Okapi 2.52

Managing XML Collections

Author: Fabio Venuti
Date: 9/07/2003

Table of Contents

1. Overview

2. Indexing Document Collections

2.1. Indexing collections in exchange format

2.2. Indexing XML collections

2.3. The parameter files

2.3.1. r_abbrev and f_abbrev

2.3.2. db_type

2.4. Examples

3. Searching Document Collections

3.1. Examples

4. Testing Okapi2.52

4.1. Experimental Setting

4.2. Results

5. The Programs

5.1. Obtaining the Sources

5.2. Compiling and Installing Okapi2.52

5.3. Utility Scripts (conversion and evaluation)

1. Overview

Okapi2.52 has been designed to extend the capabilities of Okapi in order to manage XML collections but maintaining backward compatibility. With Okapi2.52 it is actually easy to index SGML or HTML collections as well, the transformations required being trivial in most cases.

The fields to index can be entire XML elements or just attributes.

The way Okapi2.52 manages runtime files is fairly different from previous versions, but this is almost transparent to the user. What the user sees is a difference in the definition of the main parameter file and a slight difference in the way some commands are run.

Those who already know Okapi should find it easy to work with XML collections.

2. The Indexing Process

There are some basic differences between indexing collections in exchange and XML format. Let’s see first the exchange format case.

2.1. Indexing collections in exchange format

The indexing process has not changed with respect to previous versions of Okapi when indexing documents in exchange format. The process is depicted in Fig. 1 and can be structured in three phases.

1. A collection of documents {D1, ... , Dn} is translated into exchange by means of a Document Processor (usually constituted by one or more Perl and/or Shell scripts). The output is typically one single file in exchange format. This is a text file in which records and fields are separated by special characters. Fields have no names, their meaning can only be deducted by their position within a record.

2. The exchange format must be translated into an internal format, called runtime format. A program called convert_runtime performs such translation. The runtime format, in its simplest form, is made of two files:

· a .bib file that, for each record, contains information on the length of each field, along with the fields themselves;

· a .bibdir file that contains information on records’ offsets within the .bib file.

convert_runtime reads information from the main parameter file. It is possible to split the runtime format over several .bib files. When paragraph retrieval is needed, the files .par and .pardir are created as well. At the end of runtime conversion, the exchange file may be discarded.

3. The runtime files are fed to the programs ix1 and ixf (usually pipelined) that build the index files. For each index there are several index files (dictionary files, postings file etc.). The programs ix1 and ixf read information from the main parameter and search_groups.

2.2. Indexing XML collections

The process is depicted in Fig. 2 and is performed in three steps.

1. A file .xml.bib is obtained from a collection of documents {XML1, ... , XMLn}. This step involves simple operations: concatenation of the XML files, introduction of one top element and it might be necessary to make sure that only one DOCTYPE element (which defines the format) is present, at the beginning of the file. In theory, it would be possible to avoid completely this step and pass to convert_runtime a collection of files instead of just one file, but the performance of Okapi would worsen considerably. This step is of course not at all necessary if the collection is already given in one single file. Note that the file .xml.bib is an XML file itself. Note also that this processing phase is much simpler that the one needed to obtain a file in exchange format.

2. The .xml.bib file and the main parameter file are passed to convert_runtime to build the .xml.bibdir file. This step does not actually involve any conversion, but the name has been maintained for backward compatibility: convert_runtime analyzes the .xml.bib file and calculates offset and length of each record and field and then writes these data into .xml.bibdir. An example of the structure of .xml.bibdir is drawn in Fig. 3.

Where:

Oi = Absolute Offset of ith record within .xml.bib.

Li = Length of ith record.

Oftitle1 = Relative Offset of field “title” within ith record.

Lftitle1 = Length of field “title” in ith record.

Whilst records and fields are already marked in the exchange file, there is not such a thing in the .xml.bib file: convert_runtime does not know how to identify fields and records until it reads the instructions from the main parameter file. The main parameter file specifies which XML elements are to be considered records or fields, according to the syntax described in section 2.3.1.

3. ix1 extracts and processes terms from the relevant fields in .xml.bib following directions found in the parameter files. The way fields are identified in .xml.bib has of course changed, being the structure of .xml.bib and .xml.bibdir different from previous versions of Okapi. The results of this process are sent to ixf that produces the indexes and that has not changed at all.

2.3. The Parameter Files

The changes affecting the main parameter file concern the tags named f_abbrev, r_abbrev and db_type.

2.3.1. r_abbrev and f_abbrev

r_abbrev is a new tag and specifies the XML element name referring to a record. This tag is only needed when indexing XML collections. About f_abbrev, when used with non-XML collections its use and meaning has not changed with respect to older versions of Okapi. In the case of XML collections, though, f_abbrev actually tells convert_runtime how to recognize which XML element or attribute is a field of interest.

The syntax of r_abbrev and f_abbrev is intuitive.

Formally:

r_abbrev ::= xml_element_list

f_abbrev ::= xml_tag_list

xml_element_list ::= xml_element_list xml_tag | xml_tag

xml_tag_list ::= xml_tag xml_tag_list | xml_last_tag

xml_tag ::= <element_name>

xml_last_tag ::= <element_name> | <element_name attribute_name>

Suppose that a prototype record of an XML collection is like the one shown in Fig. 4 (from reuters).

Figure 4: Prototype of XML record
Then the obvious choice for record definition is:

r_abbrev=<newsitem>

But in theory nothing prevents from defining records in the following way:

r_abbrev=<text>

r_abbrev=<metadata>

r_abbrev=<metadata><codes>

These latter definitions of course impose a restriction on the fields that can be considered, since a field must appear within a record.

Assuming that <newsitem> has been chosen as record definition, then the following field definitions are all allowed:

f_abbrev=<newsitem itemid> /* field is ‘itemid’ attribute */

f_abbrev=<newsitem date> /* ‘date’ attribute */

f_abbrev=<title> /* field is ‘title’ element content */

f_abbrev=<text> /* ‘text’ element content */

f_abbrev=<medatada><codes class> /* ‘class’ attribute */

f_abbrev=<metadata><codes><code> /* ‘code’ element content*/

f_abbrev=<metadata><codes><code code> /* ‘code’ attribute */

Whilst the following definitions are not allowed:

f_abbrev=<newsitem itemid date>

/* Trying to define two fields at once. Use instead two

 f_abbrev definitions, one for each attribute */

f_abbrev=<metadata><codes class><code>

/* Same as above, use instead two f_abbrev definitions, one

 for attribute ‘class’, one for ‘code’ element content */

The following definitions are technically acceptable but pose a problem:

f_abbrev=<medatada><dc element>

f_abbrev=<metadata><dc value>

As the document prototype shows, the element “dc” is repeated several times with the same attributes: there is no way for the program to recognize which element to address. The result is that only the last element of the sequence is considered, that is, following the example, <medatada><dc element> field will have value dc.date.published and <metadata><dc value> will have value 1996-08-20.

2.3.2. db_type

The tag db_type assumes specific values in case of XML collections. At the time of writing the only admitted value is:

db_type = text xml1

but the programs are able to accept other types that might be introduced in the future. Basically, db_type tells convert_runtime how much memory is reserved to store offsets and lengths of records and fields. By manipulating these values it is possible to model different typologies of databases for different needs.

In the case of type xml1, these are the values assigned:

Record offset: 8 bytes

Field offset: 3 bytes

Record length: 3 bytes

Field length: 3 bytes

This makes it possible to index collections of ~1.8*1019 bytes in size, where each record or field is up to ~1.6*107 characters long. Most databases (especially abstract databases) need much less memory, so other database types might be introduced in the future that optimize memory usage.
2.4. Examples

Let’s assume that a collection of XML documents is contained in an XML file called reuters.xml.bib found in:

/export/collections/bibfiles/reuters
We want the indexes to be stored in:

/export/collections/indexes/reuters

The environment variables affecting Okapi are defined as in the following (C- Shell):

setenv OKAPI /project/okapi

setenv OKBIN $OKAPI/bin

setenv OKLIB $OKAPI/lib

setenv PATH ${OKBIN}:${OKLIB}:${PATH}

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${OKLIB}

setenv BSS_PARMPATH $OKAPI/parms

setenv BSS_TEMPPATH /tmp

setenv BSS_SEARCHPROG "$OKBIN/i1+ -silent"

The main parameter file is as in Fig. 5, the search_group file as in Fig. 6.

The program convert_runtime can be called in the usual way: The only difference is that we are not trying to convert an .exch file into a .bib file and create a .bibdir file; instead, we already have our .bib file and want to create just the .bibdir file.

% convert_runtime -c /project/okapi/parms REUTERS.XML <

/export/collections/bibfiles/reuters/reuters.xml.bib

Once convert_runtime has terminated, the indexing programs can be called in the usual way:

% ix1 -c /project/okapi/parms REUTERS.XML 0 | ixf -c /project/okapi/parms REUTERS.XML 0

3. Searching Document Collections

The search process has not changed but for the way documents are shown to the user. A new show format (format=15) has been introduced that makes it possible to retrieve and display an entire record in XML format. By using the default show format only the fields defined in the main parameter file are shown and the result is not an XML record.

3.1. Examples

Fig. 7 and Fig. 8 show examples of the output obtained by using the newly introduced show format=15 (abbreviated in f=15) and the default show format.

Figure 7: The new show format f=15

Figure 8: Output of default show format

4. Testing Okapi.2.52

Okapi2.52 was evaluated in order to test whether it behaves differently with XML and non-XML collections. The working hypothesis was that there are no differences. Efficiency in terms of time needed for indexing/searching and memory usage was also considered, but rather informally.

4.1. Experimental Setting

Okapi2.52 was tested using TREC data. The collection chosen was the financial times SGML collection, containing 210,158 records. The collection has been indexed in two different ways:

· By converting it into exchange format, then converting the .exch file into the runtime format and finally indexing in the traditional way. The collection was converted into exchange format by means of a shell script. This script performs actually some processing on the input.

· By converting the collection into XML format (it was enough to add an XML declaration at the beginning of the file and add a top element called financial_times) and indexing the collection as an XML database.

The fields considered were docno, headline, byline and text. The parameter files can be found following the instructions given in 5.1. The collections, called ft and ftxml, are found on dotty . The exchange file for ft is in:

/export/CISR-D/fabio/collections/exchange

The runtime files are in:

/export/CISR-D/fabio/collections/bibfiles
Indexes in:

/export/CISR-D/fabio/collections/indexes

Okapi.2.52 retrieval performance was then tested by using utility scripts to automatically generate queries from TREC topics, submit them to okapi, get the results and inputting them into the TREC evaluation program. All scripts and programs can be found by following instruction in 5.1, while in 5.3 there is a brief description of how to use them to perform the evaluation. From each of the four TREC topics’ files regarding the financial times collection, one topic number has been randomly chosen.

For each topic, the correspondent relevance judgements’ file has been considered. These relevance judgements ‘ files have been modified so that they contain only judgements for the financial times collection. The TREC evaluation program has then been fed with the results of the searches and relevance judgements, both for ft and ftxml.

4.2. Results

ft.xml.bib and ft.xml.bibdir are bigger than the correspondent ft.bib and ft.bibdir. This because ft.xml.bib actually contains the whole original collection, while ft.bib contains only the part of the records that have been converted into exchange format. Some of the ftxml index files are slightly bigger than ft ones, this probably due to the pre-processing of ft.exch (where part of the original text is removed).

The amount of time needed for converting/indexing is absolutely equivalent: around 1 minute for conversion and 13 minutes for indexing, in both cases.

The results from the evaluation runs are shown in the following Fig. 9-13. The TREC evaluation program did not track any difference in performance, but for a slight difference in topic 400 (interpolated recall-precision averages at 0.80). The slight difference can be attributed to the processing done on documents converted into exchange format.

Figure 9: Results for topic 260, both for ft and ftxml

Figure 10: Results for topic 343, both for ft and ftxml

Figure 11: Results for topic 400, ftxml case (differing data is in bold and underlined)

Figure 12: Results for topic 400, ft case (differing data is in bold and underlined)

Figure 13: Results for topic 439, both for ftxml and ft cases

5. The programs

5.1. Obtaining the Sources

Okapi.2.52 has been developed by using CVS. To check out sources, parameter files and various utility scripts used for the experiments follow these steps (assuming you work with C-Shell):

· make sure you belong to the unix group named tips. Only members of this group can access the repository.

· set the environment variable:

setenv CVSROOT /export/CISR-B/fabio/CVS-Rep

in .cshrc.

· run:

source ~/.cshrc

· run:

cvs checkout okapi

This creates an okapi directory with subdirectories:

src/bss (containing bss sources);

src/scripts (containing scripts used to index new collections and test Okapi.2.52);

src/convert, src/misc, src/stats, src/trec (containing other scripts, not used in this project);

parms (containing parameter files)

expat (containing expat library in tar format)

doc (containing documentation, including this document).

5.2. Compiling and Installing Okapi.2.52

Okapi.2.52 uses the Expat C library to parse XML documents. Expat is one of the most widely used XML parsers and lies at the core of many implementations of XML parsers in other languages (including Perl XML::Parser module and PHP XML extension).

So the Expat library must be installed on the machine where Okapi.2.52 is compiled.

Ideally, the library should be installed in a location expected by the compiler and linker. If not possible, then it is necessary to tell the compiler where to look for the Expat header and the linker where to find the Expat library.

To install Expat follow these steps:

· go to okapi/expat
· digit:

tar -xvf expat-1.95.6.tar
This will create a directory expat-1.95.6 with all the files needed to install Expat.

· digit:

cd expat-1.95.6

./configure

make

make install

This will install Expat with all the defaults already set (recommended), including its location (/usr/local/lib).

For more information on Expat, defaults and options, see:

~okapi/expat/doc/reference.html

Once Expat is installed, Okapi.2.52 is compiled and installed by means of the command

Makefile.unix install

the libraries and indexing programs (convert_runtime, ix1, ixf) are installed in the directory defined by the environment variable OKLIB, while i1+ is installed in OKBIN.

5.3. Utility Scripts (conversion and evaluation)

These are scripts used for indexing collections and performing experiments. They can be reused usually with small changes. The scripts are found in okapi/src/scripts.

The scripts used to transform collection are:

· xmlunzip: simply unzips a collection of zipped XML documents (used for reuters).

· xmlbuilder.pl: given a collection of XML documents, creates a single XML document containing the whole collection (used for reuters). To use this script with collections bigger than 2Gb, make sure that the version of Perl installed can handle large files and has 64-bit support.

· zcat_to_xml: takes a collection of compressed SGML documents and creates a single XML file containing the whole collection (used for TREC).

To reproduce the results obtained in the evaluation of Okapi.2.52, simply follow these steps:

· Modify environment variables in bss_setenv_csh (assuming you work with C-shell). Pay special attention to the variables named OKAPI and TREC_TOPICFILE.

· run, for instance:

%source bss_clearenv_csh

%source bss_setenv_csh

%gq -d ft.xml 260 | q_from_gq -n | run_query 260 > my_file.res

%trec_eval rel_judg my_file.res

where:

ft.xml is the name of the database chosen;

260 is the topic number within the topic file chosen;

my_file.res is a file where the results from okapi are redirected;

rel_judg is the file of relevance judgements as provided by trec.

Parameter files

:

Idj

Id1

ix1 | ixf

:

file

.bibdir

file

.bib

file

.exch

convert_runtime

:

Document

Processor

Dn

D1

Figure � SEQ Figure * ARABIC �1�: The indexing process for collections in exchange format.

Parameter files

Idj

Id1

ix1 | ixf

file

.xml.bibdir

file

.xml.bib

Figure � SEQ Figure * ARABIC �3�: Structure of .xml.bibdir

convert_runtime

:

Document

Processor

XMLn

XML1

LftitleN

OftitleN

LN

ON

O1

OftextN

LftextN

Figure � SEQ Figure * ARABIC �2�: The indexing process for XML collections.

.xml.bibdir

.

.

.

.

.

.

.xml.bib

<newsitem>

 ….

</newsitem>

<newsitem ...>

<title>.....</title>

...

<text>

...

</text>

...

</newsitem>

L1

Oftitle1

Lftitle1

Oftext1

Lftext1

name=reuters.xml

lastbibvol=0

bib_basename=reuters.xml.bib

bib_dir=/export/collections/bibfiles/reuters/

bibsize=4095

real_bibsize=390120506

display_name=reuters.xml

explanation=xml test

nr=128655

nf=2

r_abbrev=<newsitem>

f_abbrev=<title>

f_abbrev=<text>

db_type=text xml1

maxreclen=60654

ni=1

last_ixvol=0

ix_stem=/export/collections/indexes/reuters/reuters.xml

ix_volsize=4095

ix_type=8

Figure � SEQ Figure * ARABIC �5�: Main parameter file (REUTERS.XML)

kw|kwle 1 0 words3 psstem gsl.trec.largestop.notrailingapos 1 0 2 0 -1

Figure � SEQ Figure * ARABIC �6�: search_group parameter file (reuters.xml.search_groups)

<newsitem itemid="4929" date="1996-08-20" xml:lang="en">

 <title>...</title>

 <headline>...</headline>

 <dateline>...</dateline>

 <text>

 <p>...</p>

 <p>...</p>

 </text>

 <copyright>...</copyright>

 <metadata>

 <codes class="bip:countries:1.0">

 <code code="AUST">...</code>

 </codes>

 <dc element="dc.date.created" value="1996-08-20"/>

 <dc element="dc.publisher" value="Reuters Holdings Plc"/>

 <dc element="dc.date.published" value="1996-08-20"/>

 </metadata>

</newsitem>

dotty.soi.city.ac.uk% i1+.2.52

U: ch ft.xml

U: sp t=balkans

1 t=balkan c=N s=balkans

U: f t=balkan

S0 np=497 t=balkan

U: show f=15

<DOC>

<DOCNO>FT911-3408</DOCNO>

<PROFILE>_AN-BDYBFAAKFT</PROFILE>

<DATE>910425

</DATE>

<HEADLINE>

FT 25 APR 91 / Survey of Greece (2): The old feuds, the old troubles - Kieran Cooke looks for changes in the country's foreign policy

</HEADLINE>

<BYLINE>

 By KIERAN COOKE

</BYLINE>

<TEXT>

OPEN THE history books. Dust off the old maps. There is trouble again in the

Balkans.

The priorities of Greece's foreign policy have traditionally been Turkey,

...

</TEXT>

<PUB>The Financial Times

</PUB>

<PAGE>

London Page II Map (Omitted).

</PAGE>

</DOC>

U: show

Record 0 Weight 0.000

 1: <DOCNO>FT911-3408</DOCNO>

 2: <HEADLINE>

FT 25 APR 91 / Survey of Greece (2): The old feuds, the old troubles -

Kieran Cooke looks for changes in the country's foreign policy

</HEADLINE>

 3: <BYLINE>

 By KIERAN COOKE

</BYLINE>

 4: <TEXT>

OPEN THE history books. Dust off the old maps. There is trouble again in the

Balkans.

The priorities of Greece's foreign policy have traditionally been Turkey,

...

</TEXT>

Queryid (Num): 1

Total number of documents over all queries

 Retrieved: 1000

 Relevant: 4

 Rel_ret: 4

Interpolated Recall - Precision Averages:

 at 0.00 1.0000

 at 0.10 1.0000

 at 0.20 1.0000

 at 0.30 1.0000

 at 0.40 1.0000

 at 0.50 1.0000

 at 0.60 0.7500

 at 0.70 0.7500

 at 0.80 0.0449

 at 0.90 0.0449

 at 1.00 0.0449

Average precision (non-interpolated) for all rel docs(averaged over queries)

 0.6987

Precision:

 At 5 docs: 0.6000

 At 10 docs: 0.3000

 At 15 docs: 0.2000

 At 20 docs: 0.1500

 At 30 docs: 0.1000

 At 100 docs: 0.0400

 At 200 docs: 0.0200

 At 500 docs: 0.0080

 At 1000 docs: 0.0040

R-Precision (precision after R (= num_rel for a query) docs retrieved):

 Exact: 0.7500

Queryid (Num): 1

Total number of documents over all queries

 Retrieved: 1000

 Relevant: 77

 Rel_ret: 59

Interpolated Recall - Precision Averages:

 at 0.00 1.0000

 at 0.10 0.6154

 at 0.20 0.4571

 at 0.30 0.2574

 at 0.40 0.2147

 at 0.50 0.2051

 at 0.60 0.1391

 at 0.70 0.0776

 at 0.80 0.0000

 at 0.90 0.0000

 at 1.00 0.0000

Average precision (non-interpolated) for all rel docs(averaged over queries)

 0.2259

Precision:

 At 5 docs: 0.6000

 At 10 docs: 0.6000

 At 15 docs: 0.5333

 At 20 docs: 0.5000

 At 30 docs: 0.4667

 At 100 docs: 0.2500

 At 200 docs: 0.2000

 At 500 docs: 0.1040

 At 1000 docs: 0.0590

R-Precision (precision after R (= num_rel for a query) docs retrieved):

 Exact: 0.2597

Queryid (Num): 1

Total number of documents over all queries

 Retrieved: 1000

 Relevant: 50

 Rel_ret: 44

Interpolated Recall - Precision Averages:

 at 0.00 1.0000

 at 0.10 0.8333

 at 0.20 0.5263

 at 0.30 0.3768

 at 0.40 0.3768

 at 0.50 0.3768

 at 0.60 0.3523

 at 0.70 0.3274

 at 0.80 0.2222

 at 0.90 0.0000

 at 1.00 0.0000

Average precision (non-interpolated) for all rel docs(averaged over queries)

 0.3603

Precision:

 At 5 docs: 0.8000

 At 10 docs: 0.7000

 At 15 docs: 0.5333

 At 20 docs: 0.5000

 At 30 docs: 0.3333

 At 100 docs: 0.3300

 At 200 docs: 0.2050

 At 500 docs: 0.0880

 At 1000 docs: 0.0440

R-Precision (precision after R (= num_rel for a query) docs retrieved):

 Exact: 0.3200

Queryid (Num): 1

Total number of documents over all queries

 Retrieved: 1000

 Relevant: 50

 Rel_ret: 44

Interpolated Recall - Precision Averages:

 at 0.00 1.0000

 at 0.10 0.8333

 at 0.20 0.5263

 at 0.30 0.3768

 at 0.40 0.3768

 at 0.50 0.3768

 at 0.60 0.3523

 at 0.70 0.3274

 at 0.80 0.2210

 at 0.90 0.0000

 at 1.00 0.0000

Average precision (non-interpolated) for all rel docs(averaged over queries)

 0.3603

Precision:

 At 5 docs: 0.8000

 At 10 docs: 0.7000

 At 15 docs: 0.5333

 At 20 docs: 0.5000

 At 30 docs: 0.3333

 At 100 docs: 0.3300

 At 200 docs: 0.2050

 At 500 docs: 0.0880

 At 1000 docs: 0.0440

R-Precision (precision after R (= num_rel for a query) docs retrieved):

 Exact: 0.3200

Queryid (Num): 1

Total number of documents over all queries

 Retrieved: 1000

 Relevant: 71

 Rel_ret: 20

Interpolated Recall - Precision Averages:

 at 0.00 0.6667

 at 0.10 0.1194

 at 0.20 0.0318

 at 0.30 0.0000

 at 0.40 0.0000

 at 0.50 0.0000

 at 0.60 0.0000

 at 0.70 0.0000

 at 0.80 0.0000

 at 0.90 0.0000

 at 1.00 0.0000

Average precision (non-interpolated) for all rel docs(averaged over queries)

 0.0366

Precision:

 At 5 docs: 0.4000

 At 10 docs: 0.2000

 At 15 docs: 0.1333

 At 20 docs: 0.2000

 At 30 docs: 0.1333

 At 100 docs: 0.0800

 At 200 docs: 0.0600

 At 500 docs: 0.0300

 At 1000 docs: 0.0200

R-Precision (precision after R (= num_rel for a query) docs retrieved):

 Exact: 0.1127

