Calculus: Questions 8 Differential Equations 2

1. Find the Wronskian, $W(x)$, of the following pairs of functions
(a) $y_{1}(x)=x^{2}-2 x+1, \quad y_{2}(x)=x^{2}+2 x+1$.
(b) $y_{1}(x)=e^{x}, \quad y_{2}(x)=e^{2 x}$.
(c) $y_{1}(x)=e^{x}, \quad y_{2}(x)=x e^{x}$.
(d) $y_{1}(x)=\sin x, \quad y_{2}(x)=\cos x$.
(e) $y_{1}(x)=\sin ^{2} x, \quad y_{2}(x)=\cos ^{2} x$.
(f) $y_{1}(x)=\sin ^{2} x, \quad y_{2}(x)=\cos ^{2} x-1$.
2. Find the general solutions to the following homogeneous equations in the form

$$
y=A y_{1}(x)+B y_{2}(x)
$$

In each case verify that the Wronskian of $y_{1}(x)$ and $y_{2}(x)$ is non-zero.
(a) $\frac{d^{2} y}{d x^{2}}-y=0$
(b) $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=0$
(c) $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}=0$
(d) $\frac{d^{2} y}{d x^{2}}+8 \frac{d y}{d x}+25 y=0$
(e) $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0$
(f) $x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+y=0$
3. Solve the inhomogeneous equation

$$
\frac{d^{2} y}{d x^{2}}-y=x
$$

using the techniques from last year.
Now determine the particular integral using

$$
y(x)=y_{1}(x) v_{1}(x)+y_{2}(x) v_{2}(x)
$$

where

$$
v_{1}(x)=-\int \frac{y_{2} R(x)}{W(x)} d x \quad v_{2}(x)=\int \frac{y_{1} R(x)}{W(x)} d x
$$

where $R(x)$ is the expression on the right hand side of the differential equation (i.e, $R(x)=x$ here). Check the two solutions are the same.

Solutions

1. Remember $W(x)=y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x)$.
(a) $W(x)=-4\left(x^{2}-1\right)$
(b) $W(x)=e^{3 x}$
(c) $W(x)=e^{2 x}$
(d) $W(x)=-1$
(e) $W(x)=-2 \sin x \cos x$
(f) $W(x)=0$
2. Note, if you get different y_{1} and y_{2} (say, you have them the other way round) you may get different Wronskians.
(a) $y(x)=A e^{x}+B e^{-x}, \quad W(x)=-2$.
(b) $y(x)=A e^{-x}+B e^{-2 x}, \quad W(x)=-e^{-3 x}$.
(c) $y(x)=A+B e^{x}, \quad W(x)=e^{x}$.
(d) $y(x)=A e^{-4 x} \sin 3 x+B e^{-4 x} \cos 3 x, \quad W(x)=-3 e^{-8 x}$.
(e) $y(x)=A x+B x^{2}, \quad W(x)=x^{2}$. Note: you can't define a solution by specifying y and y^{\prime} at $x=0$ where the Wronskian is zero.
(f) $y(x)=\frac{A}{x}+\frac{B \ln x}{x}, \quad W(x)=1 / x^{3}$
3. Using undetermined constants, try $y(x)=a x+b$, finding $a=-1, b=0$. General solution is

$$
y=A e^{x}+B e^{-x}-x
$$

With $y_{1}(x)=e^{x}$ and $y_{2}(x)=e^{-x}, W(x)=-2$:

$$
\begin{gathered}
v_{1}=-\int \frac{e^{-x} x}{-2} d x=-\frac{x e^{-x}}{2}-\frac{e^{-x}}{2} \\
v_{2}=\int \frac{e^{x} x}{-2} d x=-\frac{x e^{x}}{2}+\frac{e^{+x}}{2} \\
y_{1}(x) v_{1}(x)+y_{2}(x) v_{2}(x)=-\frac{x}{2}-\frac{1}{2}-\frac{x}{2}+\frac{1}{2}=-x
\end{gathered}
$$

Particular integrals are the same!

