Computational Mathematics/Information Technology

Dr Oliver Kerr

2009-10

We have been looking at finding roots of equations of the form

$$
f(x)=0
$$

However, we were originally interested in looking at systems of equations:
Set

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \quad \mathbf{f}(\mathbf{x})=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{N}(\mathbf{x})\right)
$$

Or more briefly:

$$
\mathbf{f}(\mathbf{x})=\mathbf{0}
$$

where the zero vector $\mathbf{0}=(0,0, \ldots, 0)$.

Some examples are relatively simple:

$$
2 x+y=3, \quad x+3 y=5
$$

Systems like this usually present very few problems (but not always).

Some are more difficult problems to solve, such as when the simultaneous equations are not linear:

$$
f_{1}\left(x_{1}, x_{2}\right)=2-x_{1}^{2}-x_{2}=0 \quad \text { and } \quad f_{2}\left(x_{1}, x_{2}\right)=2 x_{1}-x_{2}^{2}-1=0 .
$$

In both of these cases we can think of each equation representing a line or curve in the $x-y$ plane:

$$
2 x+y=3, \quad x+3 y=5
$$

$$
f_{1}\left(x_{1}, x_{2}\right)=2-x_{1}^{2}-x_{2}=0 \quad \text { and } \quad f_{2}\left(x_{1}, x_{2}\right)=2 x_{1}-x_{2}^{2}-1=0
$$

Previous we stated that we need to consider the following three questions.

- Does a solution exist? existence
- Is there one solution or many? uniqueness
- If using method of approximating the root how big is the error? accuracy
These are harder to answer when we have more than 1 variable and 1 equation!

Linear simultaneous equations

We will first look at the familiar problem of linear simultaneous equations. Consider the problem:

$$
\begin{gathered}
2 x+y=3 \\
x+y=2
\end{gathered}
$$

Re-write in matrix form:

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{3}{2}
$$

Or as

$$
A \mathbf{x}=\mathbf{b}
$$

where

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad \mathbf{x}=\binom{x}{y} \quad \mathbf{b}=\binom{3}{2}
$$

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad \mathbf{x}=\binom{x}{y} \quad \mathbf{b}=\binom{3}{2}
$$

Definitions: A is called a square matrix or a two by two matrix (denoted 2×2) since it has two rows and two columns. In general a matrix with m rows and n columns is called an m by n matrix (denoted $m \times n$)
\mathbf{x} and \mathbf{b} are referred to as two by one matrices (denoted 2×1) or column matrices or column vectors.

Consider the simple problem of solving $a x=b$ where a, b and x are real numbers. Formally

$$
a x=b \quad \Rightarrow \quad a^{-1} a x=a^{-1} b \quad \Rightarrow \quad x=a^{-1} b=\frac{b}{a}
$$

Consider the simple problem of solving $a x=b$ where a, b and x are real numbers. Formally

$$
a x=b \quad \Rightarrow \quad a^{-1} a x=a^{-1} b \quad \Rightarrow \quad x=a^{-1} b=\frac{b}{a}
$$

Is it possible to do this with matrices?
Can we do

$$
A \mathbf{x}=\mathbf{b} \quad \Rightarrow \quad A^{-1} A \mathbf{x}=A^{-1} \mathbf{b} \quad \Rightarrow \quad \mathbf{x}=A^{-1} \mathbf{b} \quad ?
$$

We need to be able to do some matrix algebra...

Back to our example:

We have $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$.
The matrix corresponding to A^{-1} is given by

$$
A^{-1}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)
$$

We can verify this by considering the following product:

$$
A^{-1} A=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
$$

The matrix we have denoted I - the identity matrix corresponds to the number 1 when doing ordinary arithmetic.

The identity matrix has no effect when multiplying other matrices:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{a}{b}=\binom{a}{b}
$$

Note also

$$
A A^{-1}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
$$

SO

$$
A^{-1} A=A A^{-1}=I
$$

So if we can find A^{-1} for a given A we are done...

Matrix inverses

For 2×2 matrices:

- For a general 2×2 matrix we can calculate the inverse as follows:

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \Rightarrow \quad A^{-1}=\frac{1}{(a d-b c)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Clearly we require

$$
a d-b c \neq 0
$$

- We can not calculate the inverse of matrix that isn't square.
- Not all square matrices have an inverse, as we can see above for the 2×2 case no inverse exists when $(a d-b c)=0$. This last fact is analogous to not being able to calculate a^{-1} when $a=0$.

What does
 $$
a d-b c=0
$$

mean?

What does

$$
a d-b c=0
$$

mean?
Finding the solution to

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{p}{q}
$$

is the same as finding the point of intersection of the lines

$$
a x+b y=p, \quad c x+d y=q
$$

What does

$$
a d-b c=0
$$

mean?
Finding the solution to

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{p}{q}
$$

is the same as finding the point of intersection of the lines

$$
a x+b y=p, \quad c x+d y=q
$$

The slopes of these two lines are

$$
-a / b \quad \text { and } \quad-c / d
$$

If these are the same then

$$
a d-b c=0
$$

If

$$
a d-b c=0
$$

the two lines are parallel.
Then either

1. The lines never meet - no solutions
2. The lines are the same - all points on the line are solutions. An infinite number of solutions.

In both cases you do not get a unique solution.

For larger square matrices:

$$
A^{-1}=\frac{\text { Adjoint } A}{\text { Determinant } A}
$$

For larger square matrices:

$$
A^{-1}=\frac{\text { Adjoint } A}{\text { Determinant } A}
$$

For 2×2 matrices it reduces to previous result.
For 3×3 matrices it is quite long and tedious to work out.
For $n \times n$ matrices with $n \geq 4$ it is definitely not the quickest way.
(Effort involved goes like $n!$, other methods go like n^{3})

But we are doing Computational Mathematics/Information

 Technology...
But we are doing Computational Mathematics/Information

 Technology...Get the computer to do it!

