Calculus: Questions 4 Change of Variable

1. An ellipse is given by

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

You want to find the area by using a change of coordinates: $x = r \cos \theta$, $y = \frac{br}{a} \sin \theta$. Find the range of values of r and θ that correspond to the interior of the ellipse.

Find the Jacobian of the transformation.

Find the area.

- 2. Find the Jacobians of these variable changes
 - (a) $x = a \cosh s \cos t$, $y = a \sinh s \sin t$ (elliptic coordinates)
 - (b) $x = st, y = (t^2 s^2)/2$ (parabolic coordinates)
- 3. The moment of inertia of a flat object in the x-y plane about the z axis is defined to be

$$I = \iint \rho(x, y)(x^2 + y^2) dx \, dy$$

where $\rho(x, y)$ is the mass per unit area of the object.

Find the moment of inertia of a circular disc centred on the origin of radius a and mass per unit area ρ_0 .

- 4. (a bit trickier?) repeat this exercise for the ellipse in question 1.
- 5. Spherical polar coordinates (see lectures) are defined by

$$x = r \sin \theta \cos \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \theta$$

Find the Jacobian of this transformation.

Solutions

1. J = br/a, Area $= \pi ab$ 2. (a) $J = a^2(\sinh^2 s + \sin^2 t)$ (b) $J = s^2 + t^2$ 3. $I = \int_0^{2\pi} \int_0^a \rho_0 r^3 dr d\theta = \pi \rho_0 a^4/2$ 4. $I = \pi \rho_0 a b (a^2 + b^2)/4$ 5. $J = r^2 \sin \theta$