
Solutions to coursework 2

1. For the function
f(x, y) = y3 + yx2 − 6x2 − 6y2 + 9y,

the first order partial derivatives are

fx = 2xy − 12x,

fy = 3y2 + x2 − 12y + 9.

The first thing we have to do is finding the points at which these derivatives vanish

fx = 0 ⇒ 2x(y − 6) = 0 ⇒ x = 0 or y = 6.

For x = 0 (which is one of the solutions of the previous equation) fy will vanish if

fy(0, y) = 0 = 3y2 − 12y + 9 = 0 ⇒ y =
12± 6

6
= 3, 1,

and for y = 6 (which is the other solution of fx = 0) we would obtain

fy(x, 6) = 0 = x2 + 45 ⇒ x = ±i
√

45.

The last solution is not a real number and therefore it is not valid (since we are dealing with
real functions of real variables!).

Putting all these solutions together we have that the points (0, 1) and (0, 3) are the only can-
didates to be stationary points of f(x, y).

The next step is to compute the second order partial derivatives

A = fxx = 2y − 12,

B = fxy = fyx = 2x,

C = fyy = 6y − 12,

therefore
AC −B2 = (2y − 12)(6y − 12)− 4x2,

and we have to study the sign of this quantity in order to classify the stationary points of the
function:

The point (0, 1): At this point

AC −B2 = (2− 12)(6− 12) = 60 > 0,

A = 2− 12 = −10 < 0,

therefore this point is a maximum.

The point (0, 3): At this point

AC −B2 = (6− 12)(18− 12) = −36 < 0,

therefore this point is a saddle point.

Feedback: Most people got this question right. Some failed to notice that there
where complex solutions which are not valid, but still should be indicated.
Marking: 2 points for fx and fy, 2 points for the zeros of fx, fy, 1 point for the
complex solutions, 2 points for the 2nd derivatives and 3 points for identifying
(0, 1) as a maximum and 3 points for identifying (0, 3) as a saddle point.
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2. The function that we want to maximize and minimize is the distance between a point (x, y, z)
on the sphere and the point (0, 0, 1) which lies on the z-axis. The distance function would be
given by:

d(x, y, z) =
√

x2 + y2 + (z − 1)2.

Since the derivatives of this function are rather complicated, it is better to consider the square
of the distance instead. This is correct because both the distance and its square will be maximal
or minimal at the same points! So, let us consider the function

f(x, y, z) = x2 + y2 + (z − 1)2.

The constrain in this case is given by the fact that (x, y, z) must lie on the sphere:

Φ(x, y, z) = (x− 2)2 + (y + 1)2 + (z − 1)2 − 4 = 0.

According to the method of Lagrange multipliers, we need to solve the following set of equations:

fx + λΦx = 0 ⇒ 2x + λ2(x− 2) = 0 (0.1)
fy + λΦy = 0 ⇒ 2y + λ2(y + 1) = 0 (0.2)
fz + λΦz = 0 ⇒ 2(z − 1) + λ2(z − 1) = 0 (0.3)

(x− 2)2 + (y + 1)2 + (z − 1)2 − 4 = 0 (0.4)

In this case, probably the easiest way to start is to solve first equation (0.3). It clearly has two
solutions which are:

z = 1 or λ = −1.

However, substituting the solution λ = −1 into equation (0.1) we find for instance that:

2x− 2(x− 2) = 0 ⇒ 4 = 0!!

This of course not possible, therefore the solution λ = −1 is not consistence with the remaining
equations and this means that the only solution to equation (0.3) is z = 1.

The two first equations can be re-written as:

x

x− 2
=

y

y + 1
= −λ,

by solving each equation for λ. This implies that:

x(y + 1) = y(x− 2) ⇒ xy + x = yx− 2y ⇒ x = −2y.

Substituting this result, to together with z = 1 into equation (0.4) we find an equation for y
which we can solve:

(−2y−2)2+(y+1)2−4 = 0 ⇒ 5(y+1)2−4 = 0 ⇒ y+1 = ±
√

4
5

⇒ y = −1± 2√
5
.

We therefore have two solutions for y which correspond to two solutions for x (since x = −2y)
given by x = 2 ∓ 4√

5
. Therefore we find two points on the sphere which are at maximal or

minimal distance from (0, 0, 1) and they are:

(x, y, z) =
(

2− 4√
5
,−1 +

2√
5
, 1

)
and

(
2 +

4√
5
,−1− 2√

5
, 1

)
.
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We still need to find the corresponding values of the Lagrange multiplier. For this we can just
substitute the two different values of x for each point onto equation (0.1). This gives:

−λ =
x

x− 2
=

2∓ 4√
5

∓ 4√
5

= ∓
√

5
2

+ 1,

where the minus sign corresponds to the first point and the plus sign to the second point.

Now the only thing left to do is to find out which one of these points is a t maximum distance
and which one at minimum distance. For this we just need to substitute the two solutions into
the function d(x, y, z) that we found above. We find:

d

(
2− 4√

5
,−1 +

2√
5
, 1

)
=

√(
2− 4√

5

)2

+
(
−1 +

2√
5

)2

=
√

9− 4
√

5 = 0.236068...

and

d

(
2 +

4√
5
,−1− 2√

5
, 1

)
=

√(
2 +

4√
5

)2

+
(
−1− 2√

5

)2

=
√

9 + 4
√

5 = 4.23607...

Clearly the distance is largest for the second point and therefore this provides the maximum
whereas the first point is the one at minimum distance. The figure below shows the location of
the points.

In fact the points can be seen better if we look instead at the intersection of the sphere with
the plane z = 1 below (since the two points have z = 1, as well as the centre of the sphere).
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From this picture we actually see that the two points are connected by a line that includes the
centre of the sphere and the origin of coordinates (which in our picture corresponds to the point
(0,0,1)) and that the largest distance must be equal to the shortest distance plus the diameter
of the sphere (4), which is precisely what we got!

Feedback: Most people got part of the question right, although many forgot finding
the values of λ or saying which point is the maximum and which one is the minimum.
The most common error was to ignore the solution λ = −1 for which I subtracted
one point.
Marking: 2 points for identifying the right functions f and Φ. 3 points for the
equations, 2 points for the solution for z and λ = −1. 2 points for the solution x =
−2y. 2 points for the values of x and y. 2 points for writing down the coordinates
of the two solutions. 2 points for the Lagrange multipliers and 3 points for the
distances in the most simplified form.

3. The Jacobian determinant is easy to obtain since we can re-write x = (u+v)/2 and y = (v−u)/2.

J =

∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1
2

1
2

−1
2

1
2

∣∣∣∣∣∣∣∣
=

1
4

+
1
4

=
1
2
. (0.5)

This means that dxdy = 1
2dudv. The function e

x−y
x+y = e

u
v , therefore the integrand in the new

coordinates is:
e

x−y
x+y dxdy =

1
2
e

u
v dudv.

The integration region, as described by the problem is the triangle with vertices (0, 1), (0, 0)
and (1, 0). In the new coordinates (u, v) these points become:

(x, y) = (0, 0) ⇒ (u, v) = (0, 0)
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(x, y) = (0, 1) ⇒ (u, v) = (−1, 1)

(x, y) = (1, 0) ⇒ (u, v) = (1, 1)

Therefore, the integration region in the new variables is also a triangle, albeit of a different
shape (see figure below).

From the picture one realizes that it is easier to do the integral in u first and the integral in v
last (it is very hard to integrate the function eu/v with respect to v).

I =
1
2

∫ v=1

v=0

dv

∫ u=v

u=−v

eu/vdu =
1
2

∫ v=1

v=0

dv[veu/v]u=v
u=−v =

e− e−1

2

∫ v=1

v=0

vdv =
e− e−1

2
[v2/2]10 =

e− e−1

4
.

Feedback: Most students got the Jacobian wrong! The rest of the problem was
generally ok.
Marking: 3 points for the Jacobian. 2 points for writing down the integrand in the
new coordinates. 3 points for identifying the vertices of the new triangle. 6 points
for the sketches. 6 points for doing the integral.

4. The integration region is
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and therefore, reversing the order of integration we obtain

I =
∫ y=ln(3)

y=0

∫ x=3

x=ey

xdxdy.

The x-integral gives ∫ x=3

x=ey

xdx =
[
x2

2

]x=3

x=ey

=
9− e2y

2
.

We obtain

I =
1
2

∫ y=ln(3)

y=0

(9− e2y)dy =
1
2

[
9y − e2y

2

]y=ln(3)

y=0

=
1
2

(
9 ln(3)− e2 ln(3)

2
+

1
2

)
=

1
2
(9 ln(3)−4).

Feedback: This was mostly ok although few students had a wrong drawing for the
integration region, some had the wrong integration limits when changing the order
of integration and a few others did not change the order of integration (they lost
most points for this, since changing the order of integration was the point of the
exercise!)
Marking: 3 points for the sketch of the integration region, 3 points for writing the
new integral correctly, 3 points for the integral w.r.t. x and 3 points for the final
result.

5. The picture of the three surfaces involved is given below:

From the picture and the information given by the problem, it is clear that the variable z in the
integration region takes values −1/2 ≤ z ≤ 1/2. Also, it is easy to see that 0 ≤ θ ≤ 2π, since the
ellipsoid is centred at the z axis (at z = 1). The only variable for which the integration limits
are not obvious is r. The values r can take must be determined by the ellipsoid’s equation,
which in cylindrical coordinates takes the form:

r2 +
(z − 1)2

4
= 1 ⇒ r =

1
2

√
4− (z − 1)2.
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Therefore 0 ≤ r ≤ 1
2

√
4− (z − 1)2.

The integral that we have to compute is:

V =
∫ θ=2π

θ=0

dθ

∫ z=1/2

z=−1/2

dz

∫ 1/2
√

4−(z−1)2

r=0

rdr,

where we included the Jacobian J = r for cylindrical coordinates. The integral in r is:

∫ 1/2
√

4−(z−1)2

r=0

rdr = [r2/2]
r=1/2

√
4−(z−1)2

r=0 =
4− (z − 1)2

8
.

Plugging this into the z-integral we obtain

1
8

∫ z=1/2

z=−1/2

(4− (z − 1)2)dz =
1
8
[4z − (z − 1)3

3
]z=1/2
z=−1/2 =

1
8

(
2 +

1
24

+ 2− 27
24

)
=

1
2
− 13

96
.

Finally, the integral in θ is: ∫ θ=2π

θ=0

dθ = [θ]θ=2π
θ=0 = 2π.

Therefore

V = 2π

(
1
2
− 13

96

)
= π

(
1− 13

48

)
= 2.29074...

Feedback: Mostly ok, although some students had the integrals in the wrong order.
Marking: 3 points for the r integration region. 4 points for writing down the correct
integral and integrand. 3 points for the integral in z. 3 points for the integral in r
and 1 point for the integral in θ. 3 points for the final result.

(a) We try, as usual, solutions of the type y = emx. Putting this into the homogeneous equation
we obtain

m2 − 9 = 0 ⇔ m = ±3.

Therefore u1(x) = e3x and u2(x) = e−3x. The Wronskian is

W (x) = u1(x)u′2(x)− u′1(x)u2(x) = −3e3xe−3x − 3e−3xe3x = −6.

(b) A particular solution of the inhomogeneous equation is given by

yp = v1(x)u1(x) + v2(x)u2(x),

with

v1(x) = −
∫

u2(x)
R(x)
W (x)

dx, v2(x) = −
∫

u1(x)
R(x)
W (x)

dx.

Here R(x) = 6
sinh 3x/2 which gives

v1(x) =
∫

e−3x

sinh(3x/2)
dx = 2

∫
e−3x

e3x/2 − e−3x/2
dx

changing variables to t = e3x/2 (therefore t−1 = e−3x/2) we have that dt = (3/2)e3x/2dx =
(3t/2)dx. So dx = 2dt/(3t). and

v1(x) =
4
3

∫
t−2

t(t− t−1)
dt =

4
3

∫
1

t2(t2 − 1)
dt =

4
3

∫ (
1

2(t− 1)
− 1

2(t + 1)
− 1

t2

)
dt
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=
2
3

ln
∣∣∣∣
t− 1
t + 1

∣∣∣∣ +
4
3t

=
2
3

ln
∣∣∣∣
e3x/2 − 1
e3x/2 + 1

∣∣∣∣ +
4e−3x/2

3
.

v2(x) = −
∫

e3x

sinh(3x/2)
dx = −4

3

∫
t2

t(t− t−1)
dt = −4

3

∫
t2

(t2 − 1)
dt = −4

3

∫ (
1 +

1
2(t− 1)

− 1
2(t + 1)

)
dt

= −2
3

ln
∣∣∣∣
t− 1
t + 1

∣∣∣∣−
4t

3
= −2

3
ln

∣∣∣∣
e3x/2 − 1
e3x/2 + 1

∣∣∣∣−
4e3x/2

3
.

Therefore, the general solution of the inhomogeneous equation is given by

y = c1e
3x + c2e

−3x +
2e3x

3
ln

∣∣∣∣
e3x/2 − 1
e3x/2 + 1

∣∣∣∣ +
4e3x/2

3
− 2e−3x

3
ln

∣∣∣∣
e3x/2 − 1
e3x/2 + 1

∣∣∣∣−
4e−3x/2

3

= c1e
3x + c2e

−3x +
4 sinh(3x)

3
ln

∣∣∣∣
e3x/2 − 1
e3x/2 + 1

∣∣∣∣ +
8 sinh(3x/2)

3
.

for c1, c2 arbitrary constants.

Feedback: This was generally ok, although many students struggled to do the
integrals and there were many typos and basic mistakes there.
Marking: 2 points for u1, u2. 3 points for the Wronskian. 1 point for the right
formulae for v1, v2, 5 points for each integral and 2 points for the general solution.
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