Calculus: Questions 9 Differential Equations 3

1. Find the general solutions to the following inhomogeneous equations. In each case find the particular integrals using the method of variation of parameters.
(a) $\frac{d^{2} y}{d x^{2}}-y=1$
(b) $\frac{d^{2} y}{d x^{2}}-y=e^{x}$
(c) $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=e^{x}$
(d) $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}=1$
(e) $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=x^{3}$
2. (From lectures) Solve the inhomogeneous equation

$$
x \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=x^{2} .
$$

1. In each case find solutions y_{1} and y_{2} to the homogeneous equation, and find the particular integral by using

$$
y(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where

$$
u_{1}(x)=-\int \frac{y_{2}(x) R(x)}{W(x)} d x, \quad u_{2}(x)=\int \frac{y_{1}(x) R(x)}{W(x)} d x
$$

where $R(x)$ is the right hand side of the differential equation in standard form, and $W(x)=$ $y_{1}(x) y_{2}^{\prime}(x)-y_{1}(x) y_{2}^{\prime}(x)$.
(a) $y_{1}=e^{x}, \quad y_{2}=e^{-x}, \quad W(x)=-2, \quad u_{1}(x)=-e^{-x} / 2, \quad u_{2}(x)=-e^{x} / 2, \quad y(x)=-1$
(b) $y_{1}=e^{x}, \quad y_{2}=e^{-x}, \quad W(x)=-2, \quad u_{1}(x)=x / 2, \quad u_{2}(x)=-e^{2 x} / 4$, $y(x)=x e^{x} / 2-e^{x} / 4$.
(c) $y_{1}=e^{-x}, \quad y_{2}=e^{-2 x}, \quad W(x)=-e^{-3 x}, \quad u_{1}(x)=e^{2 x} / 2, \quad u_{2}(x)=-e^{3 x} / 3$, $y(x)=e^{x} / 3$.
(d) $y_{1}=1, \quad y_{2}=e^{x}, \quad W(x)=e^{x}, \quad u_{1}(x)=-x, \quad u_{2}(x)=-e^{-x}, \quad y(x)=-x-1$.
(e) $y_{1}=x, \quad y_{2}=x^{2}, \quad W(x)=x^{2}$

Note: equation not in standard form - divide by x^{2} to get

$$
\frac{d^{2} y}{d x^{2}}-\frac{2}{x} \frac{d y}{d x}+\frac{2 y}{x^{2}}=x
$$

$$
R(x)=x, u_{1}(x)=-x^{2} / 2, \quad u_{2}(x)=x, \quad y(x)=x^{3} / 2 .
$$

2. You need to spot one solution to get started. The easy one (as spotted in lectures) is $y_{1}(x)=x$. Then do all the stuff from lectures and you get

$$
y=A x+B x \int \frac{e^{x}}{x^{2}} d x-x^{2}-2 x \ln x+2
$$

