= −4e−8x sin(3x) cos(3x)− 3e−8x sin2(3x) + 4e−8x sin(3x) cos(3x)− 3e−8x cos2(3x) = −3e−8x.

Therefore the Wronskian is indeed nowhere zero (for finite values of x).

The method of variation of parameters tells us that a particular solution of the inho-
mogeneous equation is of the form 3

y = v1(x)u1(x) + v2(x)u2(x),

with
v1(x) = −

∫
u2(x)

R(x)
W (x)

dx and v2(x) =
∫

u1(x)
R(x)
W (x)

dx.

In our case
R(x) = e−2x, W (x) = −3e−8x,

therefore 4
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v1(x) =
1
3

∫
e2x cos(3x)dx.

Integrating by parts twice, it is possible to prove that

v1(x) =
e2x (2 cos(3x) + 3 sin(3x))

39
.

and 4

v2(x) = −1
3

∫
e2x sin(3x)dx =

−e2x (−3 cos(3x) + 2 sin(3x))
39

,

which can be obtained also integrating by parts. Hence the general solution of the
inhomogeneous equation is 2

y = e−4x(c1 sin(3x) + c2 cos(3x)) + sin(3x)
e−2x (2 cos(3x) + 3 sin(3x))

39

− cos(3x)
e−2x (−3 cos(3x) + 2 sin(3x))

39
= e−4x(c1 sin(3x) + c2 cos(3x)) +

e−2x

13
.

with c1, c2 being arbitrary constants.
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