Calculus: Questions 5
 Laplace Transforms

1. Find the Laplace transforms (i.e. not by looking up tables!) of
(a) x
(b) x^{n}
(c) $\cosh a x$
(d) $1-\cos a x$

Then check in the tables you got the right answer.
2. Use Laplace transforms to solve
(a) $y^{\prime \prime}+4 y^{\prime}+3 y=0$, with $y(0)=0$ and $y^{\prime}(0)=2$.
(b) $y^{\prime \prime}+2 y^{\prime}=x, y(0)=1$ and $y^{\prime}(0)=0$.
3. Derive the result

$$
\mathcal{L}(x f(x))=-F^{\prime}(p)
$$

4. Derive the p-shifting theorem for Laplace transforms:

$$
\mathcal{L}\left(e^{a x} f(x)\right)=F(p-a)
$$

5. $\mathrm{y}(\mathrm{x})$ satisfies the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=f(x)
$$

Show that the Laplace transform $Y(p)=\mathcal{L}(y(x))$ for general initial conditions $y(0)$ and $y^{\prime}(0)$ is given by

$$
Y(p)=\frac{y^{\prime}(0)+(p+2) y(0)+F(p)}{p^{2}+2 p+2}
$$

where $F(p)=\mathcal{L}(f(x))$ is the Laplace transform the function on the right of the above equation.
If the initial coditions are $y(0)=y^{\prime}(0)=0$. If $f(t)=2$., find $F(p)$.
Express $Y(p)$ in the following form:

$$
Y(p)=\frac{A}{p}+\frac{B(p+1)}{(p+1)^{2}+1}+\frac{C}{(p+1)^{2}+1}
$$

where A, B and C are constants to be determined. Use the reult of the previous question to find $y(x)$.
Checkk that your solution satisfies the initial conditions $y(0)=y^{\prime}(0)=0$.

1. (a) $1 / p^{2}$
(b) $n!/ p^{n+1}$
(c) $p /\left(p^{2}-a^{2}\right)$
(d) $\frac{a^{2}}{p\left(p^{2}+a^{2}\right)}$
2. (a) $y=e^{-x}-e^{-3 x}$
(b) $y=9 / 8-x / 4+x^{2} / 4-e^{-2 x} / 8$
3. Consider

$$
\frac{d}{d p} \int_{0}^{\infty} f(x) e^{-p x} d x=\int_{0}^{\infty} \frac{\partial}{\partial p}\left(f(x) e^{-p x}\right) d x=\int_{0}^{\infty}-x f(x) e^{-p x} d x
$$

so

$$
\frac{d}{d p} F(p)=\mathcal{L}(-x f(x))
$$

Hence result.
4.

$$
\mathcal{L}\left(e^{a x} f(x)\right)=\int_{0}^{\infty} e^{a x} f(x) e^{-p x} d x=\int_{0}^{\infty} f(x) e^{-(p-a) x} d x
$$

This last term is just the definition of $F(p)$ but with p replaced by $p-a$. Hence result.
5. $F(p)=2 / p$

$$
Y(p)=\frac{F(p)}{p^{2}+2 p+2}=\frac{2}{p\left(p^{2}+2 p+2\right)}=\frac{1}{p}-\frac{(p+1)}{(p+1)^{2}+1}-\frac{1}{(p+1)^{2}+1},
$$

Hence

$$
y(x)=1-e^{-x} \cos x-e^{-x} \sin x
$$

Don't forget to do the check!

