CALCULUS 2007: EXAM SOLUTIONS

1. (a) The integration region is the triangle in the xy-plane enclosed by the lines x = 1,
y=0and y = 3z.

Changing the order of integration we obtain

=1 y=3x 3
I :/ dm/ ze® dy.
=0 y=0

y=3x 3z
3 3 3
/ xe® dy = [yxex } = 3z%e” .
y=0 0

The integral in y gives

Plugging this result into the second integral we obtain

x=1 3 371
I—/ BxQexdx:[ex} =e—1.
x=0 0
3

The last integral can be easily carried out using the change of variables ¢t = x°.

(b) The Jacobian of the change of coordinates is simply

or 00 0z
cos) —rsinf 0
J = @ @ @ = | sinf rcosf O |=rcos’f+rsin?6=r.
67“ 89 82 0 0 1
or 00 0z

Therefore, the element of volume which we need to use for the integral is
dxdydz = |J|drdfdz = rdrdfdz.

The integration region for this problem is quite easy to sketch. We have two circular
cylinders of radii 2 and 3 centered at the origin extending between z = 0 and z = 3.
The volume we want to compute is half of the volume contained between the two
cylinders and the given planes. It is half, because the problem says that y > 0. The
integration region is therefore the dashed volume in the picture below
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In cylindrical coordinates, the integration region is simply
R={(r,z,0):2<r<3, 0<2<3, 0<6<n},

and the integral we want to compute is therefore

r=3 O=m z=3
\% :/ rdr/ dH/ dz.
r=2 6=0 z=0

The various integrals can be carried out separately and give

r=3 273 O=m z=3
/ rdr = [T} _2 / 9 =, / dz = 3.
r=2 2 2 2 6=0 z=0

V= (m)(5/2)(3) = 2T,

Therefore

. (a) First of all we need to find the points at which the first order partial derivatives
vanish. These derivatives are

fr = 2az + by, fy = 2cy + ba.

Then
by

f=0 < :c:—2a,



and

2
fy=0 & x:—%.

The two derivatives vanish simultaneously only if x = y = 0. Therefore, we have a
single point to study: (0,0). To investigate what type of stationary point this point is,
we have to look at the second order partial derivatives:

f:m: = 261, fyy = 26)

Jzy =b.
For the point (0,0) we find that:

foafyy — foy = 4ac —b* >0,

and since f,; > 0 we conclude that the point is a minimum.
If a < 0, then

frafyy — fgy = dac — b* <0,
and the point would be a saddle point.
(b) The Taylor expansion of a function of two variables f(x,y) around a point (xq, yo)
up to second order terms is given by
flzy) = f(zo,90) + fa(zo,y0) (2 — z0) + fy(20,Y0) (¥ — ¥o)

+ %fm(xmyo)(iﬂ —x0)% + %fyy(xm Y0) (Y — ¥0)* + Ffuy (20, Y0) (T — 20) (Y — Y0),

assuming fry = fyz. In our case (zg,y0) = (0,0) and
fo=e"V (A +a)y, fy=Yx(1+y), fuw=cTV2+2)y,

Jyy = "y (2+y), Jry = fyz = ety (1+2)(1+y).

Therefore

f(0,0) =0, f.(0,0)=0, f,(0,0)=0, fzz(0,0)=0,
fyy((),()) =0, fa:y(oao) = fyx(0>0) =1
Hence the Taylor expansion is just
fla,y) = zy.

Since f5(0,0) = f,(0,0) = 0 we know that the point is an stationary point of the
function. In addition we have that

fl’w(ovo)fy?J(O?O) - fmy(O,O)Q =-1<0,

and therefore (0,0) is a saddle point of f(x,y).



3. (a) Since G = 0 also its total differential dG = 0 must vanish. By definition
dG = Gpdr + Gydy + G.dz = 0,

and in addition, z is a function of x and y, therefore its differential is given by

0z 0z
dz = <ax> dz + <8y> dy.

If we substitute dz into dG we obtain the equation

0z 0z

Since x and y are independent variables, the equation above implies that each of the
factors has to vanish separately, that is

0z 0z
Gx—{_GZ% —Gy+GZ8—y = 0.
Therefore we obtain,
0:_ G, 0:_ G,
or G’ oy G,

Employing now these formulae for G(z,y, z) = sin(zyz) we obtain

0z z 0z z

oxr  x’ dy oy

(b) First, we compute the partial derivatives of f and ¢, where ¢(z,y) = 22 —y>—1 = 0:

fx:67 fyzlv ¢x:2x7 ¢y:72y'

Therefore, the system of equations which we need to solve is:

2 —y?—1=0,

6+ 2\x =0,

1—2\y=0.
From the two last equations, we obtain:

1 3

A= —, A= ——,

2y

therefore
1 3

—=— & = —6y.
2y T o Y
Plugging this constraint into ¢(z,y) = 0 we obtain:

4



The maximum value of f(x,y) corresponds to y = —1/v/35 and = = 6//35, with
A =+/35/2 and is
£(6//35,—1/+/35) = /35,

and the minimum value is
f(—6/v35,1/v/35) = —V/35.

. To obtain the general solution of the homogeneous equation we try solutions of the
type y = ce™®. Substituting this solution into the equation we obtain the condition

m? +8m+25=0=m=—4+3i.
This means that the general solution of the homogeneous equation is of the form
y = e 2% (¢y sin(3z) + ¢ cos(3x)),
therefore we identify
uy(z) = e 4% sin(3z), ug(z) = e~ 4% cos(3z).

For the second part of the problem we will need the Wronskian of these solutions which

1S

W) = ur(z) wo(x) | e~ sin(3z) e~4 cos(3x)
o= uf(z) uh(x) | | —de M sin(3z) 4+ 3e 4 cos(3z) —4e 4 cos(3x) — 3e~ 4 sin(3z)
= —4e ¥ sin(3x) cos(3x) — 3¢ 3% sin?(3x) + 4~ sin(3x) cos(3x) — 35 cos?(3x) = —3e 5.

Therefore the Wronskian is indeed nowhere zero (for finite values of x).

The method of variation of parameters tells us that a particular solution of the inho-
mogeneous equation is of the form

y = v1(z)uy(x) + vo(x)us(x),

with

In our case

therefore



1
vi(z) = 3 / % cos(3x)dzx.
Integrating by parts twice, it is possible to prove that

¥ (2cos(3z) + 3sin(3z))
vi(z) = 29 .

and

1 —e* (—3 cos(3z) + 2sin(3
va(z) = —/e% sin(3x)dx = e (=3 cos(3z) + 2sin( x))’
3 39
which can be obtained also integrating by parts. Hence the general solution of the
inhomogeneous equation is
—2r(2 3 3sin(3
y = e (crsin(3z) + cacos(3x)) + s.in(?mv)e (2 cos( ?fg)) + 3sin(3z))
—2x : —2x
-3 3 2sin(3
—  cos(3z) e COS(BE) +2sin(32) _ e 4 (cy sin(3z) + ¢z cos(3z)) + 613 .

with c1, co being arbitrary constants.



