Calculus: Questions 4 Change of Variable

1. An ellipse is given by

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

You want to find the area by using a change of coordinates: $x=r \cos \theta, y=\frac{b r}{a} \sin \theta$. Find the range of values of r and θ that correspond to the interior of the ellipse.

Find the Jacobian of the transformation.
Find the area.
2. Find the Jacobians of these variable changes
(a) $x=a \cosh s \cos t, y=a \sinh s \sin t$ (elliptic coordinates)
(b) $x=s t, y=\left(t^{2}-s^{2}\right) / 2$ (parabolic coordinates)
3. The moment of inertia of a flat object in the $x-y$ plane about the z axis is defined to be

$$
I=\iint \rho(x, y)\left(x^{2}+y^{2}\right) d x d y
$$

where $\rho(x, y)$ is the mass per unit area of the object.
Find the moment of inertia of a circular disc centred on the origin of radius a and mass per unit area ρ_{0}.
4. (a bit trickier?) repeat this exercise for the ellipse in question 1.
5. Spherical polar coordinates (see lectures) are defined by

$$
\begin{gathered}
x=r \sin \theta \cos \phi \\
y=r \sin \theta \sin \phi \\
z=r \cos \theta
\end{gathered}
$$

Find the Jacobian of this transformation.

1. $J=b r / a$, Area $=\pi a b$
2. (a) $J=a^{2}\left(\sinh ^{2} s+\sin ^{2} t\right)$
(b) $J=s^{2}+t^{2}$
3. $I=\int_{0}^{2 \pi} \int_{0}^{a} \rho_{0} r^{3} d r d \theta=\pi \rho_{0} a^{4} / 2$
4. $I=\pi \rho_{0} a b\left(a^{2}+b^{2}\right) / 4$
5. $J=r^{2} \sin \theta$
