Calculus: Questions 6 More Laplace Transforms

1. Use Laplace transforms to solve

$$
y^{\prime \prime}+4 y^{\prime}+3 y=r(x) \quad \text { with } \quad y(0)=y^{\prime}(0)=0
$$

and

$$
r(x)= \begin{cases}0, & x<0 \\ 1, & 0<x<2 \\ 0, & 2<x\end{cases}
$$

2. The height of the mass suspended on a spring above its equilibrium position when its support is in its rest position is $x(t)$. The equation for the motion of the mass is

$$
\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+5 x=5 y(t)
$$

where $y(t)$ is the vertical displacement of the support above its rest position .
Show that the Laplace transform $X(p)=\mathcal{L}(x(t))$ of the vertical displaceme nt of the mass for general initial conditions $x(0)$ and $x^{\prime}(0)$ is given by

$$
X(p)=\frac{x^{\prime}(0)+(p+4) x(0)+5 Y(p)}{p^{2}+4 p+5}
$$

where $Y(p)=\mathcal{L}(y(t))$ is the Laplace transform of the vertical displaceme nt of the support.
The mass is initially at rest $\left(x(0)=x^{\prime}(0)=0\right)$. After $t=0$ the support is moved vertically upwards as

$$
y(t)=t / 5
$$

Find $Y(p)$ and hence $X(p)$
Express $X(p)$ in the following form:

$$
X(p)=\frac{A}{p^{2}}+\frac{B}{p}+\frac{C(p+2)}{(p+2)^{2}+1}+\frac{D}{(p+2)^{2}+1},
$$

where A, B, C and D are to be determined. Hence find the displacement of the mass $x(t)$. Check that your solution satisfies the initial conditions $x(0)=x^{\prime}(0)=0$. [Use transform tables]
3. Use the convolution integral to find the inverse Laplace transform of
(a)

$$
Y(p)=\frac{1}{p^{2}\left(p^{2}+1\right)}
$$

(b)

$$
Y(p)=\frac{1}{\left(p^{2}+1\right)^{2}}
$$

Solutions

1. Take LT to get

$$
\begin{gathered}
\left(p^{2}+4 p+3\right) Y=\frac{1}{p}-\frac{e^{-2 p}}{p} \\
Y=\frac{1}{p(p+1)(p+3)}-\frac{e^{-2 p}}{p(p+1)(p+3)} \\
\frac{1}{p(p+1)(p+3)}=\frac{1 / 3}{p}-\frac{1 / 2}{p+1}+\frac{1 / 6}{p+3}
\end{gathered}
$$

The inverse of this bit is

$$
\mathcal{L}^{-1}\left(\frac{1}{p(p+1)(p+3)}\right)=\frac{1}{3}-\frac{e^{-x}}{2}+\frac{e^{-3 x}}{6}
$$

So

$$
\mathcal{L}^{-1}\left(\frac{e^{-2 p}}{p(p+1)(p+3)}\right)= \begin{cases}0 & x<2 \\ \frac{1}{3}-\frac{e^{-(x-2)}}{2}+\frac{e^{-3(x-2)}}{6} & 2<x\end{cases}
$$

Just subtract this from your prvious answer to get the solution.
2. $Y(p)=1 / 5 p^{2}$

$$
\begin{gathered}
X(p)=\frac{1}{p^{2}\left(p^{2}+4 p+5\right)}=\frac{1 / 5}{p^{2}}+\frac{-4 / 25}{p}+\frac{(4 / 25)(p+2)}{(p+2)^{2}+1}+\frac{3 / 25}{(p+2)^{2}+1}, \\
x(t)=\frac{t}{5}-\frac{4}{25}+\frac{4}{25} e^{-2 t} \cos t+\frac{3}{25} e^{-2 t} \sin t
\end{gathered}
$$

Don't forget to check $x(0)=x^{\prime}(0)=0$!
3. (a)

$$
Y(p)=\frac{1}{p^{2}} \times \frac{1}{p^{2}+1}
$$

SO
$y(x)=\int_{0}^{x}\left(x-x^{\prime}\right) \sin x^{\prime} d x^{\prime}=\left[-\left(x-x^{\prime}\right) \cos x^{\prime}\right]_{0}^{x}-\int_{0}^{x} \cos x^{\prime} d x^{\prime}=x-\left[\sin x^{\prime}\right]_{0}^{x}=x-\sin x$
(b)

$$
\begin{gathered}
Y(p)=\frac{1}{p^{2}+1} \times \frac{1}{p^{2}+1} \\
y(x)=\int_{0}^{x} \sin \left(x-x^{\prime}\right) \sin x^{\prime} d x^{\prime}=\int_{0}^{x} \frac{1}{2}\left(\cos \left(\left(x-x^{\prime}\right)-x^{\prime}\right)-\cos \left(\left(x-x^{\prime}\right)+x^{\prime}\right)\right) d x^{\prime} \\
\int_{0}^{x} \frac{1}{2}\left(\cos \left(x-2 x^{\prime}\right)-\cos (x)\right) d x^{\prime}=\frac{1}{2}\left[-\frac{1}{2} \sin \left(x-2 x^{\prime}\right)-x^{\prime} \cos x\right]_{0}^{x} \\
=\frac{\sin x}{4}-\frac{x \sin x}{2}+\frac{\sin x}{4}=\frac{\sin x}{2}-\frac{x \sin x}{2}
\end{gathered}
$$

