Neural-Symbolic Intuitionistic Reasoning

Artur S. I’AVILA GARCEZ®, Luis C. LAMB? and Dov M. GABBAY"

*Dept. of Computing, City University, London, EC1V 0HB, UK. aag@soi.city.ac.uk
Plnstituto de Informédtica, UFRGS, Porto Alegre, RS, 91501-970, Brazil. lamb@inf.ufrgs.br
"Dept. of Computer Science, King’s College, London WC2R2LS, UK. dg@dcs.kcl.ac.uk

Abstract

In this paper, we present a new computational model for intuitionistic logic. We use
an ensemble of Connectionist Inductive Learning and Logic Programming (C-ILP) neural
networks to represent intuitionistic clauses, and show that for each intuitionistic program
there exists a corresponding C-ILP ensemble such that the ensemble computes the fixed
point of the program. This provides a massively parallel model for intuitionistic reasoning.
In addition, C-ILP ensembles can be trained to adapt from examples using standard neural
networks learning algorithms.

Keywords: Neural-Symbolic Integration, Intuitionistic Logic, Artificial Neural Networks.

1 Introduction

Neural-Symbolic integration is about the application of problem-specific symbolic knowledge
within the connectionist paradigm [10]. Until recently, neural-symbolic systems were not able
to fully represent, reason and learn expressive languages other than propositional and frag-
ments of first-order logic [6]. However, in [12, 11] a new approach to knowledge representation
and reasoning within the neural-symbolic paradigm was proposed. In [12], it was shown that
Modal Logics could be effectively represented in Neural Networks; in [11], it was shown that
they could be trained to encode possible world representations and temporal information. In
this paper, we follow the same line of research to deal with intuitionistic logic, which is very
important to the logical foundations of computation [1, 8]. We do so by setting up an ensem-
ble of Connectionist Inductive Learning and Logic Programming (C-ILP) networks [13, 9, 10],
each network being an extension of Holldobler and Kalinke’s parallel model for Logic Pro-
gramming [16], to compute a fixed point semantics of an intuitionistic theory. The networks
are set up by an Intuitionistic Algorithm introduced in this paper. The proof that the net-
works compute a fixed point semantics of the associated intuitionistic theory is then given.
This provides a unified computational foundation for the above areas, i.e. neural networks
and intuitionistic reasoning.

In Section 2, we briefly present the basic concepts of intuitionistic logics and artificial
neural networks used throughout this paper. In Section 3, we introduce the Intuitionistic
Algorithm and prove that the network computes a fixed point semantics of the given theory,
thus proving the correctness of the algorithm. Section 4 concludes and discusses directions
for future work.

2 Preliminaries

In this section, we present some basic concepts of Intuitionistic Logic and Artificial Neural
Networks that shall be used throughout the paper.

OArtur Garcez is partly supported by the Nuffield Foundation. Luis Lamb is partly supported by CNPq.
The authors would like to thank the referees for their comments.

2.1 Intuitionistic Logic and Programs

The language of intuitionistic logic includes propositional letters denoted by A, B,C..., the
connectives =, A (sometimes abbreviated in clauses by “”), and an intuitionistic implication
=-. Formulas are denoted by «, 3,7... We define labelled intuitionistic programs as sets of
clauses where each clause is labelled by the point in which they hold, similarly to Gabbay’s
Labelled Deductive Systems [14]. Note that, in what follows, each point could be seen as a
possible world.

Definition 1 (Labelled Intuitionistic Program) A Labelled Intuitionistic Program is a finite
set of clauses C' of the form w; : Ay, ..., Ap = Ap, where A, (0 <k <n) are atoms and w; is
a label representing a point in which the associated clause holds, and a finite set of relations
R between points w; (1 <i<m)inC.

We shall interpret intuitionistic logics using Kripke semantics [4], which we define as
follows.

Definition 2 (Kripke Models for Intuitionistic Propositional Logic) Let L be an intuitionistic
language. A model for L is a tuple M = (2, R,v) where § is a set of points, v is a mapping
that assigns to each w € Q a subset of L, and R is a reflexive, transitive binary relation over
Q, such that:

1. (M,w) = p iff p € v(w) (for proposition p)

2. (M,w) = —a iff for all ' such that R(w,o’), (M,w') j=a

5. (M,w) EanB iff (Mw) o and (Mw) E 3

b (Mw) = a = 8 iff for all ' with R(w,o') we have (M,o') = B whenever we have
M,w') Ea

2.2 Fixed Point Semantics of Intuitionistic Programs

In what follows, we define a model-theoretic semantics for labelled intuitionistic programs.
When computing the semantics of the program, we have to consider both the fixed point of
a particular point where a clause holds and the fixed point of the program as a whole. When
computing the fixed point in each point, we have to consider the consequences derived locally
and the consequences derived from the interaction between points. Locally, fixed points are
computed as in a fixed point semantics for Horn clauses a la van Emden and Kowalski [17].
When considering interaction between points in a Kripke structure, one has to take into
account the meaning of intuitionistic implication as in Definition 2.

We treat negation as follows. We use atom A’ to denote a negative literal A. This form
of renaming, as used to represent explicit negation [5], allows the use of the standard fixed
point operator T'p [17]. For example, given Ay, ..., A}, ..., A, = Ag with A renaming —Ay, an
interpretation that assings true to A’ represents that —A;, is true; it does not represent that
Ay, is false. The atom A’ is called the positive form of the negative literal —Ay. Following
Definition 2 of intuitionistic negation, A’ shall be true in a point w; if and only if A does not
hold in every point w; such that R(w;,w;).

Definition 3 (Local Consequence Operator) Let P = {Px1,..., Px} be a labelled intuitionistic
program, where P; is a set of clauses that hold in a point w; (1 < i < k). Let Bp be the
Herbrand base of P and I be a Herbrand interpretation for P;. The mapping [Tp, : 257 — 257
in w; is defined as follows: I1Tp,(I) = {Ao € Bp | A1,...,An = Ao is a clause in P; and
{A1, ..., An} C T or, if Ag is Ay, for all wy such that R(w;,w;), Ao ¢ ITp,(J)}, where ITp (J)
is defined as ITp,(I) and J is a Herbrand interpretation for P;.

Definition 4 (Global Consequence Operator) Let P = {P1, ..., Px} be a labelled intuitionistic
program. Let Bp be the Herbrand base of P and I; be a Herbrand interpretation for P; (1 <
i < k). The mapping ITp : 257 — 2B7 is defined as follows: ITp(Iy,...,I}) = UfZI{ITpl}.

The following theorem by Ramanujam [19], regarding the fixed point semantics of distrib-
uted definite logic programs will be useful.

Definition 5 (Distributed Programs) Definite distributed logic programs are tuples < Py, ..., Pp >
where each P; is the set of clauses (program) associated with each point i. Each P; is called
a component program of the composite program [19].1

Theorem 1 (Fixed Point Model of Distributed Programs [19]) For each distributed definite
logic program P, the function T'p has a unique fived point. The sequence of all TH (11, ..., I),m €
N, converges to this fived point TS (I1, ..., I1,), for each I; C 2B7.

Following [3], one can construct the semantics of labelled intuitionistic programs by con-
sidering the ground instances of definite logic programs in order to compute the fixed point.
In this way, one associates with every labelled intuitionistic program a ground program (the
closure of the program) so that both programs have the same models. As a result, Theorem
2, below, follows directly from Theorem 1.

Theorem 2 (Fixed Point Model of Labelled Intuitionistic Programs) For each labelled in-
tuitionistic program P, the function ITp has a unique fixed point. The sequence of all
IT3 (11, ..., Iy),m € R, converges to this fived point ITF (11, ...,Iy,), for each I; C 2BP

2.3 Artificial Neural Networks

An artificial neural network is a directed graph. A unit in this graph is characterised, at
time ¢, by its input vector I;(t), its input potential U;(t), its activation state A;(t), and its
output O;(t). The units (neurons) of the network are interconnected via a set of directed and
weighted connections. If there is a connection from unit 7 to unit j, then Wj; € 3 denotes the
weight associated with such a connection.

We start by characterising the neuron’s functionality. The activation state of a neuron ¢ at
time ¢ (A;(t)) is a bounded real or integer number. The output of neuron ¢ at time ¢ (O;(t))
is given by the output rule f;, such that O;(t) = fi(A4;(t)). The input potential of neuron
i at time ¢ (U;(t)) is obtained by applying the propagation rule of neuron i (g;) such that
Ui(t) = gi(L;(t), W;), where I;(t) contains the input signals (z1(t), z2(t), ..., zn(t)) to neuron ¢
at time ¢, and W; denotes the weight vector (W;1, Wi, ..., Wiy,) to neuron i. In addition, 6; (an
extra weight with input always fixed at 1) is known as the threshold of neuron i. Finally, the
neuron’s new activation state A;(t+ At) is given by its activation rule h;, which is a function
of the neuron’s current activation state and input potential, i.e. A;(t + At) = h;(4;(t), Us(1)),
and the neuron’s new output value O;(t + At) = f;(A;(t + At)).

Usually, h; does not depend on the previous activation state of the unit, that is, A;(t +
At) = h;(Ui(t)), the propagation rule g; is a weighted sum, such that U;(t) = > ; Wi;z;(t),
and the output rule f; is given by the identity function, i.e. O;(t) = A;(t).

The units of a neural network can be organised in layers. A n-layer feedforward network
N is an acyclic graph. N consists of a sequence of layers and connections between successive
layers, containing one input layer, n — 2 hidden layers and one output layer, where n > 2.
When n = 3, we say that N is a single hidden layer network. When each unit occurring in
the i-th layer is connected to each unit occurring in the ¢ 4+ 1-st layer, we say that N is a
fully-connected network.

LClearly, there is a correpondence between distributed programs and labelled programs in the sense that
each P; corresponds to a set of clauses labelled w;.

The most interesting properties of a neural network do not arise from the functionality of
each neuron, but from the collective effect resulting from the interconnection of units. Let
r and s be the number of units occurring in the input and output layer, respectively. A
multilayer feedforward network N computes a function f : R — R° as follows. The input
vector is presented to the input layer at time ¢; and propagated through the hidden layers to
the output layer. At each time point, all units update their input potential and activation
state synchronously. At time t,, the output vector is read off the output layer. In addition,
most neural models have a learning rule, responsible for changing the weights of the network
so that it learns to approximate f given a number of training examples (input vectors and
their respective target output vectors).

In this paper, we concentrate on single hidden layer networks, since they are universal
approximators [7]. We also use bipolar semi-linear activation functions h(z) = -1

2
S . Iqep=
with inputs in {—1,1}.

3 Connectionist Intuitionistic Logic

In this section, we introduce a new connectionist model for intuitionistic reasoning. We do so
by mapping intuitionistic semantics into an ensemble of C-ILP networks?. Let us start with
an example.

Example 1 (Connectionist Intuitionistic Implication and Negation)

(a) Connectionist Intuitionistic Implication: Let P = {w1 : A = B, R(wi,w2)} be a
labelled intuitionistic program. Figure 1 shows an ensemble (wyi,ws) that implements P. Ac-
cording to the semantics of the above intuitionistic implication, w1 : A = B and R(w1,w2)
imply we : A = B. This can be implemented by copying the neural representation of A = B in
wi to wa. In Figure 1, A = B is implemented through hidden neuron h such that output neu-
ron B is active if input neuron A is active. P is implemented by copying the implementation
of A= B wvia h to wo. We will see exactly how this is done in Section 3.2.

(b) Connectionist Intuitionistic Negation: In addition to the intuitionistic implication, we
need to implement the intuitionistic negation of Definition 2. Suppose P = {w1 : ~A =
B, R(wi,ws), R(wi,ws)}. We rename —A as A" and implement the implication as before.
However, we must also make sure that A" will be derived in wy if A is not derived in wo and
wsz. This can be implemented in the ensemble by connecting the occurencies of A in wy and ws
to A’ in wy (see hidden neuron n in Figure 2) such that if A is not activated in we and A is not
activated in ws then A’ is activated in w1.> Differently from the case of the implication, the
implementation of negation requires the use of negative weights (to denote the “not activation”
of a neuron). We shall use dashed arrows to represent negative weights.

In what follows, we describe in detail how each C-ILP network is built to represent definite
logic programs (Section 3.1), and how the ensemble of C-ILP networks can be connected to
represent labelled intuitionistic programs (Section 3.2).

3.1 The C-ILP System

C-ILP [10, 13] is a massively parallel computational model based on an artificial neural network
that integrates inductive learning from examples and background knowledge with deductive
learning from logic programming. Following [15] (see also [16]), a Translation Algorithm maps
a logic program P into a single hidden layer neural network N such that N computes the least
fixed point of P. This provides a massively parallel model for computing the stable model
semantics of P [17]. In addition, N/ can be trained with examples using Backpropagation

#We will recall how each C-ILP network is built in Section 3.1.
3The activation of A’ in w; would then trigger the activation of B in w; (since A = B) using C-ILP’s
feedback (i.e. the recurrent connection from output neuron A’ to input neuron A’ inside w1).

W2

Figure 1: Representing intuitionistic implication

[20], having P as background knowledge. The knowledge acquired by training can then be
extracted [9], closing the learning cycle (as in [21]).

Let us exemplify how C-ILP’s Translation Algorithm works. Each rule (r;) of P is mapped
from the input layer to the output layer of A/ through one neuron (NV;) in the single hidden
layer of A/. Intuitively, the Translation Algorithm from P to N has to implement the following
conditions: (C1) The input potential of a hidden neuron (/NV;) can only exceed N;’s threshold
(6;), activating N;, when all the positive antecedents of r; are assigned the truth-value true
while all the negative antecedents of r; are assigned false; and (C2) The input potential of
an output neuron (A) can only exceed A’s threshold (04), activating A, when at least one
hidden neuron N that is connected to A is activated.

Example 2 (C-ILP) Consider the logic program P = {BC ~ D — A;EF — A;— B}
where ~ stands for default negation (e.g., Prolog’s negation by failure) [17]. The Translation
Algorithm derives the network N of Figure 3, setting weights (W's) and thresholds (0's) in
such a way that conditions (C1) and (C2) above are satisfied. Note that, if N' ought to be
fully-connected, any other link (not shown in Figure 8) should receive weight zero initially.

Note that, in Example 2, each input and output neuron of A is associated with an atom of
P. As a result, each input and output vector of ' can be associated with an interpretation for
P. Note also that each hidden neuron N; corresponds to a rule r; of P. In order to compute
the stable models of P, output neuron B should feed input neuron B such that A is used to
iterate the fixed point operator of P [13]. N will eventually converge to a stable state which
is identical to the stable model of P provided that P is an acceptable program (see [2] for the
definition of acceptable programs).

Since in this paper we do not allow the use of default negation (~), and we rename any
negative literal (—A) appearing in the program by what is called its positive form (A’), we
only need to worry about the part of C-ILP’s Translation Algorithm that deals with definite
logic programs. Note that, in this case, the network will contain only positive weights (W).
The algorithm works as follows.

Notation: Given a definite logic program P, let ¢ denote the number of rules r; (1 <1 < q)
occurring in P; n, the number of atoms occurring in P; A,ip, the minimum activation for a
neuron to be considered active (or true), Amin € (0,1); Apmaz, the maximum activation for
a neuron to be considered non active (or false), Amar € (—1,0); h(x) = HeL—ﬁm — 1, the
bipolar semi-linear activation function with inputs in {—1,1}%; g(x) = =, the standard linear

4We use the bipolar semi-linear activation function for convenience. Any monotonically increasing activation

“®
®
@

()

>)
Yoo
0,

Figure 2: Representing intuitionistic negation

activation function; W, the weight of a network connection; 6;, the threshold of hidden neuron
N associated with rule r;; 04,, the threshold of output neuron Ay, where Ay is the head of
rule 775 k;, the number of atoms in the body of rule r;; p;, the number of rules in P with the
same atom in the head, for each rule r;; M AX,, (k;,), the greater element among k; and
for rule r;; and MAXp(k1, ..., kg, pt1, ..., ltq), the greatest element among all k’s and p’s of P.
We also use k as a shorthand for (K1, ..., k), and " as a shorthand for (u1, ..., f1q)-

In the Translation Algorithm (positive programs) below, we define Apin, W, 6;, and 04,
such that conditions (C1) and (C2) above are satisfied. Given a definite logic program P,
consider that the atoms of P are numbered from 1 to n such that the input and output
layers of A/ are vectors of length 7, where the i-th neuron represents the i-th atom of P. We
assume, for mathematical conven_ignce and without loss of generality, that A,z :_—>Amm.
We start by calculating M AXp(k, 17') of P and Ay, such that: Apin > (MAXp(k, 70) —

N
1)/ (MAXp(8,) +1)).
e Translation Algorithm (positive programs):

1. Calculate the value of W such that the following is satisfied: W > (2,/3)-(Iin (1 + Amin)—
—
In(1— Amin)),/ (MAXp(k, 1) - (Amin — 1) + Amin + 1))
2. For each rule r; of P of the form Ay, ..., Ay — Ag (k> 0):

(a) Add a neuron N; to the hidden layer of N;

(b) Connect each neuron A; (1 < i < k) in the input layer to the neuron N; in the
hidden layer and set the connection weight to W;

function could have been used here.

Interpretations

Figure 3: Sketch of a neural network for program P of Example 2.

(c) Connect the neuron N; in the hidden layer to the neuron Aj in the output layer
and set the connection weight to W

(d) Define the threshold (6;) of the neuron N; in the hidden layer as: 6; = ((1 + Amin) -

(ki —1) /2)W
(e) Define the threshold (64,) of the neuron A in the output layer as: 64, = ((1 + Amin)-
(1=) 2)W

3. Set g(x) as the activation function of the neurons in the input layer of N. In this way,
the activation of the neurons in the input layer of N, given by each input vector i, will
represent an interpretation for P.

4. Set h(x) as the activation function of the neurons in the hidden and output layers of
N. In this way, a gradient-based learning algorithm, such as Backpropagation, can be
applied on .

5. If N ought to be fully-connected, set all other connections to zero.

Theorem 3 (Correctness of Translation Algorithm [10, 13]) For each definite logic program
P, there exists a feedforward neural network N with exactly one hidden layer and semi-linear
neurons such that N computes the fixed point operator Tp of P.

Corollary 4 (Connectionist Fixed Point Computation [10, 13]) Let P be a definite program.
There exists a recurrent neural network N, with semi-linear neurons such that, starting from
an arbitrary initial input, N, converges to a stable state and yields the unique fized-point

(TE (1)) of Tp.

Hence, in order to use the network A of Figure 3 as a massively parallel model for Logic
Programming, we just have to follow two steps: (i) add neurons to the input and output
layers of \V, allowing it to be recurrently connected; and (i7) add the correspondent recurrent
connections with fixed weight W,. = 1, so that the activation of output neuron A feeds back
into the activation of input neuron A, the activation of output neuron B feeds back into the
activation of input neuron B, and so on (as in, e.g., Figure 2). For instance, given any initial
activation in the input layer of A, (network of Figure 3 recurrently connected), it always
converges to the following stable state: A = false, B = true, C' = false, D = false, E = false,
and F' = false, that represents the unique fixed point of P.

3.2 The Intuitionistic C-ILP System

In this section, we extend the C-ILP system to deal with intuitionistic implication and nega-
tion. Given a distributed (or labelled) definite program P = {Pi,..., Pn}, we apply the
Translation Algorithm of Section 3.1 n times to produce its neural counterpart as an en-
semble of C-ILP networks Ny, ..., N,. Now, in the case of labelled intuitionistic programs,
if R(wi,wj) and w; : A1, ..., Ay, = Ap, we need to add a clause of the form Aq,..., Ay = Ao
to P; before we apply the Translation Algorithm to it. We say that {w; : Ay, ..., Ay = Ao,
R(ws,wj)} can be written as {w; : A1, ..., Ay = Ao, wj : A1,..., Ay = Ap}. As for the intu-
itionistic negation, once the network ensemble is derived, each network Aj; containing neurons
A’ (corresponding to program P;) needs to be connected to each network N in the ensemble
whenever R(wj,w;) € P. More precisely, output neuron A in A needs to be connected to
output neuron A’ in N; through a new hidden neuron created in N; (see Figure 2) such that
A’ is active in NV if A is not active in Nj. Note that neuron A’ could also become active in N
if atom A’ belongs to the head of a clause in P; and its body is satisfied by an interpretation
(network input). Any hidden neuron created to encode negation shall use activation function
s(x) =y, where y = 1 if x > 0, and y = 0 otherwise; s(z) is known as the standard nonlinear
activation function (also called the step function). This is so because, these particular hidden
neurons encode (meta-level) knowledge about negation, while the other hidden neurons en-
code (object-level) knowledge about the problem. The former are not expected to be trained
from examples and, as a result, the use of the step function will simplify the intuitionistic
algorithm. The latter are trained using Backpropagation, and therefore require a derivable,
semi-linear activation function.

Let P = {P1,...,Pn} be a labellel intuitionistic program. As in the case of individual
C-ILP networks, we start by calculating M AXp(?, 7 ,n) of P and Ay such that: A, >
(MAXp(Eﬁ,n) — 1)/(MAX7>(E)7,n) + 1), which now also considers the number n of
networks (points) in the ensemble.

e Intuitionistic Algorithm

1. For each clause ¢; of the form Ay, ..., Ay = Agin P; (1 <i < n) such that R(w;,w;) € P,
do:

(a) add a clause Ay, ..., Ay = Ag to Pj (1 < j <n).
2. For each program P; (1 <i <n) in P, do:

(a) Call the Translation Algorithm
3. For each atom of the form A’ in a clause ¢ of P;, do:

(a) Add a hidden neuron N4/ to Nj;

(b) Set the step function s(x) as the activation function of N4;

(c) Set the threshold 64/ of N4/ such that n — (1 + Amin) < 047 < NAmin;

(d) For each network N corresponding to program P; (1 < j < n) in P such that
R(wi,wj) € P, do:

(i) Connect the output neuron A of N to the hidden neuron N4 of N; and set the

connection weight to —1;

(ii) Connect the hidden neuron N4/ of N; to the output neuron A’ of N; and set the
connection weight to WY such that W' > h_l(Amm) +par. W+ 04, where pgr, W
and 04 are obtained from C-ILP’s Translation Algorithm?.

5Recall that p4s is the number of connections to output neuron A’.

Theorem 5 (Correctness of Intuitionistic Algorithm) For each labelled intuitionistic program
P, there exists an ensemble of neural networks N such that N computes the fized point operator
ITp Of P.

Proof. We need to show that A’ is active in N if and only if (i) there exists a clause of
P; of the form Ay, ..., Ap = A’ s.t. Ay, ..., A are satisfied by an interpretation (input vector
of Ni) i, or (ii) for all P; € P such that R(w;,wj), there exists a clause of Pj of the form
Ay, ..., A = A such that A is not satisfied by an interpretation (input vector of Nj) j. Case (i)
follows directly from Theorem 3. Case (ii) (if A is not active in any network Nj (0 < j <n)
to which N; is related to, A’ is active in N;): From the Intuitionistic Algorithm, N4/ is
a non-linear hidden neuron in N;. If A is not active (A < —Amin) in Nj, the minimum
input potential of Nar is nAmin — 0ar. Since 04 < nApin (Intuitionistic Algorithm, step
3c), the minimum input potential of Na: is greater than zero and, therefore, Na: presents
activation 1. As a result, the minimum activation of A’ in N is h(WI — W —04). Since
W > b= Apin) + ppar. W + 04:, we have (W — g W —04) > Apin and, therefore, A’ is
active (A" > Apin). (if A is active in some network N (0 < j < n) to which N; is related to
and for all clauses of the form Ay, ..., Ay = A" in P;, Ay,..., Ax are not satisfied by i (input
vector of N;) then A" is not active in N;): In the worst case, A is not active in n— 1 networks
with activation —1, and active in a single network with activation Amin. In this case, the
input potential of Nar is n — 1 — Apin — 0ar (recall that the weights to Ny are all set to —1).
Since 041 > n — (1 4+ Amin) (Intuitionistic Algorithm, step 3c), the mazimum input potential
of Ny is zero and, since s(x) is the activation function of N, Ny presents activation 0.
From Theorem 3, if A1, ..., A are not satisfied by i then A’ is not active. Finally, since the
activation of Ny is zero, A" cannot be activated by Ny, so A" is not active. B

Corollary 6 (Connectionist Intuitionistic Fixed Point Computation) Let P be a labelled in-
tuitionistic program. There exists an ensemble of recurrent neural networks N such that,
starting from an arbitrary initial input, N” converges to a stable state and yields the unique
fized-point (ITF (1)) of ITp.

Proof. By Theorem 5, N computes ITp. Recurrently connected, N™ computes the upward
powers (ITR(I)) of ITp. Finally, by Theorem 2, N" converges to the unique fixed point
(ITF (1)) of ITp. B

Example 3 (Connectionist Intuitionistic Fixed Point Computation) Consider again the en-
semble of Figure 2. For any initial set of input vectors (interpretations i, j,...) to networks
M, Na, N3, (corresponding to points wy,ws,ws), output neuron A will not be activated nei-
ther in Ny nor in N3. As a result, output neuron A’ will eventually be activated (and remain
activated) in N7. After that, a single step through N7’s recursive connection will activate out-
put neuron B. As a result, when Ny converges to a stable state (i.e. same input and output
vectors), A" and B will belong to such a state and, therefore, to the fized point of P;.

4 Concluding Remarks

In this paper, we have presented a new massively parallel model for intuitionistic logics. We
have defined a class of labelled intuitionistic programs, and then presented an algorithm to
translate the intuitionistic theory into an ensemble of C-ILP neural networks, and showed that
the ensemble computes a fixed point semantics of the theory. As a result, the ensemble can
be seen as a new massively parallel model for the computation of intuitionistic logic. In addi-
tion, since each C-ILP network can be trained efficiently using the Backpropagation learning
algorithm [20], one can adapt the C-ILP ensemble by training possible world representations
from examples in each network. Extensions of the work presented in this paper include the
study of how to represent properties of other non-classical logics (such as temporal logics
[18], relevance and linear logics [1]), and of inference and learning of fragments of first order
logic. In addition, as the Curry-Howard isomorphism (see e.g. [1]) establishes a relationship

between intuitionism and typed A — calculus (i.e. typed functional programs), it would be
interesting to exploit this relationship w.r.t the connectionist model presented here, so that
one could present such concepts under a connectionist computational foundation.

References

1]
2]

S. Abramsky. Computational interpretations of linear logic. Theoretical Computer Science, 11(1-
2):3-57, 1993.

K. R. Apt and D. Pedreschi. Reasoning about termination of pure prolog programs. Information
and Computation, 106:109-157, 1993.

M. Baudinet. Temporal logic programming is complete and expressive. In Proceedings of ACM
Symposium on Principles of Programming Languages, pages 267-280, Austin, Texas, 1989.

P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, 2001.

G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. Artificial Intelligence,
109:297-356, 1999.

I. Cloete and J. M. Zurada, editors. Knowledge-Based Neurocomputing. The MIT Press, 2000.

G. Cybenco. Approximation by superposition of sigmoidal functions. In Mathematics of Control,
Signals and Systems 2, pages 303—-314. 1989.

R. Davies and F. Pfenning. A modal analysis of staged computation. Journal of the ACM,
48(3):555-604, 2001.

A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Symbolic knowledge extraction from trained
neural networks: A sound approach. Artificial Intelligence, 125:155-207, 2001.

A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Neural-Symbolic Learning Systems: Founda-
tions and Applications. Perspectives in Neural Computing. Springer-Verlag, 2002.

A. S. d’Avila Garcez, L. C. Lamb, K. Broda, and D. M. Gabbay. Distributed knowledge represen-
tation in neural-symbolic learning systems: A case study. In Proceedings of AAAI International
FLAIRS Conference, Florida, USA, 2003.

A. S. d’Avila Garcez, L. C. Lamb, and D. M. Gabbay. A connectionist inductive learning sys-
tem for modal logic programming. In Proceedings of IEEE International Conference on Neural
Information Processing ICONIP’02, Singapore, 2002.

A. S. d’Avila Garcez and G. Zaverucha. The connectionist inductive learning and logic pro-
gramming system. Applied Intelligence Journal, Special Issue on Neural Networks and Structured
Knowledge, 11(1):59-77, 1999.

D. M. Gabbay. Labelled Deductive Systems, volume 1. Clarendom Press, Oxford, 1996.

S. Holldobler and Y. Kalinke. Toward a new massively parallel computational model for logic pro-
gramming. In Proceedings of the Workshop on Combining Symbolic and Connectionist Processing,
ECAI 94, pages 6877, 1994.

S. Holldobler, Y. Kalinke, and H. P. Storr. Approximating the semantics of logic programs by
recurrent neural networks. Applied Intelligence Journal, Special Issue on Neural Networks and
Structured Knowledge, 11(1):45-58, 1999.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

M. Maidl. The common fragment of CTL and LTL. In Proceedings of 41st IEEE Symposium on
Foundations of Computer Science, pages 643—652, 2000.

R. Ramanujam. Semantics of distributed definite clause programs. Theoretical Computer Science,
68:203-220, 1989.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, volume 1, pages 318-362. MIT Press, 1986.

G. G. Towell and J. W. Shavlik. Knowledge-based artificial neural networks. Artificial Intelligence,
70(1):119-165, 1994.

