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λInstituto de Informática, UFRGS, Porto Alegre, 91501-970, Brazil

lamb@inf.ufrgs.br

γDept. of Computer Science, King’s College, London WC2R 2LS, UK

dg@dcs.kcl.ac.uk

Abstract

Modal logics are amongst the most successful applied logical systems.
Neural networks were proved to be effective learning systems. In this
paper, we propose to combine the strengths of modal logics and neural
networks by introducing Connectionist Modal Logics (CML). CML be-
longs to the domain of neural-symbolic integration, which concerns the
application of problem-specific symbolic knowledge within the neurocom-
puting paradigm. In CML, one may represent, reason or learn modal
logics using a neural network. This is achieved by a Modalities Algorithm
that translates modal logic programs into neural network ensembles. We
show that the translation is sound, i.e. the network ensemble computes a
fixed-point meaning of the original modal program, acting as a distributed
computational model for modal logic. We also show that the fixed-point
computation terminates whenever the modal program is well-behaved.
Finally, we validate CML as a computational model for integrated knowl-
edge representation and learning by applying it to a well-known testbed
for distributed knowledge representation. This paves the way for a range
of applications on integrated knowledge representation and learning, from
practical reasoning to evolving multi-agent systems.

Keywords: Models of Computation, Neural-Symbolic Learning Sys-
tems, Knowledge Representation, Modal Logics, Artificial Neural Net-
works.

1 Introduction

Neural-Symbolic integration concerns the application of problem-specific sym-
bolic knowledge within the neurocomputing paradigm. In contrast with sym-
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bolic learning systems, neural networks encode patterns and their generalisa-
tions implicitly in a set of weights, so reflecting the statistical properties of the
training data [3]. The merging of theory (background knowledge) and data
learning (learning by examples) in neural networks has been indicated to pro-
vide learning systems that are more effective than purely symbolic or purely
connectionist systems, especially when data are noisy [39, 40]. In order merge
theory and data learning, one first translates the background knowledge into
the initial architecture of a neural network, and then trains the network with
examples (e.g., using backpropagation, the neural learning algorithm most suc-
cessfully applied to real-world problems such as DNA sequence analysis and
pattern recognition problems [26, 34]).

Neural-symbolic learning systems [15] can exploit the massively parallel ar-
chitecture of neural networks and are capable of learning from examples and
background knowledge (incomplete symbolic descriptions of the problem). How-
ever, most of the efforts so far have been directed towards the representation of
classical logic and logic programmming in connectionist settings [1, 36, 37, 38].
In particular, neural systems have not been shown able to fully represent and
learn expressive languages such as modal and predicate logics [10].

In this paper, we propose a new approach for the representation and learning
of propositional modal logics in neural networks, namely, Connectionist Modal
Logic (CML). The approach allows for the solution of distributed knowledge
representation problems in neural networks by exploiting any available back-
ground knowledge specified as a modal logic program. We use the language of
modal logic programming [33, 35] extended to allow modalities such as necessity
and possibility in the head of clauses. We then present an algorithm that sets
up an ensemble of Connectionist Inductive Learning and Logic Programming
(C-ILP) networks [15] representing the modal clauses. A theorem then shows
that the resulting network ensemble computes a fixed-point semantics of the
original modal program. In other words, the network ensemble can be used as
a massively parallel system for modal logic programs representation and rea-
soning. We validate the system by applying it to the muddy children puzzle,
a well-known problem in the domain of distributed knowledge representation
[19, 29].

Learning in the CML system is achieved by using backpropagation for train-
ing each individual network in the ensemble, which in turn corresponds to the
current knowledge of an agent within a possible world. This will be exemplified
in this paper with the use of the muddy children puzzle [19].

We argue that CML renders neural-symbolic learning systems with the abil-
ity to provide a better balance between expressive power and computational
feasibility, due to the use of a more expressive, yet computationally tractable,
knowledge representation language. The well-established translation between
propositional modal logic and the two-variable fragment of first order logic [44]
indicates that neural-symbolic learning systems may go beyond propositional
logic1.

1In [44], p.2, Vardi states that “(propositional) modal logic, in spite of its apparent propo-
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As argued in [13, 17], we believe that the combination of non-classical logics
and neural networks may provide the way forward towards the provision of an
integrated system of expressive reasoning and robust learning. The provision of
such a system, integrating the two most fundamental phenomena of intelligent
cognitive behaviour (i.e. the ability to learn from experience and the ability
to reason from what has been learned) has been identified by Valiant as a
key challenge for Computer Science [41]. Ultimately, our goal is to produce
biologically plausible models with integrated reasoning and learning capabilities,
in which neural networks provide the inspiration and the machinery necessary for
cognitive computation and learning, while non-classical logics provide practical
reasoning and explanation capabilities to the models, facilitating the interaction
between them and the outside world.

In Section 2, we briefly present the basic concepts of modal logic and ar-
tificial neural networks used throughout the paper. In Section 3, we present
the Modalities Algorithm that translates extended modal programs into artifi-
cial neural networks. The networks obtained are ensembles of C-ILP networks,
each representing a (learnable) possible world. We then show that the networks
compute a fixed-point semantics of the given modal theory, thus proving sound-
ness of the Modalities Algorithm. We also prove termination of the Modalities
Algorithm. In Section 4, we apply the system to the muddy children puzzle
and report on the effectiveness of CML w.r.t. reasoning and learning in this
problem. In Section 5, we conclude and discuss directions for future work.

2 Preliminaries

In this section, we present some basic concepts of Modal Logic and Artificial
Neural Networks that will be used throughout the paper.

2.1 Modal Logic and Extended Modal Programs

Modal logic began with the analysis of concepts such as necessity and possibility
under a philosophical perspective [28, 30]. A main feature of modal logic is the
use of possible world semantics (proposed by Kripke and Hintikka), which has
significantly contributed to the development of new models for non-classical
logics, many of which have had a great impact in computing science. In modal
logic, a proposition is necessary in a world if it is true in all worlds which are
possible in relation to that world, whereas it is possible in a world if it is true
in at least one world which is possible in relation to that same world. This is
expressed in the semantics formalisation by a (binary) relation between possible
worlds.

sitional syntax, is essentially a first-order logic, since the necessity and possibility modalities
quantify over the set of possible worlds”; and in [44], p.7, “the states in a Kripke structure
correspond to domain elements in a relational structure, and modalities are nothing but a
limited form of quantifiers”. A comprehensive treatment of this subject, including the study
of correspondence between propositional modal logics and (fragments of) first order logic, can
be found in [42, 43].
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Modal logic was found to be appropriate in the study of mathematical ne-
cessity (in the logic of provability), time, knowledge, belief, obligation and other
concepts and modalities [8]. In artificial intelligence and computing, modal log-
ics are among the most employed formalisms to analyse and represent reasoning
in multi-agent systems and concurrency properties [19]. The basic modal logic
definitions that we use in this paper are as follows. As usual, the language of
propositional modal logic extends the language of propositional logic with the
� (necessity) and ♦ (possibility) operators.

Definition 1 A modal atom is of the form MA where M ∈ {�,♦} and A is
an atom. A modal literal is of the form ML where L is a literal.

Definition 2 A modal program is a finite set of clauses of the form α1 ∧ ... ∧
αn → αn+1, where αi (1 ≤ i ≤ n) is either an atom or a modal atom, and αn+1

is an atom.

We define extended modal programs as modal programs extended to allow
single modalities � and ♦ in the head of clauses, thus extending Sakakibara’s
modal logic programming [33, 35]. In addition, each clause is labelled by the pos-
sible world in which it holds, similarly to Gabbay’s Labelled Deductive Systems
[22].

Definition 3 An extended modal program is a finite set of clauses C of the
form ωi : β1 ∧ ... ∧ βn → βn+1, where ωi is a label representing a world in
which the associated clause holds, βi (1 ≤ i ≤ n) is either a literal or a modal
literal, and βn+1 is either an atom or a modal atom, and a finite set of relations
R(ωi, ωj) between worlds ωi and ωj.

For example: P = {ω1 : r → �q; ω1 : ♦s→ r; ω2 : s; ω3 : q → ♦p; R(ω1, ω2),
R(ω1, ω3)} is an extended modal program2.

Formulas in modal logic programming will be interpreted in Kripke models,
which are defined as follows.

Definition 4 (Kripke Models) Let L be a modal language. A Kripke model for
L is a tuple M = 〈Ω,R, v〉 where Ω is a set of possible worlds, v is a mapping
that assigns to each propositional letter of L a subset of Ω, and R is a binary
relation over Ω.

A modal formula ϕ is said to be true at a possible world ω of a model M,
written (M, ω) |= ϕ if the following satisfiability condition holds.

Definition 5 (Satisfiability of Modal Formulas) Let L be a modal language,
and let M = 〈Ω,R, v〉 be a Kripke Model. The satisfiability relation |= is
uniquely defined as follows:

2In extended logic programming, one may also allow the use of explicit (classical) negation
[24]. We use ∼ to refer to default negation [9], and ¬ to refer to explicit negation. Following
[24], any atom A preceded by ¬ is renamed as a new atom A∗ not present in the language.
For example, p∧ ∼ ¬q → ¬r becomes p∧ ∼ q∗ → r∗.
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(i) (M, ω) |= p iff ω ∈ v(p) for a propositional letter p
(ii) (M, ω) |= ¬ϕ iff (M, ω) � ϕ
(iii) (M, ω) |= ϕ ∧ ψ iff (M, ω) |= ϕ and (M, ω) |= ψ
(iv) (M, ω) |= ϕ ∨ ψ iff (M, ω) |= ϕ or (M, ω) |= ψ
(v) (M, ω) |= ϕ→ ψ iff (M, ω) � ϕ or (M, ω) |= ψ
(vi) (M, ω) |= �ϕ iff for all ω1 ∈ Ω, if R(ω, ω1) then (M, ω1) |= ϕ
(vii) (M, ω) |= ♦ϕ iff there exists a ω1 such that R(ω, ω1) and (M, ω1) |= ϕ.

A variety of proof methods for modal logics have been developed over the
years, e.g. [6, 20]. In some of these, formulas are labelled by the worlds in which
they hold, thus facilitating the reasoning process (see [6] for a discussion on this
topic). In the natural deduction-style rules for modal reasoning shown in Table
1, the notation ω : ϕ means that the formula ϕ holds at the possible world ω.
Moreover, the explicit reference to the accessibility relation helps in deriving
what formulas hold in the worlds which are related by R. The rules we shall
represent in CML are similar to the ones reproduced below, obtained from [6].

Table 1: Rules for modality operators

[R(ω, gϕ(ω))]···
gϕ(ω) : ϕ

�I
ω : �ϕ

ω1 : �ϕ,R(ω1, ω2) �E
ω2 : ϕ

ω : ♦ϕ
♦E

fϕ(ω) : ϕ,R(ω, fϕ(ω))

ω2 : ϕ,R(ω1, ω2) ♦I
ω1 : ♦ϕ

The ♦E rule can be seen (informally) as a skolemisation of the existential
quantifier over possible worlds, which is semantically implied by the formula
♦ϕ in the premise. The term fϕ(ω) defines a particular possible world uniquely
associated with the formula ϕ, and inferred to be accessible from the possi-
ble world ω (i.e. R(ω, fϕ(ω))). In the �I rule, the (temporary) assumption
[R(ω, gϕ(ω))] should be read as: given an arbitrary accessible world gϕ(ω), if
one can derive gϕ(ω) : ϕ then it is possible to show that �ϕ holds at ω. The
rule for ♦I represents that if we have a relation R(ω1, ω2), and if ϕ holds in ω2

then it must be the case that ♦ϕ holds in ω1. The rule �E represents that if
�ϕ holds in a world ω1, and ω1 is related to ω2, then we can infer that ϕ holds
in ω2.

Semantics for Extended Modal Logic Programs

In what follows, we define a model-theoretic semantics for extended modal
programs. According to the rules for modalities given above, we will deal with
♦ by making a choice of world ωj in which to have A when ♦A is true in ωi and
R(ωi, ωj). In this paper, we choose an arbitrary world (i.e. one that is uniquely
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associated with A). In practice, one may opt to manage several neural networks,
one for each choice, in the same way that one may opt to manage several graphs,
e.g., as in the (modal) tableaux prover LoTREC [7]. Under any choice, if the
program is well-behaved (e.g., in the sense of Fitting’s metric methods [21]),
we should be able to prove that the computation terminates with our neural
network converging to a fixed-point of the meaning operator.

When computing the fixed-point, we have to consider the consequences de-
rived locally and the consequences derived from the interaction between worlds.
Locally, fixed-points are computed as in the stable model semantics for logic
programming, by simply renaming each modal literal MLi by a new literal Lj

not in the language L, and applying the Gelfond-Lifschitz transformation [4].
When considering interacting worlds, there are four more cases to be addressed,
according to the rules in Table 1.

Hence, we proceed as follows. Given an extended modal program, for each
literal of the form ♦L in the head of a clause, we choose a world and connect
(in a sense that will become clear soon) ♦L to literal L in this world. For each
literal of the form �L, we connect �L to literals L in every world related to that
of �L, and similarly for the other rules. The definition of modal consequence
operator below captures this.

Definition 6 (Modal Immediate Consequence Operator) Let P = {P1, ...,Pk}
be an extended modal program, where each Pi is the set of modal clauses that hold
in a world ωi (1 ≤ i ≤ k). Let BP denote the set of (modal) atoms occurring
in P (i.e. the Herbrand base of P), and I a Herbrand interpretation for P. Let
ωi : α denote an atom or a modal atom α holding in world ωi. The mapping
MTP : 2BP → 2BP is defined as follows: MTP(I) = {ωi : α ∈ BP | either (a),
(b), (c), (d) or (e) below holds}.
(a) ωi : β1, ..., βn → α is a clause in P and {β1, ..., βn} ⊆ I;
(b) ωi : α is of the form ωi : A, ωi is of the type fA(ωk) (i.e. ωi is a particular
possible world uniquely associated with A), and there exists a world ωk such that
R(ωk, ωi), and ωk : β1, ..., βm → ♦A is a clause in P with {β1, ..., βm} ⊆ I;
(c) ωi : α is of the form ωi : ♦A and there exists a world ωj such that R(ωi, ωj),
and ωj : β1, ..., βm → A is a clause in P with {β1, ..., βm} ⊆ I;
(d) ωi : α is of the form ωi : �A and for each world ωj such that R(ωi, ωj),
ωj : β1, ..., βo → A is a clause in P with {β1, ..., βo} ⊆ I;
(e) ωi : α is of the form ωi : A and there exists a world ωk such that R(ωk, ωi),
and ωk : β1, ..., βo → �A is a clause in P with {β1, ..., βo} ⊆ I.

2.2 Artificial Neural Networks

An artificial neural network is a directed graph. A unit in this graph is charac-
terised, at time t, by its input vector Ii(t), its input potential Ui(t), its activation
state Acti(t), and its output Oi(t). The units (neurons) of the network are inter-
connected via a set of directed and weighted connections. If there is a connection
from unit i to unit j, then Wji ∈ R denotes the weight associated with such a
connection.
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We start by characterising the neuron’s functionality (see Figure 1). The
activation state of a neuron i at time t (Acti(t)) is a bounded real or integer
number. The output of neuron i at time t (Oi(t)) is given by an output rule fi

such that Oi(t) = fi(Acti(t)). The input potential of neuron i at time t (Ui(t))
is obtained by applying a propagation rule (gi) such that Ui(t) = gi(Ii(t),Wi),
where Ii(t) contains the input signals (x1(t), x2(t), ..., xn(t)) to neuron i at time
t, and Wi denotes the weight vector (Wi1,Wi2, ...,Win) to neuron i. In addition,
θi (an extra weight with input always fixed at 1) is known as the threshold of
neuron i. Finally, the neuron’s new activation state Acti(t+ ∆t) is given by its
activation rule hi, which is a function of the neuron’s current activation state
and input potential, i.e. Acti(t+∆t) = hi(Acti(t), Ui(t)), and the neuron’s new
output value Oi(t+ ∆t) = fi(Acti(t+ ∆t)).

 
Wi1 

Wi2 

Win 

Ui(t) Acti(t+∆t) Oi(t+∆t) 

Acti(t) x1(t) 

x2(t) 

xn(t) 
-θi 

1 

Figure 1: The processing unit or neuron.

In general, hi does not depend on the previous activation state of the unit,
that is, Acti(t + ∆t) = hi(Ui(t)), the propagation rule gi is a weighted sum,
such that Ui(t) =

∑
j Wijxj(t), and the output rule fi is given by the identity

function, i.e. Oi(t) = Acti(t).
The units of a neural network can be organised in layers. A n-layer feed-

forward network N is an acyclic graph. It consists of a sequence of layers and
connections between successive layers, containing one input layer, n− 2 hidden
layers and one output layer, where n ≥ 2. When n = 3, we say that N is a single
hidden layer network. When each unit occurring in the i-th layer is connected
to each unit occurring in the i + 1-st layer, we say that N is a fully-connected
network (see Figure 2).

The most interesting properties of a neural network do not arise from the
functionality of each neuron, but from the collective effect resulting from the
interconnection of units. Let r and s be the number of units occurring, respec-
tively, in the input and output layers of a multilayer feedforward network. The
network computes a function f : Rr → Rs as follows. The input vector is pre-
sented to the input layer at time t1 and propagated through the hidden layers
to the output layer. At each time point, all units update their input potential
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Output  Vector 

Input Vector 

Figure 2: A typical feedforward Neural Network.

and activation state synchronously. At time tn the output vector is read off the
output layer. In addition, most neural models have a learning rule, responsible
for changing the weights of the network so that it learns to approximate f given
a number of training examples (input vectors and their respective target output
vectors). The idea is to minimise the error associated with the set of examples
by performing small changes to the network’s weights. In the case of backprop-
agation [34], the learning process occurs as follows: given an input vector i and
corresponding target vector t, the network’s output o = f(i) may be compared
with the target, and an error such as

Err(W) =
1
2

∑
i

(o− t)2 (1)

over a number i of examples ((i, t) pairs) can be computed. This error may be
minimised by gradient descent, i.e. by the iterative application of changes

∆W = −η · ∇W · Err(W) (2)

to the weight vector W, where η > 0 is called the network’s learning rate and

∇W =
(
∂Err(W)
∂W11

,
∂Err(W)
∂W12

, ...,
∂Err(W)
∂Wij

)
(3)

Backpropagation training may lead to a local rather than a global error
minimum. In an attempt to ameliorate this problem and also improve training
time, the term of momentum can be added to the learning process. The term
of momentum allows a network to respond not only to the local gradient, but
also to recent trends in the error surface, acting as a low pass filter.

Momentum is added to backpropagation learning by making weight changes
equal to the sum of a fraction of the last weight change and the new change
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suggested by the backpropagation rule. Equation 4 shows how backpropagation
with momentum is expressed mathematically.

∆W(i) = −η · ∇W(i) · Err(W(i)) + ξ∆W(i− 1) (4)

where ξ∆W (i − 1) is the term of momentum and 0 < ξ < 1 is the momentum
constant. Typically, ξ = 0.9.

The ultimate measure of the success of a neural networks’ learning should
not be how closely the network approximates the training data, but how well
it accounts for yet unseen cases, i.e. how well the network generalises to new
data. In order to evaluate the network’s generalisation, the set of examples is
commonly partitioned into a training set and a testing set, as detailed in Section
4.2 for the muddy children puzzle example.

In this paper, we concentrate on single hidden layer feedforward networks,
which are universal approximators [11] and have typically been used in a num-
ber of practical applications. We use a bipolar semi-linear activation functions
h(x) = 2

1+e−βx − 1 with inputs in {−1, 1}, and the backpropagation learning
algorithm to perform training from examples.

3 Connectionist Modal Logic

In this section, we introduce CML. We shall use ensembles of C-ILP networks
(described in detail in Section 3.1) as the underlying architecture to represent
modal theories. We then present an efficient translation algorithm from ex-
tended modal programs to neural network ensembles.

Let us start with a simple example. It briefly illustrates how an ensemble of
C-ILP networks can be used for modelling non-classical reasoning with modal
logic. Input and output neurons may represent �L, ♦L or L, where L is a
literal.

Example 7 Figure 3 shows an ensemble of three C-ILP networks (ω1, ω2, ω3),
which might communicate in different ways. The idea is to see ω1, ω2 and ω3

as possible worlds, and to incorporate modalities in the language of C-ILP by
connecting the neurons in the different networks according to the rules of Table
1. For example, a rule (i) “If ω1 : �A then ω2 : A” could be implemented
by connecting neuron �A in ω1 to neuron A in ω2 such that, whenever �A is
activated in ω1, A is activated in ω2. Similarly, (ii) “If (ω2 : A) or (ω3 : A) then
ω1 : ♦A” could be implemented by connecting neurons A of ω2 and ω3 to neuron
♦A of ω1 (through a hidden neuron in ω1) such that, whenever A is activated
in either ω2 or ω3, ♦A is activated in ω1. Examples (i) and (ii) simulate, in
a finite universe, the rules of � Elimination and ♦ Introduction (see Table 1).
The representation of such modalities in neural networks will be described in
detail in Section 3.2.

Due to the simplicity of each C-ILP network, e.g. ω1 in Figure 3, one may
perform inductive learning within each possible world using standard backprop-
agation. As a result, the main problem to be tackled when it comes to learning
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Figure 3: An ensemble of networks representing modalities.

is how to set up the connections that establish the necessary communication
between networks, e.g. ω1 and ω2. As mentioned above, in the case of modal
logic, such connections may be defined by the modal rules for natural deduc-
tion given in Table 1. The Modalities Algorithm presented in Section 3.2 will
implement those rules.

3.1 The C-ILP System

C-ILP [15, 18] is a massively parallel computational model based on a feed-
forward artificial neural network. It integrates inductive learning by examples
and background knowledge with deductive learning using logic programming.
A Translation Algorithm maps a general logic program3 P into a single hidden
layer neural networkN such thatN computes the least fixed-point of P (see also
[27]). In addition, N can be trained by examples using backpropagation [34],
and having P as background knowledge. The knowledge acquired by training
can then be extracted [14], closing the learning cycle (as in [40]).

Let us exemplify how the C-ILP Translation Algorithm works. Each clause
(rl) of P is mapped from the input layer to the output layer of N through
one neuron (Nl) in the single hidden layer of N . Intuitively, the Translation

3Recall that a general clause is a rule of the form L1, ..., Lk → A, where A is an atom and
Li (1 ≤ i ≤ k) is a literal (an atom or the negation of an atom). A general logic program is a
finite set of general clauses [31].
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Algorithm from P to N has to implement the following conditions: (C1) The
input potential of a hidden neuron (Nl) can only exceed Nl’s threshold (θl),
activating Nl, when all the positive antecedents of rl are assigned the truth-
value true while all the negative antecedents of rl are assigned false; and (C2)
The input potential of an output neuron (A) can only exceed A’s threshold
(θA), activating A, when at least one hidden neuron Nl that is connected to A
is activated.

Example 8 Consider the logic program P = {B; B ∧ C∧ ∼ D → A;E ∧ F →
A}. The Translation Algorithm derives the network N of Figure 4, setting
weights (W ) and thresholds (θ) in such a way that conditions (C1) and (C2)
above are satisfied. Note that, if N is to be fully-connected, any other link (not
shown in Figure 4) should receive weight zero initially.

BA

B C D E F

W W -W W W

WWW

N1 N2 N3
θ1 θ2 θ3

θA θB

Figure 4: Sketch of neural network N for logic program P.

Note that, in Example 8, each input and output neuron of N is associated
with an atom of P. As a result, each input and output vector of N can be
associated with an interpretation for P. Note also that each hidden neuron Nl

corresponds to a clause rl of P. In order to compute a fixed-point semantics of
P, output neuron B should feed input neuron B such that N is used to iterate
TP , the fixed-point operator4 of P [27]. N will eventually converge to a stable
state which is identical to the stable model of P [18]. Let us recall the C-ILP
translation algorithm.

Notation : Given a general logic program P, let q denote the number of
clauses rl (1 ≤ l ≤ q) occurring in P; υ, the number of literals occur-
ring in P; Amin, the minimum activation value for a neuron to be ac-
tive (or, analogously, for its associated literal to be assigned truth-value

4The mapping TP is defined as follows: Let I be a Herbrand interpretation, then TP (I) =
{A0 | L1, ..., Ln → A0 is a ground clause in P and {L1, ..., Ln} ⊆ I}.
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true), Amin ∈ (0, 1); Amax, the maximum activation value when a neu-
ron is not active (or when its associated literal is false), Amax ∈ (−1, 0);
h(x) = 2

1+e−βx − 1, the bipolar semi-linear activation function5; g(x) = x,
the standard linear activation function; s(x) = y, the standard nonlinear
activation function (y = 1 if x > 0; and y = 0 otherwise), also known as
the step function; W (resp. −W ), the weight of connections associated
with positive (resp. negative) literals; θl, the threshold of hidden neu-
ron Nl associated with clause rl; θA, the threshold of output neuron A,
where A is the head of clause rl; kl, the number of literals in the body
of clause rl; pl, the number of positive literals in the body of clause rl;
nl, the number of negative literals in the body of clause rl; µl, the num-
ber of clauses in P with the same atom in the head, for each clause rl;
MAXrl

(kl, µl), the greater element between kl and µl for clause rl; and
MAXP(k1, ..., kq, µ1, ..., µq), the greatest element among all k’s and µ’s for
P. We also use −→k as a shorthand for (k1, ..., kq), and −→µ as a shorthand
for (µ1, ..., µq).

For instance, for the program P of Example 8, q = 3, υ = 6, k1 = 3, k2 = 2,
k3 = 0, p1 = 2, p2 = 2, p3 = 0, n1 = 1, n2 = 0, n3 = 0, µ1 = 2, µ2 = 2,
µ3 = 1, MAXr1(k1, µ1) = 3, MAXr2(k2, µ2) = 2, MAXr3(k3, µ3) = 1, and
MAXP(k1, k2, k3, µ1, µ2, µ3) = 3.

In the Translation Algorithm below, we define Amin, W, θl, and θA such that
conditions (C1) and (C2) above are satisfied. Equations 5, 6, 7 and 8 below
are obtained from the proof of Theorem 9 [18]. We assume, for mathematical
convenience and without loss of generality, that Amax = −Amin. In this way,
we associate truth-value true with values in the interval (Amin, 1), and truth-
value false with values in the interval (−1,−Amin). Theorem 9 guarantees that
values in the interval [−Amin, Amin] do not occur in the network with weights
W and thresholds θ, but informally this interval may be associated with a third
truth-value unknown.6

We start by calculating MAXP(−→k ,−→µ ) of P and Amin such that:

Amin >
MAXP(−→k,−→µ )− 1

MAXP(−→k,−→µ ) + 1
(5)

Translation Algorithm

1. Calculate the value of W such that the following is satisfied:

W ≥ 2
β
· ln (1 +Amin)− ln (1−Amin)

MAXP(−→k,−→µ ) (Amin − 1) +Amin + 1
; (6)

5We use the bipolar semi-linear activation function for convenience. Any monotonically
increasing activation function could have been used here.

6If a network obtained by the Translation Algorithm is then trained by examples with the
use of a learning algorithm that does not impose any constraints on the weights, values in
the interval [−Amin, Amin] may occur and should be interpreted as unknown by following a
three-valued interpretation.
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2. For each clause rl of P of the form L1, ..., Lk → A (k ≥ 0):

(a) Create input neurons L1, ..., Lk and output neuron A in N (if they
do not exist yet);

(b) Add a neuron Nl to the hidden layer of N ;

(c) Connect each neuron Li (1 ≤ i ≤ k) in the input layer to the neuron
Nl in the hidden layer. If Li is a positive literal then set the connec-
tion weight to W ; otherwise, set the connection weight to −W ;

(d) Connect the neuron Nl in the hidden layer to the neuron A in the
output layer and set the connection weight to W ;

(e) Define the threshold (θl) of the neuron Nl in the hidden layer as:

θl =
(1 +Amin) (kl − 1)

2
W (7)

(f) Define the threshold (θA) of the neuron A in the output layer as:

θA =
(1 +Amin) (1− µl)

2
W (8)

3. Set g(x) as the activation function of the neurons in the input layer of N .
In this way, the activation of the neurons in the input layer, given by each
input vector i, will represent an interpretation for P.

4. Set h(x) as the activation function of the neurons in the hidden and output
layers of N . In this way, a gradient descent learning algorithm, such as
backpropagation, can be applied to N efficiently.

Theorem 9 [18] For each propositional general logic program P, there exists
a feedforward artificial neural network N with exactly one hidden layer and
semi-linear neurons such that N computes the fixed-point operator TP of P.

Now, let Tn
P

def
= TP(Tn-1

P ) with T0
P

def
= TP({∅}). Say that P is well-behaved

if, after a finite number m of iterations, Tm
P = Tm-1

P . It is not difficult to see
that if P is well-behaved and we use N to iterate TP then N will converge
to Tm

P , as follows. Consider a feedforward neural network N with p input
neurons (i1, ..., ip) and q output neurons (o1, ..., oq). Assume that each input
and output neuron in N is labelled by an atom Ak associated with it. Let us
use name(ii) = name(oj) to denote the fact that the literal associated with
neuron ii is the same as the literal associated with neuron oj .

Let:

valuation(Act(x)) =
{

1, if Act(x) > Amin,
−1, otherwise.

where Act(x) is the activation state of neuron x.
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We say that the computation of P by N terminates when
valuation(Act(ii)) = valuation((Act(oj)) for every pair of neurons (ii, oj) in
N such that name(ii) = name(oj).

From Theorem 9 and the definition of Tn
P above, it is clear that, starting

from {∅} (i.e. i = (i1, ..., ip) = [−1,−1, ...,−1]), if P is well-behaved then the
computation of P by N terminates. The computation is as follows (below, we
use o = N (i) to denote the output vector o = (o1, ..., oq) obtained by presenting
input vector i to network N ):

1. Let i = [−1,−1, ...,−1];

2. Repeat:

(a) Calculate o = N (i);

(b) For each oj in o, do:

i. If name(oj) = name(ii) Then replace the value of ii in
i by valuation(Act(oj));

3. Until valuation(Act(oj)) = valuation(Act(ii)) for all (ii, oj) s.t.
name(ii) = name(oj).

The set
⋃
name(x) ⊆ BP of input and output neurons x in N for which

valuation(Act(x)) = 1 will denote Tm
P . When it is clear from the context, we

may write neuron Ak to indicate the neuron in N associated with atom Ak in
P.

Example 10 (Example 8 continued) To construct the network of Figure 4,
firstly we calculate MAXP(−→k ,−→µ ) = 3 and Amin > 0.5. Then, θ1 = (1 +
Amin)W, θ2 = (1 + Amin)W/2, θ3 = −(1 + Amin)W/2, θA = −(1 + Amin)W/2
and θB = 0. Now, suppose Amin = 0.6, we obtain W ≥ 6.931/β. Alternatively,
suppose Amin = 0.7, then W ≥ 4.336/β. Let us take Amin = 0.7 and h(x) as the
standard bipolar semi-linear activation function (β = 1). Then, if W = 4.5,7

N will compute the operator TP of P. The computation of P by N terminates
when m = 2 with Tm

P = {B}.

3.2 Computing Modalities in Neural Networks

In this section, we present the computational machinery of CML. We use the
C-ILP Translation Algorithm presented in Section 3.1 to create each network
of the ensemble, and the following Modalities Algorithm to interconnect the
different networks and perform reasoning. The Modalities Algorithm translates,
in a finite universe, natural deduction modal rules into the networks. Intuitively,
the accessibility relation is represented by connections between networks. As

7Note that a sound translation from P to N does not require all the weights in N to
have the same absolute value. We unify the weights (|W |) for the sake of simplicity of the
translation algorithm and to comply with previous work.
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depicted in Figure 3 where R(ω1,ω2) and R(ω1,ω3), connections from ω1 to ω2

and ω3 represent either �E or ♦E; connections from ω2 and ω3 to ω1 represent
either �I or ♦I.

Let P be an extended modal program with clauses of the form ωi : ML1, ...,
MLk → MA, where each Lj is a literal, A is an atom and M ∈ {�,♦}, 1 ≤
i ≤ n, 0 ≤ j ≤ k. As in the case of individual C-ILP networks, we start by
calculating MAXP(−→k ,−→µ , n) of P and Amin such that:

Amin >
MAXP(−→k,−→µ , n)− 1

MAXP(−→k,−→µ , n) + 1
(9)

but now we also need to take into account the number n of networks (i.e. possible
worlds) in the ensemble, and thus we use MAXP(−→k,−→µ , n) instead of simply
MAXP(−→k,−→µ ).

Modalities Algorithm

1. Let Pi ⊆ P be the set of clauses labelled by ωi in P. Let WM ∈ R.

2. For each Pi do:

(a) Rename each MLj in Pi by a new literal not occurring in P of the
form L�

j if M = �, or L♦
j if M = ♦;8

(b) Call Translation Algorithm;

(c) Let Ni be the neural network that denotes Pi.

3. For each output neuron L♦
j in Ni, do:

(a) Add a hidden neuron LM
j to an arbitrary Nk (0 ≤ k ≤ n) such that

R(ωi, ωk);

(b) Set the step function s(x) as the activation function of LM
j ;

(c) Connect L♦
j in Ni to LM

j and set the connection weight to 1;

(d) Set the threshold θM of LM
j such that −1 < θM < Amin;

(e) Create an output neuron Lj with threshold θLj
= (1 +Amin) · (1 −

µLj
) ·W/2 in Nk, if it does not exist yet;

(f) Connect LM
j to Lj in Nk, and set the connection weight to WM

Lj
>

h−1(Amin) + µLj
W + θLj

.9

4. For each output neuron L�
j in Ni, do:

8This allows us to treat each MLj as a literal and apply the Translation Algorithm directly
to Pi by labelling neurons as �Lj , ♦Lj , or Lj .

9Recall that µL is the number of connections to output neuron L, and that θL is the
threshold of output neuron L. Note also that µL, W and θL are all obtained from the
Translation Algorithm.
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(a) Add a hidden neuron LM
j to eachNk (0 ≤ k ≤ n) such thatR(ωi, ωk);

(b) Set the step function s(x) as the activation function of LM
j ;

(c) Connect L�
j in Ni to LM

j and set the connection weight to 1;

(d) Set the threshold θM of LM
j such that −1 < θM < Amin;

(e) Create output neurons Lj with thresholds θLj
= (1 +Amin) · (1 −

µLj
) ·W/2 in each Nk, if they do not exist yet;

(f) Connect LM
j to Lj in Nk, and set the connection weight to WM

Lj
>

h−1(Amin) + µLj
W + θLj

.

5. For each output neuron Lj in Nk such that R(ωi, ωk) (0 ≤ i ≤ n), do:

(a) Add a hidden neuron L∨
j to Ni if it does not exist yet;

(b) Set the step function s(x) as the activation function of L∨
j ;

(c) For each ωi such that R(ωi, ωk), do:

i. Connect Lj in Nk to L∨
j and set the connection weight to 1;

ii. Set the threshold θ∨ of L∨
j such that −nAmin < θ∨ < Amin −

(n− 1);
iii. Create an output neuron L♦

j with threshold θL♦
j

= (1 +Amin) ·
(1− µL♦

j
) ·W/2 in Ni if it does not exist yet;

iv. Connect L∨
j to L♦

j in Ni and set the connection weight to WM
L♦

j

>

h−1(Amin) + µL♦
j
W + θL♦

j
.

6. For each output neuron Lj in Nk such that R(ωi, ωk) (0 ≤ i ≤ n), do:

(a) Add a hidden neuron L∧
j to Ni if it does not exist yet;

(b) Set the step function s(x) as the activation function of L∧
j ;

(c) For each ωi such that R(ωi, ωk), do:

i. Connect Lj in Nk to L∧
j and set the connection weight to 1;

ii. Set the threshold θ∧ of L∧
j such that n − (1 + Amin) < θ∧ <

nAmin;
iii. Create an output neuron L�

j with threshold θL�
j

= (1 +Amin) ·
(1− µL�

j
) ·W/2 in Ni if it does not exist yet;

iv. Connect L∧
j to L�

j in Ni and set the connection weight to WM
L�

j

>

h−1(Amin) + µL�
j
W + θL�

j
.10

10W M values are derived from the proof of Theorem 12 below.
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7. For each Pi, recurrently connect each output neuron Lj (resp. L♦
j , L

�
j ) in

Ni to its corresponding input neuron Lj (resp. L♦
j , L

�
j ) in Ni with weight

Wr = 1 (this essentially allows one to iterate MTP , thus using the ensem-
ble to compute the extended modal program in parallel, as exemplified
below).

Let us now illustrate the use of the Modalities Algorithm with the following
example.

Example 11 Let P = {ω1 : r → �q; ω1 : ♦s → r; ω2 : s; ω3 : q → ♦p;
R(ω1,ω2), R(ω1,ω3)}. We start by applying the Translation Algorithm, which
creates three neural networks to represent the worlds ω1, ω2, and ω3 (see Fig-
ure 5). Then, we apply the Modalities Algorithm. Hidden neurons labelled by
{M,∨,∧} are created using the Modalities Algorithm. The remaining neurons
are all created using the Translation Algorithm. For the sake of clarity, uncon-
nected input and output neurons are not shown in Figure 5. Taking N1 (which
represents ω1), output neurons L♦

j should be connected to output neurons Lj

in an arbitrary network Ni (which represents ωi) to which N1 is related. For
example, taking Ni = N2, ♦s in N1 is connected to s in N2. Then, output neu-
rons L�

j should be connected to output neurons Lj in every network Ni to which
N1 is related. For example, �q in N1 is connected to q in both N2 and N3.
Now, taking N2, output neurons Lj need to be connected to output neurons L♦

j

and L�
j in every network Nj related to N2. For example, s in N2 is connected

to ♦s in N1 via the hidden neuron denoted by ∨ in Figure 5, while q in N2 is
connected to �q in N1 via the hidden neuron denoted by ∧. Similarly, q in N3

is connected to �q in N1 via ∧. Finally, output neurons ♦s and r in N1 are
connected to input neurons ♦s and r, respectively, in N1, and output neuron q
in N3 is connected to input neuron q in N3, all connections with weight 1. The
algorithm terminates when all output neurons have been connected.

Table 2 contains a valid set of weights for the connections shown in Figure
5, obtained from the Modalities Algorithm and the Translation Algorithm. We
use (XNi

, YNj
) to denote the weight from neuron X in network Ni to neuron

Y in network Nj, and (XNi
) to denote the threshold of neuron X in network

Ni, following Figure 5. The calculations are as follows. From Equation 9,
Amin > (MAXP(1, 2, 3) − 1)�(MAXP(1, 2, 3) + 1). Let Amin = 0.6. From
Equation 6, taking β = 1, W ≥ 2(ln(1.6) − ln(0.4))�(2(−0.4) + 1.6) = 1.1552.
Let W = 2. Thus, all feedforward connections internal to a network will receive
weight 2. Recall that all feedback connections internal to a network will receive
weight 1 (see Table 2). Then, the thresholds of hidden neurons H are calculated
according to Equation 7, and the thresholds of all the output neurons are calcu-
lated according to Equation 8. For example, (H1N1) = 2((1+0.6)·(1−1))�2 = 0,
(�qN1) = 2((1+0.6)·(1−1))�2 = 0, (H1N2) = 2((1+0.6)·(0−1))�2 = −1.6 and
(♦sN1) = 2((1+0.6) · (1−0))�2 = 1.6. Now, thresholds and weights for neurons
M , ∧ and ∨ need to be calculated. From the Modalities Algorithm, connec-
tions between networks, e.g. (♦sN1 ,M1N2), will receive weight 1; the thresholds
θM of neurons M must satisfy −1 < θM < Amin (e.g.: (M1N2) = 0.5); the
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thresholds θ∨ of neurons ∨ must satisfy −nAmin < θ∨ < Amin − (n− 1) (e.g.:
(∨N1) = −1.6); and the thresholds θ∧ of neurons ∧ must satisfy n−(1+Amin) <
θ∧ < nAmin (e.g.: (∧N1) = 1.6).11 Finally, weights WM

L > h−1(0.6)+2µL +θL

must be calculated.12 For example, output neuron ♦s in N1 has µ = 0 and
θ = 1.6, and thus WM > 2.986. Similarly, output neuron s in N2 has µ = 1 and
θ = 0, and thus WM > 3.386. Although not necessary, let us unify WM = 4 for
all of the five remaining weights (see Table 2).
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Figure 5: The ensemble of networks {N1, N2, N3} that represents P.

Soundness of the Modal Computation

We are now in position to show that the ensemble of neural networks N
obtained from the above Modalities Algorithm is equivalent to the original ex-
tended modal program P, in the sense that N computes the modal immediate
consequence operator MTP of P (see Definition 6). In other words, the theorem

11Recall that n = 3 in this example.
12Recall that W = 2 in this example, h−1(Amin) = − 1

β
ln

(
1−Amin
1+Amin

)
.
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below guarantees that the computational process carried out by our connection-
ist model is meaningful; it shows from a technical viewpoint that the approach
presented here is correct, as the model in use is capable of translating modal
symbolic formalisms into artificial neural networks.

Theorem 12 For any extended modal program P there exists an ensemble of
feedforward neural networks N with a single hidden layer and semi-linear neu-
rons, such that N computes the modal fixed-point operator MTP of P.
Proof: We have to show that there exists W > 0 such that the network N ,
obtained by the above Modalities Algorithm, computes MTP . Throughout, we
assume that Ni and Nj are two arbitrary sub-networks of N , representing pos-
sible worlds ωi and ωj, respectively, such that R(ωi, ωj). We distinguish two
cases: (a) clauses with modalities � and ♦ in the head, and (b) clauses with no
modalities in the head.

(a) Firstly, note that clauses with � in the head must satisfy �E, while
clauses with ♦ in the head must satisfy ♦E in Table 1. Given input vectors i
and j to Ni and Nj, respectively, each neuron A in the output layer of Nj is
active (A > Amin) if and only if: (i) there exists a clause of Pj of the form
ML1, ...,MLk → A s.t. ML1, ...,MLk are satisfied by interpretation j, or (ii)
there exists a clause of Pi of the form ML1, ...,MLk → �A s.t. ML1, ...,MLk

are satisfied by interpretation i, or even (iii) there exists a clause of Pi of the
form ML1, ...,MLk → ♦A s.t. ML1, ...,MLk are satisfied by interpretation i,
and the Modalities Algorithm (step 3a) has selected Nj as the arbitrary network
Nk.

(←) (i) results directly from Theorem 9. (ii) and (iii) share the same proof,
as follows: from Theorem 9, we know that if ML1, ...,MLk are satisfied by
interpretation i then MA is active in Ni (recall, M ∈ {�,♦}). Hence, we only
need to show that MA in Ni activates A in Nj. From the Modalities Algorithm,
AM is a non-linear hidden neuron in Nj . Thus, if MA is active (Act(MA) >
Amin) then AM presents activation 1. As a result, the minimum activation of
A is h(WM

A −µAW − θA). Now, since WM
A > h−1(Amin)+µAW + θA, we have

h(WM
A − µAW − θA) > Amin and, therefore, A is active (Act(A) > Amin).

(→) Directly from the Modalities Algorithm, since AM is a non-linear neu-
ron, it contributes with zero to the input potential of A in Nj when MA is
not active in Ni. In this case, the behaviour of A in Nj is not affected by Ni.
Now, from Theorem 9, Nj computes the fixed-point operator TPj

of Pj. Thus,
if ML1, ...,MLk is not satisfied by j then A is not active in Nj.

(b) clauses with no modalities must satisfy �I and ♦I in Table 1. Given
input vectors i and j to Ni and Nj, respectively, each neuron �A in the out-
put layer of Ni is active (Act(�A) > Amin) if and only if: (i) there exists a
clause of Pi of the form ML1, ...,MLk → �A s.t. ML1, ...,MLk are satis-
fied by interpretation i, or (ii) for all Nj , there exists a clause of Pj of the
form ML1, ...,MLk → A s.t. ML1, ...,MLk are satisfied by interpretation j.
Each neuron ♦A in the output layer of Ni is active (Act(♦A) > Amin) if and
only if: (iii) there exists a clause of Pi of the form ML1, ...,MLk → ♦A s.t.
ML1, ...,MLk are satisfied by interpretation i, or (iv) there exists a clause of Pj
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of the form ML1, ...,MLk → A s.t. ML1, ...,MLk are satisfied by interpretation
j.

(←) (i) and (iii) result directly from Theorem 9. (ii) and (iv) are proved
in what follows: from Theorem 9, we know that if ML1, ...,MLk are satisfied
by interpretation j then A is active in Nj. (ii) We need to show that if A is
active in every network Nj (0 ≤ j ≤ n) to which Ni is related, �A is active in
Ni. From the Modalities Algorithm, A∧ is a non-linear hidden neuron in Ni.
If A is active (Act(A) > Amin) in Nj, the minimum input potential of A∧ is
nAmin − θ∧. Now, since θ∧ < nAmin (Modalities Algorithm, step 6(c)ii), the
minimum input potential of A∧ is greater than zero and, therefore, A∧ presents
activation value 1. (iv) We need to show that if A is active in at least one
network Nj (0 ≤ j ≤ n) to which Ni is related, ♦A is active in Ni. From the
Modalities Algorithm, A∨ is a non-linear hidden neuron in Ni. If A is active
(Act(A) > Amin) in Nj, the minimum input potential of A∨ is Amin−θ∨. Now,
since θ∨ < Amin − (n− 1) (Modalities Algorithm, step 5(c)ii), and n � 1, the
minimum input potential of A∨ is greater than zero and, therefore, A∨ presents
activation 1. Finally, if A∧ presents activation 1, the minimum activation of
�A is h(WM

�A−µ�AW − θ�A), and, exactly as in item (a) above, �A is active
in Ni. Similarly, if A∨ presents activation 1, the minimum activation of ♦A is
h(WM

♦A − µ♦AW − θ♦A), and, exactly as in item (a) above, ♦A is active in Ni.
(→) Again, (i) and (iii) result directly from Theorem 9. (ii) and (iv) are

proved below: (ii) We need to show that if �A is not active in Ni then at
least one A is not active in Nj to which Ni is related (0 ≤ j ≤ n). If �A is
not active, A∧ presents activation 0. In the worst case, A is active in n − 1
networks with maximum activation (1.0), and not active in a single network
with minimum activation (−Amin). In this case, the input potential of A∧ is
n−1−Amin−θ∧. Now, since θ∧ > n− (1+Amin) (Modalities Algorithm, step
6(c)ii), the maximum input potential of A∧ is smaller than zero and, therefore,
A∧ presents activation 0. (iv) We need to show that if ♦A is not active in Ni

then A is not active in any network Nj to which Ni is related (0 ≤ j ≤ n).
If ♦A is not active, A∨ presents activation 0. In the worst case, A presents
activation −Amin in all Nj networks. In this case, the input potential of A∨ is
−nAmin − θ∨. Now, since θ∨ > −nAmin (Modalities Algorithm, step 5(c)ii),
the maximum input potential of A∨ is smaller than zero and, therefore, A∨

presents activation 0. Finally, from Theorem 9, if A∧ and A∨ have activation
0, Ni computes the fixed-point operator MTPi

of Pi. �

Termination of the Modal Computation

A network ensemble can be used to compute extended modal programs in
parallel in the same way that C-ILP networks are used to compute logic pro-
grams. Take a network ensemble {N1, ...,Nn} obtained from the Modalities
Algorithm, and rename each input and output neuron L{�,♦}

k in Ni (1 ≤ i ≤ n)
as ωi : Lk, where Lk can be either a literal or a modal literal. This basically
allows us to have copies of literal Lk in different possible worlds (ωi, ωj ...), and
to treat the occurrence of Lk in Ni (ωi : Lk) as different from the occurrence
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of Lk in Nj (ωj : Lk). It is not difficult to see that we are left with a large
single-hidden layer neural network N , in which each input and output neuron
is now labelled. This flattened network is a recurrent network containing feed-
back connections from the output layer to the input layer, and sometimes from
the output to the hidden layer. Any feedback connection from output neurons
(oj , ok, ...) to a hidden neuron (hi) may be replaced equivalently by feedback
from the output to the input layer only, if we create new input neurons oj , ok, ...
and connect output oj to input oj , output ok to input ok, and so on, and then
inputs oj , ok, ... to hidden neuron hi. As a result, as in the case of C-ILP net-
works, if P is well-behaved, the computation of P by N should terminate.

For example, in Figure 5, since ♦s and r in N1 and q in N3 are recursively
connected, the ensemble computes {♦s, r,�q} in ω1, {s, q} in ω2, and {q,♦s} in
ω3. As expected, these are logical consequences of the original program P given
in Example 11. Although the computation is done in parallel in N , following it
by starting from facts (such as s in ω2) may help verifying this.

Notice how the idea of labelling the neurons, allowing copies of neurons
Lj to occur in the neural network simultaneously, allows us to give a modal
interpretation to C-ILP networks as a corollary (below) of Theorem 12. Let

MTn
P

def
= MTP(MTn-1

P ) with MT0
P

def
= MTP({∅}). We say that an extended

modal program P is well-behaved if, after a finite number m of iterations,
MTm

P = MTm-1
P .

Corollary 13 Let P be an extended modal program. There exists an ensemble
of neural networks N with semi-linear neurons such that, if P is well-behaved,
the computation of P by N terminates. The set

⋃
name(x) ⊆ BP of input and

output neurons x in N for which valuation(Act(x)) = 1 will denote MTm
P .

Table 2: A valid set of weights and thresholds for the network of Figure 5.

(∨N1 ,♦sN1) = 4 (M1N2 , sN2) = 4 (M1N3 , qN3) = 4
(♦sN1 ,♦sN1) = 1 (H1N2 , sN2) = 2 (qN3 , qN3) = 1
(♦sN1 ,H1N1) = 2 (M2N2 , qN2) = 4 (qN3 ,H1N3) = 2
(H1N1 , rN1) = 2 (H1N3 ,♦pN3) = 2
(rN1 , rN1) = 1
(rN1 ,H2N1) = 2
(H2N1 ,�qN1) = 2
(∧N1 ,�qN1) = 4
(♦sN1 ,M1N2) = 1 (sN2 ,∨N1) = 1 (qN3 ,∧N1) = 1
(�qN1 ,M2N2) = 1 (qN2 ,∧N1) = 1
(�qN1 ,M1N3) = 1
(∨N1) = −1.6 (M1N2) = 0.5 (M1N3) = 0.5
(♦sN1) = 1.6 (H1N2) = −1.6 (qN3) = 1.6
(H1N1) = 0 (M2N2) = 0.5 (H1N3) = 0
(rN1) = 0 (sN2) = 0 (♦pN3) = 0
(H2N1) = 0 (qN2) = 1.6
(∧N1) = 1.6
(�qN1) = 0
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4 The Connectionist Muddy Children Puzzle

In this section, we apply CML to the muddy children puzzle, a classic example
of reasoning in multi-agent environments. In contrast with the also well-known
wise men puzzle [19, 29], in which the reasoning process is sequential, here it
is clear that a distributed (simultaneous) reasoning process occurs, as follows:
There is a group of n children playing in a garden. A certain number of children
k (k ≤ n) has mud on their faces. Each child can see if the others are muddy,
but cannot see if they themselves are muddy. Now, consider the following situ-
ation13.

A caretaker announces that at least one child is muddy (k ≥ 1) and asks do
you know if you have mud on your faces?14 To help understanding the puzzle,
let us consider the cases in which k = 1, k = 2 and k = 3.

If k = 1 (only one child is muddy), the muddy child answers yes at the first
instance since she cannot see any other muddy child. All the other children
answer no at the first instance.

If k = 2, suppose children 1 and 2 are muddy. In the first instance, all
children can only answer no. This allows 1 to reason as follows: if 2 had said
yes the first time round, she would have been the only muddy child. Since 2 said
no, she must be seeing someone else muddy; and since I cannot see anyone else
muddy apart from 2, I myself must be muddy ! Child 2 can reason analogously,
and also answers yes the second time round.

If k = 3, suppose children 1, 2 and 3 are muddy. Every child can only answer
no the first two time rounds. Again, this allows 1 to reason as follows: if 2 or 3
had said yes the second time round, they would have been the only two muddy
children. Thus, there must be a third person with mud. Since I can see only
2 and 3 with mud, this third person must be me! Children 2 and 3 can reason
analogously to conclude as well that yes, they are muddy.

The above cases clearly illustrate the need to distinguish between an agent’s
individual knowledge and common knowledge about the world in a particular
situation. For example, when k = 2, after everybody says no in the first round,
it becomes common knowledge that at least two children are muddy. Similarly,
when k = 3, after everybody says no twice, it becomes common knowledge
that at least three children are muddy, and so on. In other words, when it
is common knowledge that there are at least k − 1 muddy children; after the
announcement that nobody knows if they are muddy or not, then it becomes
common knowledge that there are at least k muddy children, for if there were
k − 1 muddy children all of them would have known that they had mud on
their faces. Notice that this reasoning process can only start once it is common
knowledge that at least one child is muddy, as announced by the caretaker.15

13We follow the muddy children problem description presented in [19]. We must also assume
that all the agents involved in the situation are truthful and intelligent.

14Of course, if k > 1 they already know that there are muddy children amongst them.
15The question of how to represent common knowledge in neural networks is an interesting

one. In this paper, we do this implictly - as will become clearer in what follows - by connecting
neurons appropriately as the reasoning progresses (for example, as we find out at round two
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4.1 Distributed Knowledge Representation

Let us now formalise the muddy children puzzle in our connectionist modal logic
framework. Typically, the way to represent the knowledge of a particular agent
is to express the idea that an agent knows a fact α if the agent considers/thinks
that α is true at every world the agent sees as possible. In such a formalisation,
a Kj modality that represents the knowledge of an agent j is interpreted as
a � modality as defined in Section 2.1. In addition, we use pi to denote that
proposition p is true for agent i, so that Kjpi means that agent j knows that p
is true for agent i. We omit the subscript j of K whenever it is clear from the
context. We use pi to say that child i is muddy, and qk to say that at least k
children are muddy (k ≤ n). Note, thus, the difference between p1 (child 1 is
muddy) and Kp1 (child 1 knows she is muddy).

Let us consider the case in which three children are playing in the garden
(n = 3). Clause r11 below states that when child 1 knows that at least one child
is muddy and that neither child 2 nor child 3 are muddy then child 1 knows
that she herself is muddy. Similarly, clause r12 states that if child 1 knows that
there are at least two muddy children and she knows that child 2 is not muddy
then she must also be able to know that she herself is muddy, and so on. The
clauses for children 2 and 3 are interpreted analogously.

Clauses for agent(child) 1:
r11: K1q1∧K1¬p2∧K1¬p3 →K1p1

r12: K1q2∧K1¬p2 →K1p1

r13: K1q2∧K1¬p3 →K1p1

r14: K1q3 →K1p1

Clauses for agent(child) 2:
r21: K2q1∧K2¬p1∧K2¬p3 →K2p2

r22: K2q2∧K2¬p1 →K2p2

r23: K2q2∧K2¬p3 →K2p2

r24: K2q3 →K2p2

Clauses for agent(child) 3:
r31: K3q1∧K3¬p1∧K3¬p2 →K3p3

r32: K3q2∧K3¬p1 →K3p3

r33: K3q2∧K3¬p2 →K3p3

r34: K3q3 →K3p3

Each set of clauses rl
m (1 ≤ l ≤ n, m ∈ N+) is implemented in a C-ILP

network. Figure 6 shows the implementation of clauses r11 to r14 (for agent

that at least two children should be muddy). The representation of common knowledge in the
object level would require the use of neurons that are activated when, e.g., “everybody knows”
something (serving to implement in a finite domain the common knowledge axioms of [19]),
but this would complicate the formalisation of the puzzle given in this paper. This explicit
form of representation and its ramifications are worth investigating though, and should be
treated in their own right in future work.
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1)16. In addition, it contains p1 and Kq1, Kq2 and Kq3, all represented as
facts. This is highlighted in grey in Figure 6. This setting complies with the
presentation of the puzzle given in [29], in which snapshots of the knowledge
evolution along time rounds are taken in order to logically deduce the solution
of the problem without the addition of a time variable. Here, p1 and Kqk
(1 ≤ k ≤ 3) are obtained from the network’s input, which denotes a snapshot in
the computation (a particular round), while K¬p2 and K¬p3 are obtained from
the other networks in the ensemble (representing agents 2 and 3, respectively,
whenever agent 1 does not see mud on their foreheads). Notice that a complete
solution to the puzzle would require the replication of the ensemble presented
here across time points according to the different rounds of computation. This
would produce a two-dimensional network ensemble, where in one dimension we
have agents (as depicted here) and in the other we have time, so that we can
represent the agents’ knowledge evolution across time points explicitly [16].

 

K¬p2 K¬p3 Kq1 Kq2 Kq3 Kp1 

K¬p2 K¬p3 Kq1 Kq2 Kq3 

  p1 

. . . 

. . . 
Agent 1 

Figure 6: The implementation of rules {r11, ..., r14}.

Figure 7 illustrates the interaction between three agents in the muddy chil-
dren puzzle. The arrows connecting the networks implement the fact that when
a child is muddy, the other children can see this. For the sake of clarity, the
clauses r1m, corresponding to neuron K1p1, are shown only in Figure 6. Anal-

16Note that Kpi and K¬pi should be represented by two different input neurons [12]. This
can be done by renaming K¬pi by a new literal Kp′i before we call the Modalities Algorithm.
Negative weights in the network would then allow one to differentiate between Kpi and ∼Kpi,
and between K¬pi and ∼K¬pi, respectively.
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ogously, the clauses r2m and r3m for K2p2 and K3p3 would be represented in
similar networks. This is indicated in Figure 7 by neurons highlighted in black.
In addition, Figure 7 only shows positive information about the problem. Recall
that negative information such as ¬p1, K¬p1, K¬p2 is to be added explicitly to
the network, as shown in Figure 6.

  

agent 2 

agent 3 

Kp3 Kq1 Kq2 Kq3 

agent 1 

   p1  Kp2 Kp3 Kq1 Kq2 Kq3 Kp1 

 p2 Kp2 Kp1 

 p3 Kp2 Kp3 Kq1 Kq2 Kq3 Kp1 

Figure 7: Interaction between agents in the muddy children puzzle.

4.2 Learning in CML

As discussed in the Introduction, one of our objectives when developing neural-
symbolic learning systems is to retain good learning capability while seeking to
develop systems that can deal with more expressive languages such as modal
logics. In order to implement such a system, one first translates the background
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knowledge into a neural network’s initial architecture, and then trains it with
examples using a neural learning algorithm [15, 40]. In this section, we inves-
tigate this. We assume that not all of the rules as described in the previous
section are known, and that such rules have to be learned by generalisations
over examples (i.e. cases). We compare a situation in which each agent knows
one rule only, but not the other rules, and a situation in which no rule at all
is known in advance. In both cases, the agents need to learn in order to be
able to reason about the problem. We expect the first situation, in which some
background knowledge is available, to offer a better performance than the latter.

We use the Modalities Algorithm given in Section 3.2 to perform the trans-
lation from a modal background knowledge to the initial ensemble architecture.
We then use standard backpropagation to train each network of the ensemble
with examples17. Our aim is to verify whether a particular agent i can learn
from examples if he is muddy or not, i.e. learn clauses ri

1 to ri
4 above.

We have performed two sets of experiments to compare learning with back-
ground knowledge and without background knowledge. In the first set of ex-
periments, we have created networks with random weights to which we then
presented a number of training examples. In the second set of experiments, we
have inserted clause ri

1 : K1q1∧K1¬p2∧K1¬p3 →K1p1 in the ensemble as back-
ground knowledge before training the networks with examples. Each training
example states whether agent i is muddy or not, according to the truth-values
of literals Kiq1, Kiq2, Kiq3, Kip1, Ki¬p1, Kip2, Ki¬p2, Kip3, Ki¬p3 (repre-
sented as input neurons).

We have evaluated the networks using cross-validation, a testing method-
ology in which the set of examples is permuted and divided into n sets [32].
One division is used for testing and the remaining n − 1 divisions are used for
training. The testing division is never seen by the learning algorithm during
the training process. The procedure is repeated n times so that every partition
is used once for testing. In both experiments, we have used n = 8 over a set of
32 examples. In addition, we have used a learning rate η = 0.2, a term of mo-
mentum ξ = 0.1, h(x) = 2

1+e−βx − 1 as activation function, and bipolar inputs
in {−1, 1}.

The training sets were presented to the networks for 10, 000 epochs18, and the
sets of weights were updated, as usual, after every epoch. For each experiment,
this resulted in 8 networks being trained with 28 examples, with 4 examples
reserved for testing. All 16 networks reached a training set error Err(W),
according to Equation 1, smaller than 0.01 before 10, 000 epochs had elapsed. In
other words, all the networks have been trained successfully. Recall that learning
takes place locally in each network. Any connection between networks in the
ensemble is defined by the rules of natural deduction for modalities presented
in Section 2.1.

As for the networks’ generalisation capability, the results corroborate the
importance of exploiting any available background knowledge (assuming the

17Recall that each network in the ensemble is a C-ILP network and, therefore, can be
trained with examples using standard backpropagation.

18An epoch is defined as one pass through the complete set of training examples.
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background knowledge is correct, of course). In the first experiment, in which
the connectionist modal system was trained with no background knowledge,
the networks presented average test set accuracy of 84.37%. In the second
experiment, in which clause ri

1 had been added to the networks prior to training,
an average test set accuracy of 93.75% was obtained under exactly the same
training conditions.

5 Conclusions and Future Work

In this paper, we have presented a new connectionist computational model,
namely, Connectionist Modal Logic (CML). We introduced an algorithm that
translates extended modal programs into ensembles of C-ILP neural networks
[15, 18], and proved that the ensembles compute fixed-point semantics of the pro-
grams. The computation always terminates when the program is well-behaved,
and thus the network ensemble can be used as a distributed computation model
for modal logic. In addition, we have applied the CML system to the muddy
children puzzle, a well-known testbed for distributed knowledge representation.
We have both set-up and trained network ensembles to reason about this puzzle.
The networks can learn possible world representations from examples by using
standard neural learning algorithms such as backpropagation.

This paper opens up a new area of research in which modal reasoning can
be represented and learned using artificial neural networks. There are several
avenues of research to be pursued as a result. For instance, an important aspect
of neural-symbolic learning systems - not dealt with in this paper - is rule extrac-
tion from neural network ensembles [14, 45]. In the case of CML, rule extraction
methods would need to consider the more expressive knowledge representation
language used here. Since we have shown that modalities can be represented
in network ensembles, one should expect, when extracting rules from a given
trained network ensemble, that rules with modalities would offer a better rep-
resentation formalism for the ensemble either in terms of rule comprehensibility
or rule expressiveness.

Extensions of CML would include the study of how to represent other modal
logics such as temporal [23], dynamic [25], and conditional logics of normality
[5], as well as inference and learning of (fragments) of first-order modal logic
[2]. The addition of a time variable to the approach presented here allows for
the representation of knowledge evolution. This could be implemented using
labelled transitions from one knowledge state to the next with a linear time
flow, where each time point is associated with a state of knowledge, i.e. with a
network ensemble, as hinted at in [16].

Finally, one could think of the system presented here as a first step towards
a model construction algorithm, which in turn allows for investigations in model
checking of distributed systems in a connectionist setting. CML can be seen as
a starting point towards the construction of a connectionist theorem prover for
modal logics, possibly to be implemented in hardware as a neural network. In
summary, we see CML as a theoretical model addressing the need for integrated
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distributed knowledge representation, computation, and learning mechanisms
in artificial intelligence and computer science.
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