Distributed Knowledge Representation in Neural-Symbolic Learning Systems: A Case Study

Artur S. d’Avila Garcez, Luís C. Lamb, Kryisia Broda, and Dov M. Gabbay

Abstract

Neural-symbolic integration concerns the integration of symbolic and connectionist systems. Distributed knowledge representation is traditionally seen under a purely symbolic perspective. In this paper, we show how neural networks can represent symbolic distributed knowledge, acting as multi-agent systems with learning capability (a key feature of neural networks). We then apply our approach to the well-known muddy children puzzle, a problem used as a testbed for distributed knowledge representation formalisms. Finally, we sketch a full solution to this problem by extending our approach to deal with knowledge evolution over time.

Introduction

Neural-Symbolic integration concerns the application of problem-specific symbolic knowledge within the neurocomputing paradigm. So far, neural-symbolic systems have not been shown to fully represent and learn more expressive languages such as modal and predicate logics (Cloete & Zurada 2000). In this paper, we investigate the effectiveness of a new connectionist framework for the representation and learning of propositional modal logics by applying it to the well-known muddy children puzzle (Fagin et al. 1995). The framework uses Modal Logic Programming (Sakakibara 1986) extended to allow modalities such as necessity and possibility in the head of clauses (Orgun & Ma 1994) as hypothesis language. A Modalities Algorithm (d’Avila Garcez, Lamb, & Gabbay 2002) is used to set up an ensemble of Connectionist Inductive Learning and Logic Programming (C-ILP) networks (d’Avila Garcez, Broda, & Gabbay 2002; d’Avila Garcez & Zaveucha 1999), each network being an extension of Holldobler and Kalinke’s massively parallel model for Logic Programming (Holldobler, Kalinke, & Storr 1999). The network obtained is an ensemble of simple C-ILP networks, each representing a learnable possible world. As shown in (d’Avila Garcez, Lamb, & Gabbay 2002), the resulting ensemble computes a fixed-point semantics of the original modal theory. As a result, the network ensemble can be seen as a massively parallel system for modal logic programming.

Connectionist Modal Logic

Modal logic began with the analysis of concepts such as necessity and possibility under a philosophical perspective (Hughes & Cresswell 1996). A main feature of modal logics is the use of (Kripke) possible world semantics. In modal logic, a proposition is necessary in a world if it is true in all worlds which are possible in relation to that world, whereas it is possible in a world if it is true in at least one world which is possible in relation to that same world. This is expressed in the semantics formalisation by a (binary) relation between possible worlds. Modal logic was found to be appropriate to study mathematical necessity (in the logic of provability), time, knowledge and other modalities (Chagrov & Zakharyaschev 1997). In artificial intelligence, modal logics are amongst the most employed formalisms to analyse and represent reasoning in multi-agent systems (Fagin et al. 1995). Formally, the language of propositional modal logic extends the language of propositional logic with the □ and ◇ operators. Moreover, we assume that any clause is ground over a finite domain (i.e. they contain no variables). Essential definitions are then stated.

Definition 1 A modal atom is of the form MA where $M \in \{\square, \Diamond\}$ and A is an atom. A modal literal is of the form ML where L is a literal. A modal program is a finite set of clauses of the form $MA_1, ..., MA_n \rightarrow A$.

We define extended modal programs as modal programs extended with modalities \square and \Diamond in the head of clauses, and default negation \sim in the body of clauses.

This work was carried out when the second author was an Honourary Visiting Research Fellow at City University London, Fall 2002.

Copyright © 2003, American Association for Artificial Intelligence (www.aaai.org). All rights reserved.
In addition, each clause is labelled by the possible world in which they hold, similarly to Gabbay’s Labelled Deductive Systems (Gabbay 1996).

Definition 2 An extended modal program is a finite set of clauses C of the form $\omega_1 : M_1, \ldots, M_n \rightarrow M.A.$, where ω_i is a label representing a world in which the associated clause holds, and a finite set of relations $R(\omega_1, \omega_2)$ between worlds ω_1 and ω_2 in C.

Example: $\mathcal{P} = \{ \omega_1 : r \rightarrow \omega_2, \omega_1 : \diamond s \rightarrow r, \omega_2 : s, \omega_3 : q \rightarrow \diamond p, R(\omega_1, \omega_2), R(\omega_1, \omega_3) \}$ is an extended modal program. Formulas in modal logic will be interpreted in Kripke models, i.e., a set of worlds Ω, related by a binary relation R and an assignment v of worlds to formulas. A modal formula α is said to be true at a possible world ω of a model M, written $(M, \omega) \models \alpha$, if α holds in ω. α is said to be true at a model M if it is true in every world in M. The rules we shall represent using C-ILP are similar to the ones presented in (Russo 1996) and are reproduced in Table 1:

Table 1: Rules for modality operators

$\frac{[R(\omega, g_{\alpha}(\omega))] \ldots g_{\alpha}(\omega) : \alpha}{\square I}$	$\frac{[\omega_1 : \square \alpha, R(\omega_1, \omega_2)]}{\square E}$	$\frac{\omega : \square \alpha}{\square I}$
$\frac{\omega : \diamond \alpha}{\diamond I}$	$\frac{\omega_2 : \alpha}{\square \alpha}$	$\frac{\omega_1 : \diamond \alpha}{\diamond E}$
$f_{\alpha}(\omega) : \alpha, R(\omega, f_{\alpha}(\omega))$	$\omega_2 : \alpha, R(\omega_1, \omega_2)$	$\omega_1 : \diamond \alpha$

Semantics for Extended Modal Logic Programs
When computing the semantics of a modal program, we have to consider both the fixed-point of a particular world, and the fixed-point of the program as a whole. When computing the fixed-point in each world, we have to consider the consequences derived locally and the consequences derived from the interaction between worlds. Locally, fixed-points are computed as in the stable model semantics for logic programming, by simply renaming each modal literal M_{L_j} by a new literal L_j not in the language L, and applying the Gelfond-Lifschitz Transformation (Brewka & Eiter 1999) to it. When considering interacting worlds, there are two cases to be addressed, according to the CI and OI rules in Table 1, together with the accessibility relation R, which might render additional consequences in each world. In (d’Avila Garcez, Lamb, & Gabbay 2002) it has been proved that C-ILP programs ensemble compute a fixed point semantics of the modal theory \mathcal{P} (according to the modal fixpoint operator $MT_{\mathcal{P}}$ of \mathcal{P}), providing the semantics for connectionist modal logic programs.

Theorem 3 (d’Avila Garcez, Lamb, & Gabbay 2002)
For any extended modal program \mathcal{P} there exists an ensemble of single hidden layer neural networks \mathcal{N} such that \mathcal{N} computes the modal fixed-point operator $MT_{\mathcal{P}}$ of \mathcal{P}.

Any extended modal program (\mathcal{P}) can be translated into an ensemble of C-ILP networks (\mathcal{N}) with the use of the Modalities Algorithm presented below. C-ILP (d’Avila Garcez & Zaverucha 1999) is a massively parallel system based on artificial neural networks that integrates inductive learning from examples and background knowledge with deductive learning from logic programming. Its Translation Algorithm maps any general logic program p into a single hidden layer neural network n such that n computes the fixed-point of p.

As a generalisation of C-ILP, the Modalities Algorithm is used to interconnect the different C-ILP networks n, which will correspond to possible worlds of an extended modal program \mathcal{P}, into the ensemble \mathcal{N} that will compute the modal fixed-point of \mathcal{P}. By using ensembles of C-ILP networks, we enhance the expressive power of the system, yet maintaining the simplicity needed to perform inductive learning efficiently. More details on the C-ILP system can be found in (d’Avila Garcez, Broda, & Gabbay 2002).

The Modalities Algorithm
1. Let $\mathcal{P}_i \subseteq \mathcal{P}$ be the set of clauses labelled by ω_i in \mathcal{P}. Let \mathcal{N}_i be the neural network that denotes \mathcal{P}_i. Let $W^M \in \Re$ be such that $W^M > h^{-1}(\alpha_{min} + \mu_i W + \theta_A)$, where μ_i, W and θ_A are obtained from C-ILP’s Translation Algorithm2.

2. For each \mathcal{P}_i do: (a) Rename each M_{L_j} in \mathcal{P}_i by a new literal not occurring in \mathcal{P} of the form L_i^j if $M = \square$, or L_i^j if $M = \diamond$; (b) Call C-ILP’s Translation Algorithm;

3. For each output neuron L_i^j in \mathcal{N}_i, do: (a) Add a hidden neuron L_i^j to an arbitrary \mathcal{N}_k ($0 \leq k \leq n$) such that $R(\omega_i, \omega_k)$; (b) Set the step function $s(x)$ as the activation function of L_i^j; (c) Connect L_i^j in \mathcal{N}_i to L_i^j and set the connection weight to 1; (d) Set the threshold θ^M of L_i^j such that $-1 < \theta^M < \alpha_{min}$; (e) Connect L_i^j to L_j^i in \mathcal{N}_k and set the connection weight to W^M.

4. For each output neuron L_i^j in \mathcal{N}_k, do: (a) Add a hidden neuron L_i^j to each \mathcal{N}_k ($0 \leq k \leq n$) such that $R(\omega_i, \omega_k)$; (b) Set the step function $s(x)$ as the activation function of L_i^j; (c) Connect L_i^j in \mathcal{N}_k to L_i^j and set the connection weight to 1; (d) Set the threshold θ^M of L_i^j such that $-1 < \theta^M < \alpha_{min}$; (e) Connect L_i^j to L_j^i in \mathcal{N}_k and set the connection weight to W^M.

5. For each output neuron L_i^j in \mathcal{N}_k such that $R(\omega_i, \omega_k)$ ($0 \leq i \leq m$), do: (a) Add a hidden neuron L_i^j to \mathcal{N}_i; (b) Set the step function $s(x)$ as the activation function of L_i^j; (c) For each output neuron L_i^j in \mathcal{N}_i, do: (i) Connect L_j^i in \mathcal{N}_k to L_j^i and set the connection weight to 1; (ii) Set the threshold θ^M of L_j^i such that $-nA_{min} < \theta^M < A_{min} - (n - 1)$; (iii) Connect L_i^j to L_j^i in \mathcal{N}_i and set the connection weight to W^M.

6. For each output neuron L_i^j in \mathcal{N}_k such that $R(\omega_i, \omega_k)$ ($0 \leq i \leq m$), do: (a) Add a hidden neuron L_i^j to \mathcal{N}_i; (b) 2 μ_i denotes the number of connections to output neuron i. $A_{min} \in [0, 1]$ denotes the (pre-defined) activation value for a neuron to be considered active (or equivalently for its corresponding literal to be considered true).

3This allows us to treat each M_{L_j} as a literal and apply the Translation Algorithm directly to \mathcal{P}_i, by labelling neurons as $\square L_j$, $\diamond L_j$, or L_j.

1In this semantics, the choice of an arbitrary world for \diamond elimination (made before the computation of $MT_{\mathcal{P}}$) may lead to different fixed-points of a given extended modal program. Such a choice is similar to the approach adopted by Gabbay in (Gabbay 1989) in which one chooses a point in the future for execution and then backtracks if judged necessary (and at all possible).
Set the step function \(s(x) \) as the activation function of \(L_j^2 \); (c) For each output neuron \(L_j^2 \) in \(\mathcal{N}_e \), do: (i) Connect \(L_j \) in \(\mathcal{N}_i \) to \(L_j^2 \) and set the connection weight to 1; (ii) Set the threshold \(\theta^j \) of \(L_j^2 \) such that \(n - (1 + A_{\min}) < \theta^j < n A_{\min} \); (iii) Connect \(L_j^2 \) to \(L_j^3 \) in \(\mathcal{N}_i \) and set the connection weight to \(W^M \).

Example: Let \(\mathcal{P} = \{\omega_1: r \rightarrow \square q, \omega_2: \Diamond s \rightarrow r, \omega_3: q \rightarrow \Diamond p, \mathcal{R}(\omega_1, \omega_2), \mathcal{R}(\omega_1, \omega_3)\} \). We start by applying \(C-IL^2P \)'s Translation Algorithm, which creates three neural networks to represent the worlds \(\omega_1, \omega_2, \) and \(\omega_3 \) (see Figure 1). Then, we apply the Modalities Algorithm. Hidden neurons labelled by \(\{M, \lor, \land\} \) are created using the Modalities Algorithm. The remaining neurons are all created using the Translation Algorithm. For the sake of clarity, unconnected input and output neurons are not shown in Figure 1.

![Figure 1](image-url)

Figure 1: Ensemble \(\{\mathcal{N}_1, \mathcal{N}_2, \mathcal{N}_3\} \) that represents \(\mathcal{P} \).

Case Study: Muddy Children Puzzle

In this section, we apply the modal \(C-IL^2P \) system to the muddy children puzzle, a classic example of reasoning in multi-agent environments. The situation in the puzzle is described as follows. There is a group of \(n \) (truthful and intelligent) children playing in a garden. A certain number of children \(k \) (\(k \leq n \)) has mud on their faces. Each child can see if the others are muddy, but not herself. Now, consider the following: A caretaker announces that at least one child is muddy (\(k \geq 1 \)) and asks “does any of you know if you have mud on your own face?” To help understanding the puzzle, let us consider the cases in which \(k = 1, k = 2 \) and \(k = 3 \). If \(k = 1 \) (only one child is muddy), the muddy child answers yes at the first instance since she cannot see any other muddy child. All the other children answer no at the first instance. If \(k = 2 \), suppose children 1 and 2 are muddy. At first, all children can only answer no. This allows 1 to reason as follows: “if 2 had said yes the first time, she would have been the only muddy child. Since 2 said no, she must be seeing someone else muddy; and since I cannot see anyone else muddy apart from 2, I myself must be muddy!” Child 2 can reason analogously, and also answers yes the second time round. If \(k = 3 \), suppose children 1, 2 and 3 are muddy. Every child can only answer no the first two times. Again, this allows 1 to reason as follows: “if 2 or 3 had said yes the second time, they would have been the only two muddy children. Thus, there must be a third person with mud. Since I can see only 2 and 3 with mud, this third person must be me!” Children 2 and 3 can reason analogously to conclude as well that yes, they are muddy.

The above cases clearly illustrate the need to distinguish between an agent’s individual knowledge and common knowledge about the world. For example, when \(k = 2 \), after everybody says no in the first round, it becomes common knowledge that at least two children are muddy. Similarly, when \(k = 3 \), after everybody says no twice, it becomes common knowledge that at least three children are muddy, and so on. In other words, when it is common knowledge that there are at least \(k - 1 \) muddy children; after the announcement that nobody knows if they are muddy or not, then it becomes common knowledge that there are at least \(k \) muddy children, for if there were \(k - 1 \) muddy children all of them would know that they had mud in their faces. Notice that this reasoning process can only start once it is common knowledge that at least one child is muddy, as announced.

Distributed Representation

In our formalisation, a \(K \) modality that represents the knowledge of an agent \(j \) is used analogously to a \(\Box \) modality. In addition, we use \(p_i \) to denote that proposition \(p \) is true for agent \(i \). For example, \(K_p \) means that agent \(j \) knows that \(p \) is true for agent \(i \). We omit the subscript \(j \) of \(K \) whenever it is clear from the context. We use \(p_i \) to say that child \(i \) is muddy, and \(q_k \) to say that at least \(k \) children are muddy (\(k \leq n \)). Let us consider the case in which three children are playing in the garden (\(n = 3 \)). Rule \(r_1 \) below states that when child 1 knows that at least one child is muddy and that neither child 2 nor child 3 are muddy then child 1 knows that she herself is muddy. Similarly, rule \(r_2 \) states that if child 1 knows that there are at least two muddy children and she knows that child 2 is not muddy then she must also be able to know that she herself is muddy, and so on. The rules for children 2 and 3 are constructed analogously.

Rules for Agent(child):

1. \(K_1 q_1 \land K_1 \neg p_2 \land K_1 \neg p_3 \rightarrow K_1 p_1 \)
2. \(K_1 q_2 \land K_1 \neg p_2 \rightarrow K_1 p_1 \)
3. \(K_1 q_3 \land K_1 \neg p_3 \rightarrow K_1 p_1 \)
4. \(K_1 q_3 \rightarrow K_1 p_1 \)

Each set of rules \(r_{m}^l \) (\(1 \leq l \leq n, m \in \mathbb{N}^+ \)) is implemented in a \(C-IL^2P \) network. Figure 2 shows the implementation of rules \(r_1^1 \) to \(r_1^4 \) (for agent 1)\(^4\). In addition,\(^4\)

\(^4\)Note that with the use of classical negation, \(K_p \) and \(K \neg p \) should be represented as two different input neurons (d’Avila Garcez 2002). Negative weights in the network
it contains \(p_1 \) and \(K_p_1 \), \(K_p_2 \) and \(K_p_3 \), all represented as facts (highlighted in grey in Figure 2). This setting complies with the presentation of the puzzle given in (Huth & Ryan 2000), in which snapshots of the knowledge evolution along time rounds are taken to logically deduce the solution of the problem without the addition of a time variable. In contrast with \(p_1 \) and \(K_p_k \) \((1 \leq k \leq 3)\), \(K_p p_2 \) and \(K_p p_3 \) must be obtained from agents 2 and 3, respectively, whenever agent 1 does not see mud on their foreheads.

Figure 2: Implementation of rules \(\{ r_1^1, \ldots, r_4^4 \} \).

Figure 3 illustrates the interaction between three agents in the muddy children puzzle. The arrows connecting \(C-IL^2P \) networks implement the fact that when a child is muddy, the other children can see it. For the sake of clarity, the rules \(r_m^m \), corresponding to neuron \(K_1 p_1 \), are shown only in Figure 2. Analogously, the rules \(r_2^m \) and \(r_3^m \) for \(K_2 p_2 \) and \(K_3 p_3 \) would be represented in similar \(C-IL^2P \) networks. This is indicated in Figure 3 by neurons highlighted in black. In addition, Figure 3 only shows positive information about the problem. Recall that negative information such as \(\neg p_1 \), \(K_p \neg p_1 \), \(K_p \neg p_2 \) is to be added explicitly to the network, as shown in Figure 2. This completes the translation of a snapshot of the muddy children puzzle in a neural network.

Learning
Experiments we have performed have shown that using the Modalities Algorithm to translate a modal background knowledge to the initial ensemble is an effective way of performing learning from examples and background knowledge. We have checked whether particular agents \(i \) were able to learn the rules \(r_m^i \). We have run two sets of experiments comparing learning with and without background knowledge. Without background knowledge, the networks presented an accuracy of 84.37%, whereas with the addition of the rules \(r_m^i \) to the networks, an average accuracy of 93.75% was achieved, corroborating the importance of adding background knowledge.

Towards Temporal Reasoning
The addition of a temporal variable to the muddy children puzzle would allow one to reason about knowledge acquired after each time round. For example, assume as before that three muddy children are playing in the garden. Firstly, they all answer no when asked if they know whether they are muddy or not. Moreover, as each muddy child can see the other children, they will reason as previously described, and answer no the second time round, reaching the correct conclusion in time round three. This solution requires, at each round, that the \(C-IL^2P \) networks be expanded with the knowledge acquired from reasoning about what is seen and what is heard by each agent. This clearly requires each agent to reason about time. The snapshot solution should then be seen as representing the knowledge held by the agents at an arbitrary time \(t \). The knowledge held by the agents at time \(t+1 \) would then be represented by another set of \(C-IL^2P \) networks, appropriately connected to the original set of networks. This can be visualised in Figure 4 where each dotted box contains the knowledge of a number of agents at a particular time point \(t \) (such as in Figure 3).

Knowledge evolution over time as presented in Figure 4 allows us to explicitly represent the fact that when it is common knowledge that there are at least \(k-1 \) muddy children at time \(t \); after the announcement that nobody

Note the difference between \(p_1 \) (child 1 is muddy) and \(K_p_1 \) (child 1 knows that she is muddy).
knows if they are muddy or not, then it becomes common knowledge that there are at least k muddy children at time $t + 1$. This is done by interconnecting a number s of network ensembles similar to that depicted in Figure 3. For example, the knowledge of child 1 about the number of muddy children would evolve in time as follows: at time t_1, child 1 knows that there is at least one muddy child (K_{q_1}) since the caretaker had announced so. At time t_2, child 1 will know that there are at least two muddy children (K_{q_2}), provided that no child knew that she was muddy at time t_1 ($\neg K_{p_j}$ for any child j), and so on. It is clear that the knowledge of child 1 is evolving through time until she reaches the conclusion that she herself is muddy at time t_3. Note that at each time transition, child 1 learns whether both children 2 and 3 had answered no to the caretaker, allowing her to conclude whether there is yet another muddy child in the garden (K_{q_j}, $1 \leq j \leq 3$).

![Figure 4: Evolving knowledge through time.](image)

The definition of the number of ensembles s that are necessary to solve a given problem clearly depends on the problem domain, and on the number of time points that are relevant for reasoning about the problem. For example, in the case of the muddy children puzzle, we know that it suffices to have s equals to the number of children that are muddy. The definition of s in a different domain might not be as straightforward, possibly requiring a fine-tuning process similar to that performed during learning but with a varying network architecture.

Conclusion

The connectionist modal logic framework presented here renders Neural-Symbolic Learning Systems with the ability to provide a more expressive representation language. It contributes to the integration of both research programmes - neural networks and modal logics - into a unified foundation. In this paper, we have proposed a solution to the muddy children puzzle where agents can reason about their knowledge of the situation at each time step. In addition, we have seen that the provision of a Temporal Algorithm, similar to the Modalities Algorithm above, would require knowledge about the problem domain to define the number s of relevant time points. As an alternative, a formalisation of the full solution to the muddy children puzzle would require the addition of a modality to deal with the notion of next time in a linear timewall. This notion of a temporal modality could be implemented in the connectionist modal logic system with the use of both the \Box-like modality and the \Diamond-like modality. In this case, the network of Figure 4 should be seen as the unfolded version of a recurrent network. We believe that the connectionist modal logic framework investigated here opens several interesting research avenues in the domain of neural-symbolic learning systems, as it allows for the representation and learning of expressive languages of non-classical logics in hybrid systems.

References

