CALCULUS 2006: EXAM SOLUTIONS

1. (a) The integration region is the lower triangle in the picture

From the picture it is easy to see that changing the order of integration we obtain

$$
I=\int_{x=0}^{x=1} d x \int_{y=0}^{y=2 x} e^{x^{2}} d y
$$

The integral in y gives

$$
\int_{y=0}^{y=2 x} e^{x^{2}} d y=\left[y e^{x^{2}}\right]_{0}^{2 x}=2 x e^{x^{2}}
$$

Plugging this result into the second integral we obtain

$$
I=\int_{x=0}^{x=1} 2 x e^{x^{2}} d x=\left[e^{x^{2}}\right]_{0}^{1}=e-1
$$

(b) The Jacobian of the change of coordinates is simply

$$
J=\left|\begin{array}{ccc}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z}
\end{array}\right|=\left|\begin{array}{ccc}
\cos \theta & -r \sin \theta & 0 \\
\sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta=r
$$

Therefore, the element of volume which we need to use for the integral is

$$
d x d y d z=|J| d r d \theta d z=r d r d \theta d z .
$$

To compute the integral we have first to express the integrand in terms of the new variables, that is

$$
\left(x^{2}+y^{2}\right)^{3}=\left(r^{2}\right)^{3}=r^{6}
$$

The next step is to describe the region of integration in terms of the new variables. The integration region for this problem is very easy to sketch. We have a radius 1 circular cylinder centered at the origin extending between the $z=1$ and $z=5$ planes. This looks more or less like in the picture below

In cylindrical coordinates, the integration region is simply

$$
R=\{(r, z, \theta): 0 \leq r \leq 1, \quad 1 \leq z \leq 5, \quad 0 \leq \theta \leq 2 \pi\},
$$

and the integral we want to compute is therefore

$$
V=\int_{r=0}^{r=1} r^{7} d r \int_{\theta=0}^{\theta=2 \pi} d \theta \int_{z=1}^{z=5} d z .
$$

The various integrals can be carried out separately and give

$$
\int_{r=0}^{r=1} r^{7} d r=\left[\frac{r^{8}}{8}\right]_{0}^{1}=\frac{1}{8}, \quad \int_{\theta=0}^{\theta=2 \pi} d \theta=2 \pi, \quad \int_{z=1}^{z=5} d z=5-1=4 .
$$

Therefore

$$
V=(2 \pi)(1 / 8)(4)=\pi .
$$

2. (a) First of all we need to find the points at which the first order partial derivatives vanish. These derivatives are

$$
f_{x}=4 y-4 x^{3}=0, \quad f_{y}=4 x-4 y^{3}=0
$$

Then

$$
f_{x}=0 \quad \Leftrightarrow \quad y=x^{3},
$$

and

$$
f_{y}=0 \quad \Leftrightarrow \quad x=y^{3} .
$$

Inserting the first condition into the second one we obtain

$$
x=x^{9} \Rightarrow x^{8}=1 \quad \text { or } \quad x=0 \Rightarrow \quad x=1,0,-1
$$

which gives us 3 candidates to be stationary points, that is the points $(1,1),(0,0)$ and $(-1,-1)$ at which both f_{x} and f_{y} vanish. To investigate what type of stationary points this points are, we have to look at the second order partial derivatives:

$$
\begin{gathered}
f_{x x}=-12 x^{2}, \quad f_{y y}=-12 y^{2} \\
f_{x y}=f_{y x}=4
\end{gathered}
$$

Calling $A=f_{x x}, B=f_{x y}$ and $C=f_{y y}$, we find:
i) For the point $(1,1)$ we have

$$
\begin{aligned}
A C-B^{2} & =144-16=128>0 \\
A & =-12<0
\end{aligned}
$$

therefore this point is a maximum.
ii) For the point $(0,0)$ we have

$$
A C-B^{2}=-16<0
$$

therefore this point is a saddle point.
iii) For the point $(-1,-1)$ we have

$$
\begin{aligned}
A C-B^{2} & =144-16=128>0 \\
A & =-12<0
\end{aligned}
$$

therefore this point is also a maximum.
(b) The Taylor expansion of a function of two variables $f(x, y)$ around a point $\left(x_{0}, y_{0}\right)$ up to second order terms is given by

$$
\begin{align*}
f(x, y) & =f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& +\frac{1}{2} f_{x x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)^{2}+\frac{1}{2} f_{y y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)^{2}+f_{x y}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)\left(y-y_{0}\right) \tag{2}
\end{align*}
$$

assuming $f_{x y}=f_{y x}$. In our case $\left(x_{0}, y_{0}\right)=(0,1)$ and

$$
\begin{align*}
f_{x} & =(1+x+y) e^{x-y}, \quad f_{y}=(1-x-y) e^{x-y}, \quad f_{x x}=(2+x+y) e^{x-y} \\
f_{y y} & =(-2+x+y) e^{x-y}, \quad f_{x y}=f_{y x}=-(x+y) e^{x-y} \tag{2}
\end{align*}
$$

Therefore

$$
\begin{aligned}
f(0,1) & =1 / e, \quad f_{x}(0,1)=2 / e, \quad f_{y}(0,1)=0, \quad f_{x x}(0,1)=3 / e \\
f_{y y}(0,1) & =-1 / e, \quad f_{x y}(0,1)=f_{y x}(0,1)=-1 / e
\end{aligned}
$$

So, the Taylor expansion is

$$
f(x, y)=\frac{1}{2 e}\left(2+4 x+3 x^{2}-(y-1)^{2}-2 x(y-1)\right)
$$

and

$$
\begin{equation*}
f(0.1,1.1)=\frac{1}{2 e}\left(2+0.4+3(0.1)^{2}-(0.1)^{2}-2(0.1)^{2}\right)=\frac{2.4}{2 e} \tag{2}
\end{equation*}
$$

The exact value of the function at this point is

$$
f(0.1,1.1)=\frac{1.2}{e}
$$

therefore the Taylor approximation is in fact exact at this point!
3. (a) Using the chain rule we have

$$
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}=u f_{x}+v f_{y}
$$

and

$$
\frac{\partial f}{\partial v}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v}=-v f_{x}+u f_{y}
$$

(b) From (a) we can obtain the 2 nd order partial derivatives by using once more the chain rule we have

$$
\begin{align*}
\frac{\partial^{2} f}{\partial u^{2}} & =\frac{\partial}{\partial u}\left(u f_{x}+v f_{y}\right)=f_{x}+u \frac{\partial f_{x}}{\partial u}+v \frac{\partial f_{y}}{\partial u} \tag{5}\\
& =f_{x}+u\left(u f_{x x}+v f_{y x}\right)+v\left(u f_{x y}+v f_{y y}\right)=f_{x}+u^{2} f_{x x}+v^{2} f_{y y}+2 u v f_{x y}
\end{align*}
$$

and

$$
\begin{align*}
\frac{\partial^{2} f}{\partial v^{2}} & =\frac{\partial}{\partial v}\left(-v f_{x}+u f_{y}\right)=-f_{x}-v \frac{\partial f_{x}}{\partial v}+u \frac{\partial f_{y}}{\partial v} \tag{5}\\
& =-f_{x}-v\left(-v f_{x x}+u f_{y x}\right)+u\left(-v f_{x y}+u f_{y y}\right)=-f_{x}+v^{2} f_{x x}+u^{2} f_{y y}-2 u v f_{x y}
\end{align*}
$$

Substracting the two formulae we trivially see that

$$
\frac{\partial^{2} f}{\partial u^{2}}+\frac{\partial^{2} f}{\partial v^{2}}=\left(u^{2}+v^{2}\right)\left(f_{x x}+f_{y y}\right)
$$

4. To obtain the general solution of the homogeneous equation we try solutions of the type $y=c e^{m x}$. Substituting this solution into the equation we obtain the condition

$$
m^{2}-4 m+5=0 \Rightarrow m=2 \pm i
$$

This means that the general solution of the homogeneous equation is of the form

$$
y=c_{1} e^{2 x} \cos x+c_{2} e^{2 x} \sin x
$$

therefore we identify

$$
u_{1}(x)=e^{2 x} \cos x, \quad u_{2}(x)=e^{2 x} \sin x
$$

For the second part of the problem we will need the Wronskian of these solutions which is

$$
\begin{aligned}
W(x) & =\left|\begin{array}{cc}
u_{1}(x) & u_{2}(x) \\
u_{1}^{\prime}(x) & u_{2}^{\prime}(x)
\end{array}\right|=\left|\begin{array}{cc}
e^{2 x} \cos x & e^{2 x} \sin x \\
2 e^{2 x} \cos x-e^{2 x} \sin x & 2 e^{2 x} \sin x+e^{2 x} \cos x
\end{array}\right| \\
& =e^{4 x} \cos x(2 \sin x+\cos x)-e^{4 x} \sin x(2 \cos x-\sin x)=e^{4 x}
\end{aligned}
$$

Therefore the Wronskian is indeed nowhere zero.
The method of variation of parameters tells us that a particular solution of the inhomogeneous equation is of the form

$$
y=v_{1}(x) u_{1}(x)+v_{2}(x) u_{2}(x)
$$

with

$$
v_{1}(x)=-\int u_{2}(x) \frac{R(x)}{W(x)} d x \quad \text { and } \quad v_{2}(x)=\int u_{1}(x) \frac{R(x)}{W(x)} d x
$$

In our case

$$
R(x)=\frac{e^{2 x}}{\sin x}, \quad W(x)=e^{4 x}
$$

therefore

$$
v_{1}(x)=-\int d x=-x
$$

$$
v_{2}(x)=\int \frac{\cos x}{\sin x} d x=\ln (\sin x)
$$

Hence the general solution of the inhomogeneous equation is

$$
y=e^{2 x}\left(c_{1} \cos x+c_{2} \sin x-x \cos x+\ln (\sin x) \sin x\right)
$$

with c_{1}, c_{2} being arbitrary constants.

