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Recall...

The basic problem is:

Given a set of data points {(x0, y0), (x1, y1), . . . , (xn, yn)} how can
we best construct a function, f (x), that in some way approximates
this information.
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We will find that there are two basically different cases that we
consider:

I The points (xn, yn) are accurate — we want a curve that goes
through these points.

I There is some statistical scatter in the points (xn, yn) — we
want some curve that approximates the underlying curve.

So far we have been looking at the first of these.
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Linear Fit

If we only have two points

x

y

you can approximate by a straight line.
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Higher Order Polynomial Fits

We can extend this to fitting a quadratic through 3 points, a cubic
through 4 points, a quartic through 5 points, etc.

In general we can fit a polynomial of order n through n + 1 data
points.
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Example: Given the points:

{(−2, 3), (−1, 5), (0, 4), (1, 6), (3, 7), (4, 8)}

construct a polynomial that passes through all the points.

We do some maths, including matrix manipulations, and find...
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The polynomial through the six points is given by:

p(x) = 4 + 0.533x + 1.872x2 − 0.106x3 − 0.372x4 + 0.072x5
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However, you don’t always get what you expect!
If you approximate a perfectly sensible function with many points
you don’t always get the original curve.
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Approximating y = 1/(1 + x2) with a polynomial of order 2
between -4 and 4 with 3 evenly spaced data points:
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Approximating y = 1/(1 + x2) with a polynomial of order 4
between -4 and 4 with 5 evenly spaced data points:
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Approximating y = 1/(1 + x2) with a polynomial of order 6
between -4 and 4 with 7 evenly spaced data points:
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Approximating y = 1/(1 + x2) with a polynomial of order 8
between -4 and 4 with 9 evenly spaced data points:
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Approximating y = 1/(1 + x2) with a polynomial of order 30
between -4 and 4 with 31 evenly spaced data points:
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If we were to sketch a graph through the end few points by hand
we would do much better than this!

There is another approach you probably learned 10 years or so ago
— the linear spline.
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Linear Spline

Maybe the simplest way to approximate the underlying function is
to just join adjacent data points with straight lines.
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Given the data points {(x0, y0), (x1, y1), . . . (xn, yn)} we join
adjacent points with a straight line. The straight line between
(xk , yk) and (xk+1, yk+1) is denoted by y = Sk(x) and the
complete set of all line segments by S(x). It is this complete set of
all line segments that is referred to as the linear spline through
the points.
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Advantages:

I Simple and robust.

I Looks OK if you have enough points.

Disadvantages:

I Curve has kinks in it — not differentiable.

I Approximation is only affected by the nearest points on either
side.
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New Stuff!
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Cubic Spline

Instead of using a straight line between adjacent points we will
improve things by having a cubic between adjacent points.
As well as passing through the points we will also require the curves
to have continuous first and second derivatives at the data points.
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A cubic
f (x) = a3x

3 + a2x
2 + a1x + a0

has three unknowns.

I To find 4 unknowns we need 4 equations.

I Requiring the cubic to go through the end-points supplies two
of these equations.

I Requiring the first and second derivatives match at each end
seems to give 4 more equations. Too many? But each of
these is shared with the adjacent interval, and so effectively
only provides two more equations as required.

I But we have to look at the end intervals more carefully.
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The end intervals need one constraint applied at the unattached or
free ends.
We impose the condition that the second derivative must be zero.

These end conditions are what classify the spline as a

natural cubic spline.

Other end conditions lead to other types of cubic spline.
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We denote by Sk(x) the cubic joining the point (xk , yk) to the
point (xk+1, yk+1) (points P to Q in the above figure).
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Spline conditions

(i) Sk(x) must pass through P and Q, and so

Sk(xk) = yk and Sk(xk+1) = yk+1, k = 0, . . . , (n − 1)

(ii) At P S ′k(xk) = S ′k−1(xk), k = 1, . . . , (n − 1)

(iii) At P S ′′k (xk) = S ′′k−1(xk), k = 1, . . . , (n − 1)

(iv) To produce a natural cubic spline we set the second
derivatives equal to zero at the ends of the interval. Thus

S ′′0 (x0) = S ′′n−1(xn) = 0

There are no conditions on the first derivatives at these point.
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Condition (i): Sk(x) must pass through P and Q, and so

Sk(xk) = yk and Sk(xk+1) = yk+1, k = 0, . . . , (n − 1)

merely ensures that the completed spline passes through all the
data points.

Condition (ii) At P S ′k(xk) = S ′k−1(xk), k = 1, . . . , (n − 1)
ensures that at a point where two cubics from adjacent sections
meet, say at P, they do so smoothly in the sense that the two have
the same tangent at the point of contact.
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Condition (iii) At P S ′′k (xk) = S ′′k−1(xk), k = 1, . . . , (n − 1)
ensures that at a point where two cubics from adjacent sections
meet, say at P, they both have the same second derivative (and so
same curvature) at the point of contact.

Condition (iv) S ′′0 (x0) = S ′′n−1(xn) = 0
has the effect of setting the curvature of the spline equal to zero at
the end points.
In many problems this is a reasonable thing to do. There is no
more obvious condition(?).
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At first sight the construction of all the components Sk(x) appears
quite formidable — finding the coefficients for n cubics at the
same time (i.e., solve 4n simultaneous equations).
However a great deal of ingenuity has been put into a method for
making the problem quite straightforward.
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The first trick is to assume that the cubic is written in a certain
way: instead of simply writing the cubic in the standard form
a + bx + cx2 + dx3 we express each Sk(x) as:

Sk(x) = ak+bk(x−xk)+ck(x−xk)2+dk(x−xk)3, k = 0, . . . , (n−1)

I At P condition (i) implies

Sk(xk) = yk = ak k = 0, . . . , (n − 1)

Thus all the a coefficients are obtained immediately. This
gives n equations.

At Q condition (i) implies

Sk(xk+1) = yk+1 = ak+bk(xk+1−xk)+ck(xk+1−xk)2+dk(xk+1−xk)3 k = 1 . . . n

This gives n equations.
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I Condition (ii), after differentiating Sk(x) and Sk−1(x) gives:

S ′k(xk) = S ′k−1(xk)

and so

bk = bk−1+2ck−1(xk−xk−1)+3dk−1(xk−xk−1)2 k = 1, . . . , (n−1)

This gives (n − 1) equations.
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I Condition (iii), after differentiating Sk(x) and Sk−1(x) twice
gives:

S ′′k (xk) = S ′′k−1(xk)

and so

2ck = 2ck−1 + 6dk−1(xk − xk−1) k = 1, . . . , (n − 1)

This gives (n − 1) equations.
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I Imposing condition (iv):

S ′′0 (x0) = 0 ⇒ 2c0 = 0

and

S ′′n−1(xn) = 0 ⇒ 2cn−1 + 6dn−1(xn − xn−1) = 0

This gives 2 equations.

We now have the 4n equations we require.
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We note that our conditions have generated 4n equations, precisely
the same as the number of coefficients. It should therefore be
possible for us to solve these equations and hence construct S(x).
The following example outlines the general method for solving the
equations. Since the equations always take the same form a
systematic approach is possible for all spline problems; we do not
have to solve the completely general simultaneous equation
problem of 4n equations in 4n unknowns.
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Example: Construct the natural cubic spline through the three
points {(1, 1), (2,−1), (4, 3)}.
The spline S(x) is given by:

S(x) =


S0(x) = a0 + b0(x − 1) + c0(x − 1)2 + d0(x − 1)3

1 ≤ x ≤ 2

S1(x) = a1 + b1(x − 2) + c1(x − 2)2 + d1(x − 2)3

2 ≤ x ≤ 4
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Applying condition (i):

I S0(1) = 1 ⇒ a0 = 1

I S0(2) = −1 ⇒ −1 = a0 + b0 + c0 + d0

I S1(2) = −1 ⇒ a1 = −1

I S1(4) = 3 ⇒ 3 = a1 + 2b1 + 4c1 + 8d1
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Applying condition (ii):

I S ′1(2) = S ′0(2) ⇒ b1 = b0 + 2c0 + 3d0

Applying condition (iii):

I S ′′1 (2) = S ′′0 (2) ⇒ 2c1 = 2c0 + 6d0
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Applying condition (iv)

I S ′′0 (1) = 0 ⇒ 2c0 = 0

I S ′′1 (4) = 0 ⇒ 2c1 + 12d1 = 0
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We now consider the solution of these eight equations in the
following systematic fashion:

I In all cases the ak coefficients are given straight away by
ak = yk , and c0 is always zero for the natural cubic spline.
Thus in general we immediately have (n + 1) of the
unknowns. In this example:

c0 = 0 a0 = 1 a1 = −1

I From the conditions on S ′′k (x) we can always write the d
coefficients in terms of the c coefficients. In this example:

d0 =
2c1

6
=

c1

3
d1 = −2c1

12
= −c1

6
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I From the results of condition (i) and substituting in the
known a values and c0 = 0, we can always write the b
coefficients in terms of the c and d coefficients. If we now
substitute for the ds in terms of the cs, from above, we obtain
the bs in terms of the cs (and the as that we already know).
In this example:

b0 = −2− c0 − d0 = −2− c1

3

b1 = 2− 2c1 − 4d1 = 2− 2c1 +
2c1

3
= 2− 4c1

3
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I At this point we have all the bs and ds in terms of the cs. We
now substitute for the bs and ds into the equations formed
from condition (ii) (i.e., the constraints on S ′k(x).) These
equations will in general be solvable for the cs. By substituting
back we can them calculate the bs and ds. In this example:

b1 = b0+2c0+3d0 ⇒ 2−4c1

3
= −2−c1

3
+3

c1

3
⇒ c1 = 2
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I Finally substituting back with c1 = 2 gives

b1 = −2

3
b0 = −2− 2

3
= −8

3
d1 = −1

3
d0 =

2

3
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The natural cubic spline S(x) is given by:

S(x) =


S0(x) = 1− 8

3(x − 1) + 2
3(x − 1)3

1 ≤ x ≤ 2

S1(x) = −1− 2
3(x − 2) + 2(x − 2)2 − 1

3(x − 2)3

2 ≤ x ≤ 4
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So the general plan of attack is:

1. Find all the as (trivial)

2. Find expressions for the ds in terms of the cs using the second
derivative expressions.

3. Find expressions for the bs in terms of cs and as (which you
know) using the expressions for continuity at the right of each
interval and your expressions for the ds.

4. Substitute all this into the expressions for the continuity of
the first derivative, giving n − 1 expressions for the cs.

5. Solve the equations for the cs, remembering c0 = 0.

6. Now find all the bs and ds — job done.
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