Calculus: Questions 1
 Partial Differentiation

The first six questions are from last year's sheet 7 and are included here for revision. The other questions are new.

1. Find all the first and second partial dervatives of
(a) $6 x^{2}+4 y(1-x)+(1-y)^{2}$
(b) $\sin \left(x^{2} y\right)$
2. If $f(x, y)=x^{2} y^{2}$ with $x=\cos t$ and $y=\sin t$, find $\frac{d f}{d t}$ and $\frac{d^{2} f}{d t^{2}}$ by using partial differentiation.
3. Using partial differentiation find $\frac{d y}{d x}$ where
(a) $(x-1) y^{3}+x^{2} \cos x=3$
(b) $\cos (x y)=0$
4. Find all the stationary points (i.e. points where $f_{x}=f_{y}=0$) of

$$
f(x, y)=e^{x+y}\left(x^{2}+y^{2}-x y\right)
$$

and find their natures (i.e. are they maxima, minima or saddle points?)
5. Find all the stationary points of the function

$$
f(x, y)=(x+y)^{4}-x^{2}-y^{2}-6 x y
$$

and identify their type.
6. Show that the function

$$
f(x, y)=x^{2} y^{2}-2 x y(x+y)+4 x y
$$

has stationary points at $(1,1)$ and $(2,0)$. Find the three other stationary points. Identify the type of all the stationary points of this function.
7. From lectures Find the stationary points of

$$
f(x, y)=2 x^{4}+8 x^{2} y^{2}-4\left(x^{2}-y^{2}\right)+2
$$

Identify the type of all the stationary points of this function.
8. Find the stationary points of

$$
f(x, y)=-x^{2}-y^{3}+12 y^{2}
$$

Identify the type of all the stationary points of this function.
9. How would you solve question 6 if you were told that you had to maximise $f(x, y)$ with the constraint $x^{2}+y^{2}=4$?

Solutions

1. (a) $f_{x}=12 x-4 y, f_{y}=4(1-x)-2(1-y), f_{x x}=12, f_{x y}=f_{y x}=-4, f_{y y}=2$.
(b) $f_{x}=2 x y \cos \left(x^{2} y\right), f_{y}=x^{2} \cos \left(x^{2} y\right), f_{x x}=2 y \cos \left(x^{2} y\right)-4 x^{2} y^{2} \sin \left(x^{2} y\right)$, $f_{x y}=f_{y x}=2 x \cos \left(x^{2} y\right)-2 x^{3} y \sin \left(x^{2} y\right), f_{y y}=-x^{4} \sin \left(x^{2} y\right)$.
2. $\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=2 x y^{2} \frac{d x}{d t}+2 x^{2} y \frac{d y}{d t}$
$=2 \cos t \sin ^{2} t \times(-\sin t)+2 \cos ^{2} t \sin t \times(\cos t)=-2 \sin ^{3} t \cos t+2 \sin t \cos ^{3} t$
$\frac{d^{2} f}{d t^{2}}=\frac{\partial f}{\partial x} \frac{d^{2} x}{d t^{2}}+\frac{\partial f}{\partial y} \frac{d^{2} y}{d t^{2}}+\frac{\partial^{2} f}{\partial x^{2}}\left(\frac{d x}{d t}\right)^{2}+2 \frac{\partial^{2} f}{\partial x \partial y} \frac{d x}{d t} \frac{d y}{d t}+\frac{\partial^{2} f}{\partial y^{2}}\left(\frac{d y}{d t}\right)^{2}$
$=2 x y^{2} \frac{d^{2} x}{d t^{2}}+2 x^{2} y \frac{d^{2} y}{d t^{2}}+2 y^{2}\left(\frac{d x}{d t}\right)^{2}+8 x y \frac{d x}{d t} \frac{d y}{d t}+2 x^{2}\left(\frac{d y}{d t}\right) r$
$=2 \cos t \sin ^{2} t \times(-\cos t)+2 \cos ^{2} t \sin t \times(-\sin t)+2 \sin ^{2} t \times(-\sin t)^{2}+8 \cos t \sin t \times(-\sin t) \times$ $(\cos t)+2 \cos ^{2} t \times(\cos t)^{2}=2 \cos ^{4} t-12 \cos ^{2} t \sin ^{2} t+2 \sin ^{4} t$.
3. Using the result that if $f(x, y)=C$ then $\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \frac{d y}{d x}=0$. Note that it is often better to leave both x and y in your answers.
(a) $y^{3}+2 x \cos x-x^{2} \sin x+3(x-1) y^{2} \frac{d y}{d x}=0$, or $\frac{d y}{d x}=-\frac{y^{3}+2 x \cos x-x^{2} \sin x}{3(x-1) y^{2}}$.
(b) $-y \sin (x y)-x \sin (x y) \frac{d y}{d x}=0$, or $\frac{d y}{d x}=-y / x$.
4. Stationary points at $(x, y)=(0,0)$ and $(-1,-1)$.
$(0,0)$ is a minimum.
$(-1,-1)$ are saddle point.

5. Stationary points at $(x, y)=(0,0),\left(\frac{1}{2}, \frac{1}{2}\right)$ and $\left(-\frac{1}{2},-\frac{1}{2}\right)$.
$(0,0)$ is a saddle point.
$\left(\frac{1}{2}, \frac{1}{2}\right)$ and $\left(-\frac{1}{2},-\frac{1}{2}\right)$ are minima.

6. Stationary points at $(x, y)=(0,0),(1,1),(2,2),(2,0)$ and $(0,2)$. $(0,0),(2,2),(2,0)$ and $(0,2)$ are saddle points.
$(1,1)$ is a maximum.

7. Stationary points at $(x, y)=(0,0),(1,0),(-1,0)$.
$(0,0)$ is a saddle point, the others are minima.
8. Stationary points at $(x, y)=(0,0),(0,8)$.
$(0,0)$ is a saddle point, $(0,8)$ is a maximum.
9. See lectures
