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Mathematical Methods: Fourier Series

Fourier Series: The Basics

Fourier series are a method of representing periodic functions. It is a

very useful and powerful tool in many situations. It is sufficiently

useful that when some non-periodic problems arise transformations

are used to make such problems periodic so the Fourier series can be

used.
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A function with period P means that f(x) = f(x + P ) for all x.

Some well known periodic functions are listed below:

Function Period Function Period

Note: If a function is periodic with period P then it also has periods

2P , 3P , 4P , and so on. If we set 2π/a = P , or a = 2π/P , we see

from the above table that cos(2πx/P ) and sin(2πx/P ) both have

period P . Similarly, cos(2nπx/P ) and sin(2nπx/P ), n = 1, 2, 3, . . .,

both have period P/n and hence also have period P .
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A function with period P means that f(x) = f(x + P ) for all x.

Some well known periodic functions are listed below:

Function Period Function Period

sinx 2π

cos x 2π

sec x 2π

tanx π

Note: If a function is periodic with period P then it also has periods

2P , 3P , 4P , and so on. If we set 2π/a = P , or a = 2π/P , we see

from the above table that cos(2πx/P ) and sin(2πx/P ) both have

period P . Similarly, cos(2nπx/P ) and sin(2nπx/P ), n = 1, 2, 3, . . .,

both have period P/n and hence also have period P .



2

A function with period P means that f(x) = f(x + P ) for all x.

Some well known periodic functions are listed below:

Function Period Function Period

sinx 2π sin ax 2π/a

cos x 2π cos ax 2π/a

sec x 2π

tanx π

Note: If a function is periodic with period P then it also has periods

2P , 3P , 4P , and so on. If we set 2π/a = P , or a = 2π/P , we see

from the above table that cos(2πx/P ) and sin(2πx/P ) both have

period P . Similarly, cos(2nπx/P ) and sin(2nπx/P ), n = 1, 2, 3, . . .,

both have period P/n and hence also have period P .
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The essential idea behind Fourier series is to represent periodic

functions in terms of a sum of well known periodic functions. Sines

and cosines are chosen as they are smooth. If f(x) has period P we

write

f(x) = a0 +
∞∑

n=1

an cos
2nπx

P
+ bn sin

2nπx

P
.

Some people use a convention where in stead of a0 they have a0/2.

Always check to see which convetion an author is using.

This leaves the problem of how to find a0, an and bn for a given

function . . .
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To find a0 we integrate f(x) over any interval of length P , say from

0 to P :∫ P

0

f(x) dx =
∫ P

0

(
a0 +

∞∑
n=1

an cos
2nπx

P
+ bn sin

2nπx

P

)
dx
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To find a0 we integrate f(x) over any interval of length P , say from

0 to P :∫ P

0

f(x) dx =
∫ P

0

(
a0 +

∞∑
n=1

an cos
2nπx

P
+ bn sin

2nπx

P

)
dx

Assuming you can swap the order of integration and the summations

we get ∫ P

0

f(x) dx =
∫ P

0

a0 dx

+
∞∑

n=1

(
an

∫ P

0

cos
2nπx

P
dx + bn

∫ P

0

sin
2nπx

P
dx

)
.
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But∫ P

0

cos
2nπx

P
dx =

[
P

2nπ
sin

2nπx

P

]P

0

=
P

2nπ
(sin 2nπ − sin 0) = 0,

and∫ P

0

sin
2nπx

P
dx =

[
− P

2nπ
cos

2nπx

P

]P

0

= − P

2nπ
(cos 2nπ − cos 0) = 0,

giving ∫ P

0

f(x) dx = Pa0 or a0 =
1
P

∫ P

0

f(x) dx. (1)

So a0 is just the average value of f(x).
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To find all the other an and bn we need to use the trigonometrical

relations

cos A cos B =
1
2

(cos(A + B) + cos(A−B)) ,

sinA sinB =
1
2

(cos(A−B)− cos(A + B)) ,

sinA cos B =
1
2

(sin(A + B) + sin(A−B)) .
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To find an consider∫ P

0

cos
2mπx

P
f(x) dx

=
∫ P

0

cos
2mπx

P

(
a0 +

∞∑
n=1

an cos
2nπx

P
+ bn sin

2nπx

P

)
dx.
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Again, assuming we can swap the order of integration and

summation, we obtain∫ P

0

cos
2mπx

P
f(x) dx = a0

∫ P

0

cos
2mπx

P
dx

+
∞∑

n=1

an

∫ P

0

cos
2mπx

P
cos

2nπx

P
dx+ bn

∫ P

0

cos
2mπx

P
sin

2nπx

P
dx,
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= a0

∫ P

0

cos
2mπx

P
dx

+
∞∑

n=1

an

2

∫ P

0

cos
2(m + n)πx

P
+ cos

2(m− n)πx

P
dx

+ bn

∫ P

0

sin
2(m + n)πx

P
− sin

2(m− n)πx

P
dx.

Since m and n are both positive integers we have seen already that

all these integrals are zero except for the cases where m = n. In the

case m = n the sine integral is obviously 0, but

cos(2(m− n)πx/P ) = 1 and so that integral gives P . Hence∫ P

0

cos
2mπx

P
f(x) dx =

amP

2
,
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or

an =
2
P

∫ P

0

cos
2nπx

P
f(x) dx. (2)

Similarly we find

bn =
2
P

∫ P

0

sin
2nπx

P
f(x) dx. (3)

The integrals for a0, an and bn given above are all over the interval

from 0 to P . However as all the functions involved are periodic with

period P they can be taken over any interval of length P . You are

free to choose the interval to make the calculations involved easier

for youself.
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Equations (1), (2) and (3) are called the Euler formulas for the

Fourier coefficients.
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Equations (1), (2) and (3) are called the Euler formulas for the

Fourier coefficients.

Example: Sketch the periodic function with period 2π given by

f(x) =
{
−1 −π < x ≤ 0
+1 0 < x ≤ π

Find its Fourier series.


