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E = mc2 made simple

Assuming you know

a little geometry and integration . . .
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In 1905 Albert Einstein (1879–1955) published four

papers on Brownian Motion, the Photoelectric Effect (for

which he was awarded the Nobel Prize) and two on

Special Relativity which included the equation E = mc2.
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Outline

• Newton’s world

• The problem

• The solution — Relativity

• Width does not change

• Clocks go slower

• Things get shorter

• Things get heavier

• And finally ... E = mc2
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Newton’s world

Very much as we experience the world and see things:

• Universal time — all clocks run at the same rate.

• Universal reference frame — some stationary coordinate

system in which everything moves.
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Newton’s laws

• All objects move in a straight line with constant speed

unless acted on by a force.

• The rate of change of momentum (mass×velocity) of an

object (or system) is proportional to the force applied.

• For every action there is an equal and opposite reaction.

All of these hold true and are not contradicted by

Einstein’s special relativity.
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The problem — Michelson-Morley

An attemp to measure changes in the speed of light

depending on the direction we are moving.
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No matter how the observer was moving the speed of

light was always a constant c in all directions.
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The solution — Relativity

• There is no universal stationary frame of reference.

• Any observer moving with constant velocity will see the

same laws of physics operating in their own frame of

reference as any other observer. Everything happens

relative to the observer.

An experimenter in a sealed spaceship drifting in space

would be unable to determine how fast and in what

direction the spaceship was moving.
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Take some balls and a set of holes that are only just

bigger than the holes.

What happens if you fire the balls at the holes fast?
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Width remains constant

Take some balls and a set of holes that are only just

bigger than the holes.

What happens if you fire the balls at the holes fast?

They could get wider, not change width, or get narrower

. . .
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Moving objects do not change width.
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Clocks go slower

All frames of reference are equivalent. The

speed of light measured by any observer will

be the same — c.

Imagine that you made clocks that measured

time by counting the reflections of a pulse

of light between two mirrors. All observers

moving with such clocks would think that they

ran at the same rate.
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Two identical light clocks, one stationary and one

moving to the right with speed v.
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A stationary observer will see the moving clock running

more slowly than the stationary clock.
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If the stationary clock is of length L then the time taken

for the light to travel from one mirror to the other is

t = L/c.
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If the stationary clock is of length L then the time taken

for the light to travel from one mirror to the other is

t = L/c.

The stationary observer sees the light pulse in the

moving clock take a longer path and so takes a longer

time, t′, to travel between the mirrors. The mirrors will

have moved sideways a distance vt′. By Pythagoras, the

length of the diagonal will be√
L2 + (vt′)2.
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The time taken for the light to travel down this path is

t′ =

√
L2 + (vt′)2

c
.

A bit of rearranging gives

t′ =
t√

1− (v/c)2
.



18

Moving clocks run more slowly.
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Things get shorter

Now consider what would happen if there were two light

clocks — one perpendicular to the direction of travel and

one aligned with it . . .

An observer moving with the two clocks will see them as

running at the same rate. Pulses of light would remain

sychronised.
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Things get shorter

Now consider what would happen if there were two light

clocks — one perpendicular to the direction of travel and

one aligned with it . . .

An observer moving with the two clocks will see them as

running at the same rate. Pulses of light would remain

sychronised.

A stationary observer would also see the clocks staying

sychronised. But if the clocks had the same length . . .
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The only way stationary observer could see the two

clocks running at the same rate is if the one pointing in

the direction of travel changed length.

Assume this clock as seen by the stationary observer is

now of length L′.
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The time for the pulse to travel to the right is t1.

The time for the pulse to travel to the left is t2.

The right traveling pulse will travel a distance

L′ + vt1 = ct1,

while the left traveling pulse will travel a distance

L′ − vt2 = ct2.

From these we find

t1 =
L′

(c− v)
and t2 =

L

(c + v)
.
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The total time is

t1 + t2 =
2cL′

(c2 − v2)
=

2L′

c(1− (v/c)2)
.
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The total time is

t1 + t2 =
2cL′

(c2 − v2)
=

2L′

c(1− (v/c)2)
.

Earlier we saw the time taken for the moving

perpendicular clock to register two reflections is

2t′ =
2t√

1− (v/c)2
=

2L

c
√

1− (v/c)2
.

This and the expression for t1 + t2 must be the same, so

L′ = L
√

1− (v/c)2.
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Moving objects get shorter.
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Things get heavier

First some Newtonian billiards —
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• Trajectories after a collision are perpendicular.

• In the weakest collisions the trajectory of the hit ball is

nearly perpendicular to that of the incoming ball.



28

Relativistic billiards with the incoming “balls” having

speed v = 0.8× c.
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• Trajectories not perpendicular after the collision.

• As the collisions get weaker the trajectory of the hit ball

still tends to being perpendicular to the incoming ball.



30

Imagine the identical balls collide, but only just...

• The ball that was originally stationary in the stationary

frame will move slowly in a direction effectively

perpendicular to the incoming path of the other ball.

Say it moves down with speed u.
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Imagine the identical balls collide, but only just...

• The ball that was originally stationary in the stationary

frame will move slowly in a direction effectively

perpendicular to the incoming path of the other ball.

Say it moves down with speed u.

• The other will be slightly deflected and vertical

component of its velocity will be u′ as observed by

the stationary observer.

• But an observer moving with the incoming ball will see

things in reverse: his ball will move slowly up with a

speed u after the collision.
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• The time taken for the moving observer to see this ball

move a perpendicular distance l will be l/u.
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• The time taken for the moving observer to see this ball

move a perpendicular distance l will be l/u.

• The stationary observer will see it take the time l/u′.

• But the stationary observer sees things happening more

slowly in the moving frame, so

l

u
=

l

u′
×

√
1− (v/c)2,

or

u′ = u
√

1− (v/c)2.
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For very weak collisions the speeds of the balls do not

change significantly, so we would expect their masses to

remain essentially unchanged — the fast moving ball has

mass m′ and the stationary ball has mass m.
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For very weak collisions the speeds of the balls do not

change significantly, so we would expect their masses to

remain essentially unchanged — the fast moving ball has

mass m′ and the stationary ball has mass m.

Back to Newton’s laws — conservation of momentum

says that the total momentum in the transverse direction

is unchanged by the collision. We have

0 = m′u′ −mu,

or

m′ =
m√

1− (v/c)2
.
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Moving objects get heavier.
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Jumbo Jet

GB Coxless 4 at the Olympics
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Jumbo Jet Atom

GB Coxless 4 at the Olympics



34

Jumbo Jet Atom

GB Coxless 4 at the Olympics Grass Pollen
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And finally...

Change in Energy = Work Done = Force× Distance
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And finally...

Change in Energy = Work Done = Force× Distance

In these calculations we will apply a force to an object

that is initially at rest. After a time T , it will have

moved a distance X and have attained a speed V .

Initially its mass will be m0 and at the end

m
V

= m0/
(
1− (V/c)2

)1/2
.

Its energy at speed v will be E(v).
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F dx =
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This gives

E(V )− E(0) =
(
m

V
−m0

)
c2

or

(Change in Energy) = (Change in Mass)× c2
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This gives

E(V )− E(0) =
(
m

V
−m0

)
c2

or

(Change in Energy) = (Change in Mass)× c2

The last bit is Einstein’s “guess” that this relation should

apply to the total mass and not just the change in mass,

giving . . .
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E = mc2




