1. Use Lagrange multipliers to find the maximum and minimum distance from the curve

$$
x^{2}+x y+y^{2}=16
$$

to the origin.
2. (a) If $y_{1}(x)$ and $y_{2}(x)$ linearly independent solutions to the linear ordinary differential equation

$$
\frac{d^{2} y}{d x^{2}}+p(x) \frac{d y}{d x}+q(x) y=0
$$

show that the Wronskian, $W(x)$, can be written as

$$
W(x)=C e^{-\int p(x) d x}
$$

(b) Using variation or parameters or otherwise, find the genral solution to

$$
\frac{d^{2} y}{d x^{2}}+y=\sec x
$$

3. (a) Sketch the region of integration in the $x-y$ plane for the following integral

$$
I_{1}=\int_{0}^{1} \int_{0}^{1-x^{2}} \sqrt{1-y} \cos (x \sqrt{1-y}) d y d x
$$

Change the order of integration, and hence evaluate the integral.
(b) You are asked to find the integral of the function

$$
f(x, y)=4 b^{2}-x^{2}-2 y^{2}+b x
$$

over the region, S, in the $x-y$ plane given by

$$
a^{2} \leq x^{2}+y^{2} \leq b^{2} .
$$

Using polar coordinates

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

transform the integral in x and y to one in r and θ, calculating the Jacobian of the transformation. Hence evaluate the integral

$$
I_{2}=\iint_{S} f(x, y) d x d y
$$

Turn over ...
4. Derive the p-shifting theorem for Laplace transforms:

$$
\mathcal{L}\left(e^{a x} f(x)\right)=F(p-a) .
$$

You are required to solve

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=5 r(x)
$$

by the use of Laplace transforms. Show that the Laplace transform $Y(p)=$ $\mathcal{L}(y(x))$ for general initial conditions $y(0)$ and $y^{\prime}(0)$ is given by

$$
Y(p)=\frac{y^{\prime}(0)+(p+2) y(0)+5 R(p)}{p^{2}+2 p+5}
$$

where $R(p)=\mathcal{L}(r(x))$.
For the case $y(0)=y^{\prime}(0)=0$, with

$$
r(x)=x+1,
$$

find $Y(p)$.
Express $Y(p)$ in the following form:

$$
Y(p)=\frac{A}{p^{2}}+\frac{B}{p}+\frac{C(p+1)}{(p+1)^{2}+4}+\frac{D}{(p+1)^{2}+4},
$$

where A, B, C and D are to be determined. Hence find the solution $y(x)$. Check that your solution satisfies the initial conditions $y(0)=y^{\prime}(0)=0$.

You may quote the following results:

$$
\begin{aligned}
& \mathcal{L}\left(f^{\prime}(x)\right)=-f(0)+p F(p) \\
& \mathcal{L}\left(f^{\prime \prime}(x)\right)=-f^{\prime}(0)-p f(0)+p^{2} F(p) \\
& \mathcal{L}(1)=1 / p \\
& \mathcal{L}(x)=1 / p^{2} \\
& \mathcal{L}(\sin (\omega x))=\omega /\left(p^{2}+\omega^{2}\right) \\
& \mathcal{L}(\cos (\omega x))=p /\left(p^{2}+\omega^{2}\right)
\end{aligned}
$$

where $F(p)=\mathcal{L}(f(x))$ is the Laplace transform of $f(x)$.

Internal Examiners:	Dr O. Castro Alvaredo Dr O. S. Kerr
External Examiners:	Professor J. Billingham Professor E. Corrigan

