Computational Mathematics/Information Technology

Dr Oliver Kerr

2009-10

Asymptotes

A curve C is an asymptote to $y=f(x)$ if as the point $(x, f(x))$ moves away from the origin the graph of $y=f(x)$ tends to C.

Essentially we have two cases:
(i) $x=a$ is an asymptote to $y=f(x)$ if as $x \rightarrow a, \quad|f(x)| \rightarrow \infty$.
(ii) As $x \rightarrow+\infty$ or as $\quad x \rightarrow-\infty \quad y$ tends to the curve C

Essentially we have two cases:
(i) $x=a$ is an asymptote to $y=f(x)$ if as $x \rightarrow a, \quad|f(x)| \rightarrow \infty$.
(ii) As $x \rightarrow+\infty$ or as $\quad x \rightarrow-\infty \quad y$ tends to the curve C

The curve C is quite often just a straight line but in general it can be any suitable curve

$$
y=f(x)=\frac{2\left(x^{4}+x^{3}+12\right)}{x+1}
$$

Simple asymptotes

Consider

$$
y=\frac{x+2}{x-3}=f(x)
$$

Clearly this function is not defined at $x=3$ however:

- As $x \rightarrow 3$ from above $y \rightarrow+\infty$
- As $x \rightarrow 3$ from below $y \rightarrow-\infty$

Thus $x=3$ is a vertical asymptote.

To consider y as $x \rightarrow \infty$ we first rearrange $f(x)$ as

$$
y=\frac{1+\frac{2}{x}}{1-\frac{3}{x}}
$$

Clearly now as $x \rightarrow \pm \infty \quad y \rightarrow 1$.
Thus $y=1$ is a horizontal asymptote.

Example

Sketch

$$
y=f(x)=\frac{2\left(x^{4}+x^{3}+12\right)}{x+1}
$$

First look for asymptotes:

$$
y=f(x)=\frac{2\left(x^{4}+x^{3}+12\right)}{x+1}
$$

Clearly this function is not defined at $x=-1$ However:

- As $x \rightarrow-1$ from above $y \rightarrow+\infty$
- As $x \rightarrow-1$ from below $y \rightarrow-\infty$,
(In both cases the numerator of $f(x)$ is positive in the neighbourhood of $x=-1$.)

Thus $x=-1$ is a vertical asymptote.

$$
y=f(x)=\frac{2\left(x^{4}+x^{3}+12\right)}{x+1}
$$

Are there any other asymptotes that are not necessarily straight lines?

$$
y=f(x)=\frac{2\left(x^{4}+x^{3}+12\right)}{x+1}
$$

Are there any other asymptotes that are not necessarily straight lines?

Yes. To see this we rearrange $f(x)$ as follows:

$$
y=2 x^{3}+\frac{24}{x+1} \quad \text { clearly now as } x \rightarrow \pm \infty \quad y \rightarrow 2 x^{3}
$$

Thus $y=2 x^{3}$ is an asymptote for $y=f(x)$.

Next look for stationary points:
Using the rearranged form of $f(x)$ we see that

$$
f^{\prime}(x)=6 x^{2}-\frac{24}{(x+1)^{2}}
$$

Hence $f^{\prime}(x)=0$ implies that $x=1$ or -2 .
Note: $f(1)=14$ and $f(-2)=-40$.

Look at the second derivatives:

$$
f^{\prime \prime}(x)=12 x+\frac{48}{(x+1)^{3}}
$$

Evaluating gives

$$
f^{\prime \prime}(1)>0 \quad \text { and } \quad f^{\prime \prime}(-2)<0
$$

Hence we deduce that there is a local minimum at $x=1$ and a local maximum at $x=-2$.

Look for points of infection:

$$
f^{\prime \prime}(x)=12 x+\frac{48}{(x+1)^{3}}=0
$$

has no solutions (why?) so there are no points of inflection.

Look for intercepts:
Putting $x=0$ into $f(x)$ we see that the y-intercept is given by $y=24$.

Look for intercepts:
Putting $x=0$ into $f(x)$ we see that the y-intercept is given by $y=24$.

The x-intercepts are given by the solution of

$$
y=x^{4}+x^{3}+12=0
$$

Look for intercepts:
Putting $x=0$ into $f(x)$ we see that the y-intercept is given by $y=24$.

The x-intercepts are given by the solution of

$$
y=x^{4}+x^{3}+12=0
$$

The solution of this problem is not trivial so will not be considered here.

Combining all this gives

A more accurate plot is

