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Finding roots — Introduction

Many problems require the solution of the equations of the form

f (x) = 0

Value of x that satisfy the equation are called roots.

We saw this previously when looking for points where the curve
y = f (x) cuts the x-axis.

In general this is a difficult problem.
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Quadratic Equations

ax2 + bx + c = 0

has solutions

x =
−b ±√b2 − 4ac

2a
.
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Cubic Equations

ax3 + bx2 + cx + d = 0

To find solutions let

q =
c

3a
− b2

9a2
, r =

bc − 3da

6a2
− b3

27a3

Then let

s1 =
(
r + (q3 + r2)1/2

)1/3
, s2 =

(
r − (q3 + r2)1/2

)1/3

The roots are

z1 = s1 + s2 − b

3a

z2 = −s1 + s2
2
− b

3a
+

i
√

3(s1 − s2)

2
, z3 = −s1 + s2

2
− b

3a
− i
√

3(s1 − s2)

2
(Not examinable)
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Quartic Equations

ax4 + bx3 + cx2 + dx + e = 0

Find the real solution of

z3 − bz2/a + (bd − 4ae)z/a2 − (ad2 + b2e − 4ace)/a3 = 0

Then find the four roots of the two quadratic equations

w2 +

(
b

2a
∓
(

b2

4a2
+ z − c

a

)1/2
)

w +
z

2
∓
((z

2

)2 − e

a

)1/2

(Not examinable)
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Quintic Equations and others

No general solution exists for quintic equations, or methods of
writing down solutions for other problems except in special cases.
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Higher dimensions

You may have several equations in several unknowns. For example

2x + y = 3, x + 3y = 5.

Linear equations like this usually present very few problems (but
not always).

A more difficult problem to solve is when the simultaneous
equations are not linear, for example

f1(x1, x2) = 2− x2
1 − x2 = 0 and f2(x1, x2) = 2x1 − x2

2 − 1 = 0.
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Using vector notation can write sets of equations in a compact
form: Set

x = (x1, x2, . . . , xN) f(x) = (f1(x), f2(x), . . . , fN(x))

Or more briefly:
f(x) = 0

where the zero vector 0 = (0, 0, . . . , 0).
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If we are asked to find a solution to

f(x) = 0

We need to consider the following three questions.

I Does a solution exist? existence

I Is there one solution or many? uniqueness

I If using method of approximating the root how big is the
error? accuracy

It is not always easy to answer these question, particularly when we
have more than 1 variable and 1 equation!
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Existence of solutions of f (x) = 0

Consider the problem of finding roots of

x2 + cos 4x = 0

First look at the equation...

If |x | > 1 then x2 > 1.
Also | cos 4x | ≤ 1 for all x .
Hence x2 + cos 4x > 0 for |x | > 1.

It is also an even function, so if x is a root so is −x . Concentrate
on x ≥ 0
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Calculate a few points:

x = 0 1/2 1

f (x) = x2 + cos 4x 1.00000 -0.16615 0.34636

We can use the fact that x2 + cos 4x is continuous . . .
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Theorem — a special case of the Intermediate Value Theorem

If f (x) is continuous in the interval a ≤ x ≤ b and f (a)× f (b) < 0
then there exists at least one solution to f (x) = 0 in the interval
[a, b].

The theorem guarantees at least it one solution. However, there
may be more than one solution in the interval [a, b].

Here we have both f (0)× f (1/2) < 0 and f (1/2)× f (1) < 0, so
we have at least one root in [0, 1/2] and one root in [1/2, 1].
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Graph of y = x2 + cos 4x
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More than one solution:

.....

...............................................

a

b

f(a)

f(b)
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The function must be continuous:

1 3
2

......................

...

...

...

...

...

...

...

...

............................................9

−1

1 3

4

3 y = x2 − 4x + 3

y = x2/(x− 2)

f (1)× f (3) < 0, but no roots. f (0)× f (4) > 0, but has roots.

Having f (a)× f (b) < 0 is not it essential for a root.
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Finding a root — iterative schemes

In general we cannot find an exact representation of a root, so
often we will find an approximate value. Usually this is done with
an iterative scheme.
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One such scheme follows the following steps:

I To solve f (x) = 0 we rewrite this equation in the form
x = g(x). Thus the roots of f (x) = 0 are the same as any
value of x satisfying x = g(x).

I To obtain the solution of x = g(x) we take an initial first
guess x = x0 then calculate x1 from the equation x1 = g(x0).
The process is then repeated using in general xn = g(xn−1) to
generate the sequence x0, x1, x2, x3, . . .

I If the sequence ‘converges’ to c as n tends to infinity then
xn = g(xn−1) becomes c = g(c). Thus the limit of the
sequence satisfies c = g(c) and thus x = c is a solution of
f (x) = 0.
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The value of c that satisfies c = g(c) is called a fixed point of
g(x).

Definition - fixed point

Given a function g(x) then x = c is a fixed point of g(x) if
c = g(c).
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Example

Find the roots of f (x) = ex − 5x .
Graph of y = f (x):
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First rewrite
f (x) = ex − 5x = 0

Rewrite as
ex = 5x or g(x) = ex/5 = x .

Use iterative scheme
xn = exn−1/5.

n = 0 1 2 3 4 5 6 7 8
xn = 1 0.544 0.344 0.282 0.265 0.261 0.260 0.259 0.259

xn = 2 1.478 0.877 0.481 0.323 0.276 0.264 0.260 0.259
xn = 3 4.017 11.11 13341 2 × 105793 . . . . . . . . . . . .
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We found the left root, but not the right root. What went wrong?
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We can try another rearrangement:

f (x) = 0⇒ ex − 5x = 0⇒ ex = 5x ⇒ x = ln(5x) = g(x)

Using xn = ln(5xn−1) with two starting values gives the following
sequences

n = 0 1 2 3 4 5 6 7
xn = 0.25 0.223 0.109 -0.602 complex . . . . . . . . . . . .
xn = 1.0 1.609 2.085 2.344 2.461 2.510 2.530 2.538

The iterative scheme now works for the right root (slowly), but not
the left one. Why?
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