
City Short Courses

 Page 1 of 8

VBA for Microsoft Excel – session 2
Table of Contents

1 Two Inbuilt functions: MsgBox and InputBox .. 1
1.1 MsgBox - the basic function ... 1
1.2 InputBox ... 2
1.3 Making the text in InputBox/Msgbox appear over separate lines 3
1.4 Splitting a line of code over several lines ... 3
1.5 Another way of using Arguments .. 4
1.6 InputBox and MsgBox combined by using a variable 4

2 Variables ... 4
2.1 Variable names ... 4
2.2 Variable types .. 5
2.3 Declaring and assigning variables .. 5
2.4 Examples ... 7
2.5 Examples using cells ... 7
2.6 ActiveCell ... 8
2.7 Do variables have to be declared? ... 8

3 Some text functions ... 8

1 Two Inbuilt functions: MsgBox and InputBox

Msgbox and InputBox are functions that will work in any Visual Basic
environment. For example, they work the same in Outlook or Word.

MsgBox is a function that communicates information to the user while the
macro runs. The function takes at least one argument, namely the message,
referred to as the Prompt, which must be enclosed in two double quotes. You
can embellish the box with other information such as a Title or different types
of buttons.

1.1 MsgBox - the basic function

MsgBox displays text in VBA. In its most simple form, it accepts one
argument, namely the text to be displayed. The syntax is:
MsgBox String where String is a string of alphanumeric characters,
i.e., text:

Sub HelloWorld()
 MsgBox "Hello World"
End Sub

Note that text is marked by double quotation marks.

For numbers, the quotes are not necessary. So:

Sub HelloWorldNumbers()
 Msgbox 42
End sub

is perfectly legitimate

1.1.1 MsgBox - with more arguments

The Message Box above is a little plain. You can embellish the box with
other information such as text in the Title bar of the Message Box or
different types of buttons. If so, you can supply more Arguments to the
MsgBox function. Arguments are separated by a comma

City Short Courses

 Page 2 of 8

Sub HelloWorld2()
 MsgBox "Hello World", vbOKCancel, "Greeting"
End Sub

In the VB Editor, as you type the MsgBox statement a yellow box appears to

guide you – this is called the Quicklist.

In the MsgBox example the second argument determines what buttons
appear in the message box. After you type the first argument and have typed
the comma, a list of possible values for the second argument appears. By

default you would get the OK button, which is all we want for now, so you

can leave the argument blank and the message box will have an OK button.

The third argument is Title, which is the text to appear in the Title bar. It
makes the box look more finished, but isn't absolutely necessary. A list of
possible values does not appear because you decide what the title should be.

MsgBox "Hello World",, "Greeting Box"

The Buttons argument is left blank (between the
commas) so the default value, vbOKOnly is

assumed. This displays an OK button only

1.2 InputBox

An Input Box prompts the user to enter some information, which can then
be manipulated by a Visual Basic program. It returns what the user types.
The syntax is as follows:

variable = InputBox (Prompt)

The following asks the user to type in his/her name.

 The Variable, yourname, holds the return value (more on this later)

 The argument must be in brackets because the InputBox here is
returning a value using the assignment statement (equal sign)

 Prompt is what the user sees:

.

City Short Courses

 Page 3 of 8

There are a number of other, optional arguments (shown in square brackets)

variable = InputBox (Prompt), [Title, Default, XPos,
YPos, HelpFile, Context])

You can also specify a title, default entry text as well as X and Y co-ordinates
on the screen.

The second argument is the text that appears in the Title bar of the InputBox
window.

 The third argument is a default value for the user's input, here John

Smith. The user sees this and can simply click OK to return the default
value.

 Note the use of space and underscore to continue the statement on the
next line

The result on screen looks like this:

1.3 Making the text in InputBox/Msgbox appear over separate
lines

Msgbox “Pay attention: “ & vbNewLine & “Don’t forget”

The MsgBox display text has three elements: the
first line in quotes, the second element is the
vbNewLine constant and the third argument is
the second line of text.

The & (Ampersand) character is the
recommended Concatenation operator: it joins
strings and variables.

You can also use vbCr, vbLf and vbCrLf; vbNewLine should work on all
operating systems.

1.4 Splitting a line of code over several lines

In the Visual Basic Editor, you type one statement per line, which is a
problem with long lines of code. You can easily split a statement by ending
a line with a space and underscore character. For example,

This doesn’t change how the message appears to the user.

City Short Courses

 Page 4 of 8

1.5 Another way of using Arguments

You can use explicitly named arguments in your code. For example, the line

MsgBox "Hello World",, "Greeting Box"

could be written:

MsgBox Prompt:="Hello World", Title:="Greeting"

The code works exactly the same way, it’s just that the argument names are
included. Though there is more typing involved, the advantage is that the
code is easier to read. Another characteristic is that now the order of the
arguments doesn’t matter, so you could just as well type:

MsgBox Title:="Greeting", Prompt:="Hello World"

The syntax is for arguments and their values is:
ArgumentName := Value

This is different from the syntax for properties where there is no colon.

1.6 InputBox and MsgBox combined by using a variable

We will write a macro that asks the user for their name, and says ”helloto the
person whose name was entered using InputBox.

The program is as follows:

Sub hello()
Dim username As String ‘declare variable
username = InputBox("Please enter your name")
MsgBox "Hello " & username
End Sub

 Dim is the keyword used to declare a variable

 In line 3 the variable is assigned the value returned by the InputBox
function.

 Line 4 messages the greeting concatenated with the value of the variable

Just an Excel function takes an argument and returns a value, so does a VBA
function. Think of the Excel Average function:

=Average(B3:B22)

The argument for Average is a list of numbers, or, more usefully, a range of
cells containing numbers – here B3:B22. The return value appears in the
cell.

With InputBox, the string (here, “Please enter your name”) is the
argument. The return value is assigned to the username variable.

2 Variables

Variables are storage containers for data used within a macro (or any
computer programme). Typically the programme manipulates the data in
some way, for example performing mathematical calculations or displaying
the data on screen. As the name implies, it is possible to change the value as
the programme.

2.1 Variable names

Variables must have a name.

 Valid variable names can contain text or numbers but they must use a
letter as the first character.

 You can't use a space, period (.), exclamation mark (!), or the characters
@, /, &, $, # in the name.

 Names cannot exceed 255 characters in length (short and to the point is
best)

Examples of valid variables are:

City
CustomerCity
Customer_City
Sham69

City Short Courses

 Page 5 of 8

Examples of invalid names are:

4thjuly starts with a number
/ invalid character
hello wally contains a space

2.2 Variable types

There are different types of variable. You should choose the appropriate type
for a given data. For example, text is usually declared as a string. Numbers
are declared as either Integer (whole number), Long (very large whole
number), or as Single (a real number e.g. 4.1702), Double (a large real
number). There are other types too, including Currency and Date.

There are different types of variable primarily because some types use less
memory than others, so choosing the right type makes your program run
more efficiently.

2.2.1 Numeric variables

VBA type Range of Values

Byte 0 to 255
Integer -32,768 to 32,767
Long -2,147,483,648 to 2,147,483,647
Single -3.402823E38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E38 for positive values
Double -1.79769313486231E308 to -4.94065645841247E-324

for negative values;
4.94065645841247E-324 to 1.79769313486232E308
for positive values

Currency -922,337,203,685,477.5808 to 922,337,203,685,477.5807

2.2.2 Other variable types:

VBA type Range of Values

Boolean True or False
Date 1/1/100 to 31/12/9999

VBA defaults to U.S. format
String Up to approx. 2 billion characters (65,400 if fixed length)
Object Any Object reference
Variant Number: same as Double

String: same as String

If you don't choose a type, VBA uses the Variant type. This may seem
easier, but there are disadvantages:

 variants use more memory so code runs more slowly

 if a numeric value is interpreted as a string, calculations could give
weird results e.g., 1 + 1 would give 11

2.3 Declaring and assigning variables

In standard programming practice, the following happens to variables:

 a variables is declared (“this variable now exists”)

 a variable is usually assigned a value at the beginning. A variable
normally takes different values during the running of the programme

2.3.1 Declaring a variable

To declare a variable, you use the keyword Dim (Dim stands for
"Dimension" referring to the size of the variable). The optional keyword As
assigns a data type. If you omit the keyword As the variable will be a
variant

Examples:

Dim CustomerName as String for text/numbers in double
quotes

Dim Hours as Byte for small whole numbers

City Short Courses

 Page 6 of 8

Dim Attendance as Integer for whole numbers

Dim DistanceFromSun as Long for larger whole numbers

Dim Vat_Rate as Single for real numbers with a
franctional part

Dim EuroBond as Double for larger and more precise
real numbers

Dim NewFinYear as Date for dates

Dim Revenue as Currency for currency values – you can
use 15 digits before the
decimal point, 4 digits after
the decimal point

Dim CreditGood as Boolean for True or False

It is possible to declare several variables in one line of code but note that
 Dim x, y, z as integer
declares z as an integer; x and y as variants

The code should be instead:
 Dim x as integer, y as integer, z as integer

2.3.2 Assigning variables

Simple! Type the variable name, then an equals sign then on the right hand
side of the equals type a suitable value.
Examples:

x = 2
the value 2 is assigned to x

2 = x
is nonsense because 2 is a literal number, not a variable

SalesRegion = “North West”
you must use double quotes when assigning string variables
String variables are case sensitive; “North West” and ”NORTH WEST“ are
not equivalent values.

NextFinYear = #1-April-2013#
Use # to enclose the value of a date
NB the format of a date variable defaults to American (can be confusing for
most of us over here!)

It is possible to assign the value of one variable to another
y = x
a variable y is assigned the same value as a variable x

DeliveryDate = OrderDate
assigns the value of the variable DeliveryDate to be the same
as OrderDate

A variable can store the result of a calculation, e.g.,
OrderTotal = Subtotal * VatRate

You can do calculations involving dates, e.g.
OrderDate = #9-March-2012#
DeliveryDate = OrderDate + 3
the above two lines would put into the variable DeliveryDate the date
that is three days after the value that is in OrderDate

Here’s how to increment the value of a variable:
OrderNo = OrderNo + 1
increases the value of a variable called OrderNo by 1
this kind of operation crops up quite frequently in programming.

NB If you declare a numeric variable then its value is 0 until it is assigned.
If you declare a string variable its value is the empty string “” until it is
assigned.

City Short Courses

 Page 7 of 8

2.3.3 Arithmetical Operators

Operator Operation Example Answer

+ Add 5+4 9
- Subtract 7-2 5
* Multiply 3*5 15
/ Divide 10/4 2.5
\ N1 \ N2 - integer division 15\4 3
Mod X Mod Y returns remainder 10 mod 3 1

^ X ^ Y gives the value of X raised

to the power of Y
2^3 8

2.3.4 Concatenation Operator

The concatenation operator & (shift + 7) is used to join expressions together
e.g. a number to text. For example:
MsgBox "You will be paid " & payrate & " per hour"

“&”is able to concatenate strings with numeric variables, so you must use it if
you want to combine a string and a number.

The plus operator (+)

There is also the “+“ operator but this can only concatenate one string to
another; if you use it to concatenate a number to text you will get a run-time
error (so in my opinion it’s best never to use it!)

2.4 Examples

Sub Example1()
'declare variables
 Dim x as integer, y as integer, z as integer

' assign values to variables
 x = 3
 y = 4
 z = x + y

' output result
 Msgbox z
End sub

This program is very limited because the numbers are hard-coded (fixed
within the program). You could read in a number from an input box.

Sub EnterNumbers ()
 Dim num1 as Integer
 num1 = InputBox("Enter number under 5000", _
 "Enter numeric data")
 num1 = num1 * 2
 MsgBox "The number multiplied by 2 is " & num1
End Sub

More typically variables’ values are read in from a worksheet.

2.5 Examples using cells

You can refer to a cell using the range object. We'll talk about this more in
later classes, but for now, here is how to refer to the contents of a cell.

Range("A1").Value
Range("A1") is the object and value is a property of that object.

So you could have:
Dim EuroRate as Single
EuroRate = Range(“B4”).Value

It’s just as common to work directly with cells on the worksheet so you
could skip the use of variables. Each of the following lines is a valid
statement:

Range("A1").Value = 4
Range("A1").Value = Range("A1").Value * 2
Range("A1").Value = Range("B1").Value
where
Range("A1") is the cell A1 on the currently open worksheet.

Here is how to put a value directly into cell A1 via an input box:
Range("A1").Value = InputBox("Enter a number")

City Short Courses

 Page 8 of 8

2.6 ActiveCell

The cell that is selected on the current worksheet can be referenced as
ActiveCell This reference is widely used. For example,
ActiveCell.Value = 99
writes 99 into the active cell in the active worksheet, irrespective of its
address. Programs that are written to be more generally useful invariably use
references to ActiveCell.

This is rather like using Selection.Value = 99, except that a selection
can be multiple cells, but there is only one active cell.

2.7 Do variables have to be declared?

In VBA is it possible to use variables without declaring them? It’s possible,
but not desirable. It all depends on whether Option Explicit is present at the top
of the module. Let’s say the table below is an overview of a module sheet.

Option Explicit

Sub Macro1()
 …………… (code here)
End Sub

Sub Macro2()
 …………… (code here)

End Sub

If Option Explicit is missing then you do not have to declare variables.
That means that the following program – with no declaration - will work:

Sub test()
 x = 5 + 4
 MsgBox "5 plus 4 is " & x
End Sub

 This may seem convenient, but in the long run will cause problems as mis-
spellings will not be automatically flagged up. With Option Explicit at the top of
the module, you cannot use a variable unless it has been declared. A mis-spelt

variable will by definition be undeclared and the error will be brought to
your attention.

To work with Option Explicit by default:

1. From the VBE editor, choose Tools, then Options

2. In the Editor tab, check the checkbox Require Variable Declaration

3 Some text functions

3.1 Ucase/LCase

You have already seen UCase and LCase in relation to cells. They can also
work in other contexts.

yourName = InputBox(“Type your name”)
MsgBox UCase(yourName)

asks the user to type their name and returns it in capitals.

3.2 Len

Len finds the number of characters in a string.

