Computational Mathematics/Information Technology

Dr Oliver Kerr

2009-10

We continue to look at the problem of finding roots of systems of equations:

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \quad \mathbf{f}(\mathbf{x})=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{N}(\mathbf{x})\right)
$$

Or more briefly:

$$
\mathbf{f}(\mathbf{x})=\mathbf{0}
$$

Today we focus on nonlinear problems such as finding the roots of:

$$
f_{1}\left(x_{1}, x_{2}\right)=2-x_{1}^{2}-x_{2}=0 \quad \text { and } \quad f_{2}\left(x_{1}, x_{2}\right)=2 x_{1}-x_{2}^{2}-1=0 .
$$

$$
f_{1}\left(x_{1}, x_{2}\right)=2-x_{1}^{2}-x_{2}=0 \quad \text { and } \quad f_{2}\left(x_{1}, x_{2}\right)=2 x_{1}-x_{2}^{2}-1=0
$$

How do we set about this?

Non-linear simultaneous equations

We will look for a solution of the simultaneous equations

$$
f(x, y)=0 \quad \text { and } \quad g(x, y)=0
$$

We will develop the method for two equations in two unknowns, but it will becomes clear how the method can be extended to n equations in n unknowns.

Note we introduce a third variable

$$
z=f(x, y)=0 \quad \text { and } \quad z=g(x, y)=0
$$

This will help us understand what is going on very much as we did for Newton's method:

If we plot $z=f(x, y)$ and $z=g(x, y)$ we get two surfaces:

Since we require $z=0$ we look to see where these two surfaces intersect on the $x-y$ plane.

The surfaces will intersect on the $x-y$ plane in two curves, C_{1} and C_{2}. We are looking for the intersections of these two curves, this will be at the point P.

Our initial guess at x and y will, in general, not be on either C_{1} or C_{2}.

Previously for Newton's method we used a tangent to the curve to estimate where it crossed the x-axis.
Here we will use a tangent surface to estimate where the surface crosses the $x-y$ plane.

We start with a point $\left(x_{0}, y_{0}\right)$ and construct the line which is a tangent to the surface in the plane $y=y_{0}$. In this plane y is constant

If $z=f(x)$ the tangent line through $x=x_{0}$ and $z=f\left(x_{0}\right)$ is given by

$$
z=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)
$$

If $z=f(z)$ the tangent line through $x=x_{0}$ and $z=f\left(x_{0}, y_{0}\right)$ in the plane $y=y_{0}$ is given by

$$
z=f\left(x_{0}, y_{0}\right)+\left(x-x_{0}\right) f_{x}\left(x_{0}, y_{0}\right), \quad y=y_{0}
$$

where $f_{x}\left(x_{0}, y_{0}\right)$ is the derivative of $f(x, y)$ with respect x keeping y constant. This is called partial differentiation.

Partial differentiation

To find the partial derivative of $f(x, y)$ with respect to x we do normal differentiation but treating y as a constant. The derivative is written as

$$
f_{x}(x, y) \text { or } \frac{\partial f}{\partial x}
$$

Example: If $f(x, y)=2-x^{2} y+4 x+5 y$, find $f_{x}(x, y)$.

Partial differentiation

To find the partial derivative of $f(x, y)$ with respect to x we do normal differentiation but treating y as a constant. The derivative is written as

$$
f_{x}(x, y) \text { or } \frac{\partial f}{\partial x}
$$

Example: If $f(x, y)=2-x^{2} y+4 x+5 y$, find $f_{x}(x, y)$.

$$
f_{x}(x, y)=-2 x y+4
$$

In a similar way we can find the partial derivative of $f(x, y)$ with respect to y. We do normal differentiation with y as our independent variable, but treating x as a constant. The derivative is written as

$$
f_{y}(x, y) \text { or } \frac{\partial f}{\partial y}
$$

Example: If $f(x, y)=2-x^{2} y+4 x+5 y$, find $f_{y}(x, y)$.

In a similar way we can find the partial derivative of $f(x, y)$ with respect to y. We do normal differentiation with y as our independent variable, but treating x as a constant. The derivative is written as

$$
f_{y}(x, y) \text { or } \frac{\partial f}{\partial y}
$$

Example: If $f(x, y)=2-x^{2} y+4 x+5 y$, find $f_{y}(x, y)$.

$$
f_{y}(x, y)=-x^{2}+5
$$

The tangent line through $x=x_{0}, y=y_{0}$ and $z=f\left(x_{0}, y_{0}\right)$ in the plane $y=y_{0}$ is given by

$$
z=f\left(x_{0}, y_{0}\right)+\left(x-x_{0}\right) f_{x}\left(x_{0}, y_{0}\right), \quad y=y_{0}
$$

The tangent line through $x=x_{0}, y=y_{0}$ and $z=f\left(x_{0}, y_{0}\right)$ in the plane $x=y_{0}$ is given by

$$
z=f\left(x_{0}, y_{0}\right)+\left(y-y_{0}\right) f_{y}\left(x_{0}, y_{0}\right), \quad x=x_{0}
$$

We have the two tangent lines

$$
\begin{array}{ll}
z=f\left(x_{0}, y_{0}\right)+\left(x-x_{0}\right) f_{x}\left(x_{0}, y_{0}\right), & y=y_{0} \\
z=f\left(x_{0}, y_{0}\right)+\left(y-y_{0}\right) f_{y}\left(x_{0}, y_{0}\right), & x=x_{0}
\end{array}
$$

The tangent plane passes through $x=x_{0}, y=y_{0}$ and $z=f\left(x_{0}, y_{0}\right)$ and will include these two lines. This plane is given by

$$
z=f\left(x_{0}, y_{0}\right)+\left(x-x_{0}\right) f_{x}\left(x_{0}, y_{0}\right)+\left(y-y_{0}\right) f_{y}\left(x_{0}, y_{0}\right)
$$

The tangent plane will cut the $x-y$ plane along the line L_{1} given by

$$
0=f\left(x_{0}, y_{0}\right)+\left(x-x_{0}\right) f_{x}\left(x_{0}, y_{0}\right)+\left(y-y_{0}\right) f_{y}\left(x_{0}, y_{0}\right)
$$

We will use this as an approximation to the curve C_{1}.

When x_{0} and y_{0} are close to C_{1} we expect L_{1} to be a good local approximation to C_{1}.

Similarly, if C_{2} is the line in the $x-y$ plane given by $g(x, y)=0$ we expect to be able to approximate this by the line L_{2}, which is given by

$$
0=g\left(x_{0}, y_{0}\right)+\left(x-x_{0}\right) g_{x}\left(x_{0}, y_{0}\right)+\left(y-y_{0}\right) g_{y}\left(x_{0}, y_{0}\right)
$$

We want to find where L_{1} and L_{2} cross to get our next guess at the root.

Newton's method in two variables

To Find where L_{1} and L_{2} cross we proceed as follows:

- We need to solve

$$
\begin{aligned}
& 0=f\left(x_{0}, y_{0}\right)+\left(x-x_{0}\right) f_{x}\left(x_{0}, y_{0}\right)+\left(y-y_{0}\right) f_{y}\left(x_{0}, y_{0}\right) \\
& 0=g\left(x_{0}, y_{0}\right)+\left(x-x_{0}\right) g_{x}\left(x_{0}, y_{0}\right)+\left(y-y_{0}\right) g_{y}\left(x_{0}, y_{0}\right)
\end{aligned}
$$

- Write in matrix notation:

$$
\binom{0}{0}=\binom{f}{g}_{\left(x_{0}, y_{0}\right)}+\left(\begin{array}{cc}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right)_{\left(x_{0}, y_{0}\right)}\binom{x_{1}-x_{0}}{y_{1}-y_{0}}
$$

Notation: we have placed $\left(x_{0}, y_{0}\right)$ outside the brackets to indicates that the functions inside the brackets are evaluated at $\left(x_{0}, y_{0}\right)$.

- Rearrange:

$$
-\binom{f}{g}_{\left(x_{0}, y_{0}\right)}=\left(\begin{array}{cc}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right)_{\left(x_{0}, y_{0}\right)}\binom{x_{1}-x_{0}}{y_{1}-y_{0}}
$$

- Use the inverse of the matrix:

$$
-\left(\begin{array}{ll}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right)_{\left(x_{0}, y_{0}\right)}^{-1}\binom{f}{g}_{\left(x_{0}, y_{0}\right)}=\binom{x_{1}-x_{0}}{y_{1}-y_{0}}
$$

- Split the vector on the right:

$$
-\left(\begin{array}{cc}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right)_{\left(x_{0}, y_{0}\right)}^{-1}\binom{f}{g}_{\left(x_{0}, y_{0}\right)}=\binom{x_{1}}{y_{1}}-\binom{x_{0}}{y_{0}}
$$

- Rearrange:

$$
\binom{x_{1}}{y_{1}}=\binom{x_{0}}{y_{0}}-\left(\begin{array}{cc}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right)_{\left(x_{0}, y_{0}\right)}^{-1}\binom{f}{g}_{\left(x_{0}, y_{0}\right)}
$$

We expect (hope?) that $x=x_{1}$ and $y=y_{1}$ will be a better approximation to the root of $f(x, y)=g(x, y)=0$.

We use the iterative scheme

$$
\binom{x_{n}}{y_{n}}=\binom{x_{n-1}}{y_{n-1}}-\left(\begin{array}{cc}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right)_{\left(x_{n-1}, y_{n-1}\right)}^{-1}\binom{f}{g}_{\left(x_{n-1}, y_{n-1}\right)} n=1,2 \ldots
$$

starting with some point $\left(x_{0}, y_{0}\right)$ close to a solution.

We expect (hope?) that $x=x_{1}$ and $y=y_{1}$ will be a better approximation to the root of $f(x, y)=g(x, y)=0$.

We use the iterative scheme

$$
\binom{x_{n}}{y_{n}}=\binom{x_{n-1}}{y_{n-1}}-\left(\begin{array}{ll}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right)_{\left(x_{n-1}, y_{n-1}\right)}^{-1}\binom{f}{g}_{\left(x_{n-1}, y_{n-1}\right)} n=1,2 \ldots
$$

starting with some point $\left(x_{0}, y_{0}\right)$ close to a solution.
Note equivalence to Newton's method in one variable:

$$
x_{n}=x_{n-1}-\left(f^{\prime}\left(x_{n-1}\right)\right)^{-1} f\left(x_{n-1}\right)=x_{n-1}-\frac{f\left(x_{n-1}\right)}{f^{\prime}\left(x_{n-1}\right)}
$$

The extension to N equations in N unknowns is reasonably obvious. The matrix of partial derivatives will be $N \times N$ and the column vectors will have N entries.

For example, for $N=3$, to solve
$f(x, y, z)=g(x, y, z)=h(x, y, z)=0$ near the point $\left(x_{0}, y_{0}, z_{0}\right)$ the scheme becomes:

$$
\left(\begin{array}{c}
x_{n} \\
y_{n} \\
z_{n}
\end{array}\right)=\left(\begin{array}{c}
x_{n-1} \\
y_{n-1} \\
z_{n-1}
\end{array}\right)-\left(\begin{array}{ccc}
f_{x} & f_{y} & f_{z} \\
g_{x} & g_{y} & g_{z} \\
h_{x} & h_{y} & h_{z}
\end{array}\right)^{-1}\left(\begin{array}{c}
f \\
g \\
h
\end{array}\right) \quad n=1,2 \ldots
$$

where the functions and derivatives on the right-hand side of the equation are evaluated at $\left(x_{n-1}, y_{n-1}, z_{n-1}\right)$.

Example: Using recent notation, we want to find the root of

$$
f(x, y)=2-x^{2}-y=0 \quad \text { and } \quad g(x, y)=2 x-y^{2}-1=0
$$

We want to obtain the solution close to the point $x=0.5, y=0.5$ (not a particularly good guess).

To calculate the matrix we have to obtain four partial derivatives:

- $f(x, y)=2-x^{2}-y \quad \Rightarrow \quad f_{x}(x, y)=-2 x$ and $f_{y}(x, y)=-1$
- $g(x, y)=2 x-y^{2}-1 \quad \Rightarrow \quad g_{x}(x, y)=2$ and

$$
g_{y}(x, y)=-2 y
$$

Thus the first step of the scheme is given by:

$$
\begin{aligned}
\binom{x_{1}}{y_{1}} & =\binom{x_{0}}{y_{0}}-\left(\begin{array}{cc}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right)_{\left(x_{0}, y_{0}\right)}^{-1}\binom{f}{g}_{\left(x_{0}, y_{0}\right)} \\
\Rightarrow \quad\binom{x_{1}}{y_{1}} & =\binom{x_{0}}{y_{0}}-\left(\begin{array}{cc}
-2 x_{0} & -1 \\
2 & -2 y_{0}
\end{array}\right)^{-1}\binom{2-x_{0}^{2}-y_{0}}{2 x_{0}-y_{0}^{2}-1}
\end{aligned}
$$

Substituting in our initial guess $x_{0}=0.5$ and $y_{0}=0,5$:

$$
\begin{aligned}
\binom{x_{1}}{y_{1}} & =\binom{0.5}{0.5}-\left(\begin{array}{cc}
-1 & -1 \\
2 & -1
\end{array}\right)^{-1}\binom{1.25}{-0.25} \\
= & \binom{0.5}{0.5}-\left(\begin{array}{cc}
-1 / 3 & 1 / 3 \\
-2 / 3 & -1 / 3
\end{array}\right)\binom{1.25}{-0.25} \\
& =\binom{0.5}{0.5}-\binom{-1 / 2}{-3 / 4}=\binom{1}{1.25}
\end{aligned}
$$

Continuing this scheme to iterate gives the following results:

$n=$	0	1	2	3	4
$x_{n}=$	0.5	1.00	0.99	1.00	1.00
$y_{n}=$	0.5	1.25	1.00	1.00	1.00

We see that the scheme converges rapidly to the root $x=1$, $y=1$. (You can check this is indeed the root.)

