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Neural-Symbolic Systems

Cognitive Science

Logic
Learning

Neural Computation

Neuroscience

One Structure for Learning and Reasoning



  

Why Neural-Symbolic Systems?

“We need a language for describing the 
alternative algorithms that a network of neurons 

may be implementing” L. Valiant

(New) Logic + Neural Computation

GOAL: Learning from experience and reasoning 
about what has been learned in an uncertain 

environment in a computationally efficient way.



  

Neural-Symbolic Methodology
high-level symbolic representations 

(abstraction, recursion, relations, modalities)

translations

low level, efficient neural structures
(with the same, simple architecture throughout)

Analogy: low-level implementation (machine code) of 
high-level representations (e.g. java, requirements)  



  

A Foundational Approach
(as opposed to the neuroscience or the engineering approach)

One Structure for Learning and Reasoning: 

Take different tasks, consider what they have in 
common, formalize, evaluate and repeat.

KEY: controlling the inevitable accumulation of errors 

Applications: training in simulators, robocup,  
evolution of software models, bioinformatics, power 

plant fault diagnosis, semantic web (ontology 
learning), general game playing, visual intelligence.



  

Neural-Symbolic Learning Systems
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Connectionist Inductive Logic Programming 
(CILP) System 

A Neural-Symbolic System for Integrated Reasoning and 
Learning 
• Knowledge Insertion, Revision (Learning), Extraction 

(based on Towell and Shavik, Knowledge-Based Artificial Neural Networks.   
Artificial Intelligence, 70:119-165, 1994)

•  Applications: DNA Sequence Analysis, Power Systems Fault Diagnosis
(CILP using backpropagation with background knowledge: 

test set performance is comparable to backpropagation; 
test set performance on small training sets is comparable to KBANN;
training set performance is superior than backpropagation and KBANN)



  

r1:  A ← B,C,~D; 

r2 : A ← E,F;

r3 : B ←

CILP Translation Algorithm
A BθA θB

W WW

θ1 h1 θ2 h2 θ3 h3

B FE DC

WWW -WW

Interpretations

THEOREM: For any logic program P there exists a neural network N 
such that N computes P
based on Holldobler and Kalinke’s translation, but extended to sigmoid neurons 
(backprop) and hetero-associative networks
Holldobler and Kalinke, Towards a Massively Parallel Computational Model for Logic Programming. 
ECAI Workshop Combining Symbolic and Connectionist Processing , 1994.



  

Power Plant Fault Diagnosis (real problem) 
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Background Knowledge (35 rules with noise)
278 examples of single and multiple faults

Fault(ground,close-up,line01,no-bypass) IF 
Alarm(instantaneous,line01) AND 
Alarm(ground,line01)

There is a fault at transmission line 01, close to the power 
plant generator, due to an over-current in the ground line 
of transmission line 01, which occurred when the system 
was not using the bypass circuit.

Power Plant Fault Diagnosis 



  

Also, as expected, CILP networks learn faster 
than KBANN and backpropagation

Power Plant Fault Diagnosis (results)
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Promoter Recognition (bioinformatics)

Minus35 Minus10 Conform. Contact Promoter

-50 DNA +7 Minus35 Minus10 Conform. Contact

Promoter = small DNA sequence at beginning of genes



  

Promoter Recognition (results)
Background Knowledge (14 rules):

Promoter IF Contact AND Conformation
Contact IF Minus10 AND Minus35
Minus35 IF @-36'ttgac'
Minus35 IF @-37'cttgac'
Conformation IF @-47'caa*tt*ac' AND @-22'g***t*c' AND @-8'gcgcc*cc'

10-fold cross-validation on set of 106 examples

CILP networks learn faster than backpropagation and KBANN, and 
perform slightly better than backpropagation and KBANN on small 
training sets. We attribute this to the soundness of the CILP transla-
tion (i.e. the above theorem). 

We also ran experiments on the splice-junction determination prob-
lem obtaining similar results



  

CILP Rule Extraction
• Knowledge is extracted by querying/sampling 

the trained network;
• A partial ordering helps guide the search, 

reducing complexity on the average case;
• A proof of soundness guarantees that the rules 

approximate the behaviour of the network;
• Rule simplification and visualization 

techniques help experts validate the rules;
• The rules can be visualized in the form of a 

state transition diagram



  

CILP Extraction Algorithm

THEOREM: CILP rule extraction is sound
Challenge: efficient extraction of sound, readable knowledge from 
large-scale networks ( >100 neurons; >1000 connections)
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CILP extensions (deep networks)

• The importance of non-classical reasoning / 
representational richness: preferences, nonmonotonic, 
modal, temporal, epistemic, intuitionistic, abductive 
reasoning, value-based argumentation.

• New applications including normative reasoning 
(robocup), temporal logic learning / model checking, 
software model adaptation (business process evolution 
from text, e.g. email), training and assessment in 
simulators (driving test), visual intelligence (action 
classification in video).



  

CILP network ensembles

W1

W3W2

Modularity for learning, accessibility relations for modal, temporal 
reasoning, etc., disjunctive information...

THEOREM: For any modal, temporal, epistemic, etc. program P there ex-
ists an ensemble of networks N such that N computes P.



  

Connectionist Temporal Reasoning and Learning 

Agent 1 Agent 2 Agent 3

t1

t2

t3

at least 1 muddy child

3 muddy children

at least 2 muddy children

The muddy children puzzle (children are playing in a garden; at least one of 
them is muddy; they can see if the others are muddy, but not themselves; a 
caretaker asks: do you know if you’re muddy?). A full solution to the puzzle can 
only be given by a two-dimensional network ensemble. 

Learning with modal background knowledge is faster and offers better accuracy 
than learning by examples only (93% vs. 84% average test set accuracy)



  

Combining (Fibring) Networks
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Network A

Network B

fibring  function

Expressiveness to represent first-order logic...
Allows loosely-coupled integration: e.g. Network A and Legacy 
System B.

A neuron that is a network! neuromodulation?



  

Cognitive Model: Fibred Network Ensembles

meta-level 
relations

fibring functions

object-level

A. d'Avila Garcez, L. Lamb, D. Gabbay. Neural-Symbolic Cognitive 
Reasoning. Springer, 2009. 



  

Recent Applications
Training and Assessment in Simulators

Learning new information from observation of experts 
and trainees at task execution and reasoning about this 

information online to provide feedback to the user

L. de Penning, A. d'Avila Garcez, L. C. Lamb and J. J. Meyer. A 
Neural-Symbolic Cognitive Agent for Online Learning and 
Reasoning. IJCAI'11, July 2011



  

Recent Applications (cont.)

Learning Normative Rules of the RoboCup Competition

G. Boella, S. Colombo Tosatto, A. d'Avila Garcez, V. Genovese, A. Perotti 
and L. van der Torre. Learning and Reasoning about Norms using Neural-
Symbolic Systems. AAMAS'12, July 2012.



  

Recent Applications (cont.)
Software Model Verification and Adaptation Framework

Verification: NuSMV
Adaptation: Neural-Symbolic System

Borges, d'Avila Garcez, Lamb, Nuseibeh. Learning to Adapt Require-
ments Specifications of Evolving Systems. ICSE (NIER Track), May 2011.



  

V&A applied to Pump System 
example [AKRU, ICSE 2009]

The pump system controls the levels of water in a mine to avoid 
the risk of overflow; an initial, partial system description is available.

State variables: M (level of methane is critical) 
W (level of water is high)
P (pump is turned on)

Safety property in LTL: 



  

Verification (NuSMV) and 
example generation

sCMon → sHiW → turnPon → ¬PumpOn
network is three-valued: {-1,0,1}

sCMon → turnPon → sHiW → ¬PumpOn



  

Robust Adaptation
Learning of input-output patterns using backpropagation
(supervised learning algorithm to try and minimize the 
network error by adjusting its weights) 



  

Network Visualization

bb c

Process can be iterated until, hopefully, property is satisfied
(we hope that the new examples are useful in this respect)



  

Power Plant Fault Diagnosis (real 
problem; ongoing validation)

Safety property: G¬(Fault(*,*,line1,bypass)^Fault(*,*,line2,bypass))
(diagrams are annotated with alarms which trigger derived faults) 



  

V&A Framework: Conclusion
Formal Methods: Increasingly relevant in improving the quality of SW & 
processes.
Model Checking: successful, but still needs: (i) automated processes to 
adapt/evolve models, (ii) tools to verify systems when model descriptions 
are incomplete/unavailable.
Machine learning: successful in AI/CS applications dealing with adaptation 
and evolution, allowing automated knowledge acquisition from supervision, 
observation, or adaptation to the environment.
Major CS challenge: turning existing techniques into robust tools for 
modeling complex systems.
The V&A framework is capable of integrated verification and learning of 
temporal models. The main novelty is the use of learning through neural 
networks to bring more robustness to deal with: (i) incomplete or conflicting 
information (i.e. wrong BK), or (ii) to re-engineer a model from examples of 
system runs, when an initial model is not available (i.e. no BK).
Long-term aim: integration of FM & ML to deal with errors in different phases 
of the SW development process. 



  

Conclusion: Why Neurons and Symbols

To study the statistical nature of learning and the logical nature of 
reasoning.

To provide a unifying foundation for robust learning and efficient 
reasoning.

To develop effective computational systems for integrated reason-
ing and learning.



  

Current/Future Work

• Theory: how brains make mental models / 
representational richness / change of 
representation can help provide new insight

• Practice: systems and applications (training in 
simulators, verification and adaptation, visual 
intelligence, robotics)

• First Order Logic Learning: encoding vs. 
propositionalisation / binding problem

• Deep belief networks: adding and extracting 
domain knowledge / understanding multiple 
layer abstractions / fibring of networks 
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