Okapi XML Indexing
Wei Lu (Reed)

Update: 24th May 2006

Okapi 2.53 is an upgraded version of Okapi for XML retrieval. It supports XML Path (element) and content indexing, and also provides a simple interface for XML retrieval by extending Okapi’s BSS (Basic Search System). It was initially modified for supporting experiments for INEX, and due to the change of the basic structure of the .oi file, the stability and the backward compatibility is not fully guaranteed at the time of writing. We suggest you use the older version of Okapi for free text retrieval. In the following sections, we will introduce the use of Okapi 2.53 for xml indexing and retrieval.

1 XML path (element) indexing

An indexing program based on XML parser Expat was developed for XML path indexing. We have not provided the functionality of filtering of XML elements for indexing at the time of writing. All the elements within record are indexed automatically (this function will be provided in the later versions) and attributes are ignored without indexing. Command xml_path is used as follows:

xml_path [destination database] [source bib file stem] [bib file number] [record tag] [record tag level]

where [bib file number] is the number of bib files to be indexed, [record tag] is the same as root_abbrev as that in .xml parameter file, and [record tag level] means the level where the record tag is in the bib source file e.g:

xml_path ./inex05.xml ./inex/inex-1.6/inex05.xml 2 article 3
Note: in the above example, there are 2 bib files to be indexed which should be named as inex05.xml.0.bib and inex05.xml.1.bib. For more information about bib file, please see the Okapi 2.52 documentation.

After executing xml_path, 4 kinds of files are generated: .path.id, .path.ix, .rec.offset, .el.offset. The detail structures of these files are as followed:
(1) .path.id

The .path.id file stores the path id information. For each different path, a unique integer id is given by its occurrence order in the collection, together with the path name and path depth, see below. In this file, ix_start and ix_end point to the start offset and end offset of the path instance information in file .path.ix. The next_id and child_pos fields point to the position of next path in the same level and its first child respectively for speeding up searching. Simple examples of path name are /newsitem, /newsitem/title and /newsitem/text/p etc. This file is sorted by path_name in ascendant order to ensure that all children path are behind their parent path. This sequence can improve the path retrieval speed significantly. With next_id and child_pos field provided, the search does not need to traverse the whole .path.id file to locate a speicified path. The structure of the file is as follows:

<num of path 4>[<depth 4><id 4><ix_start 4><ix_end 4><number of path 4><next_id 4><child_pos4><path_len 4><path_name var>]

(2) .path.ix

The .path.ix file stores path instances’ position information in file .el.offset. In this file, path_pos points to the position where the path instance is in .el.offset, and next_ix_pos points to next position of the same path’s instance in .path.ix. If this is the last instance of a specified path, the value of next_ix_pos is 0xffffffff. This file is similar to Okapi’s postings file but without grouping the records by path. This is useful for dynamic updating. For a static collection, grouping by path name would improve search speed. The structure of the file is as follows:
[<rec_num 4><path_pos 4><next_ix_pos 4>]

(3) .rec.offset

The.rec.offset file stores offset information of path instance in .el.offset. In this file, for each bib file, the number of record are stored at the beginning of this file after the bib file number. Start_offset points to the start position in .el.offset where stores the path instance information in the record. And offset_len of the total length of the instance information stored in .el.offset. The structure of the file is as follows:

<number of bib file 4>[<number of record in each bib file 4>][<start_offset 4><offset_len 4>]

(4) .el.offset

The .el.offset file stores path instances’ position information in XML collection. In this file, el_id is the same as that in .path.id, el_start points to the path instance’s start position in XML collection, el_len is the element length in the XML collection, and el_name is path instance’s detailed information which contains both element name and element index information. For example, given an path name /article/chapter/section/p, an example el_name is article[1]/chapter[2]/section[3]/p[2] which represents paragraph 2 in section 3, chapter 2. For each record, .el.offset stores elements in pre-order traversal B+ trees which benefits both the search and value indexing speed. The structure of the file is as follows:

[<el_start 4><el_len 4><el_id 4><el_name 4>]

Note: for each bib file, there is a corresponding .el.offset file
2 XML content indexing

There is nearly no difference between Okapi 2.53 and Okapi 2.52 for XML indexing. See Okapi 2.52 documentation for more details.

3 XML retrieval

We modified some of the BSS’s program for supporting XML retrieval. To date, we have not fully integrated XML retrieval with the BSS and just provide a simple retrieval results for further programming. The results are stored in the file inex.xml.path and it’s format is as follows:

[<rec num 4><term number 4><pos in record><term weight 8>]

For each term instance, record number, the term’s sequence in the stream, the term’s position in the record in the source collection and the weight of this term stream are stored in the file. This can be used together with .rec.offset and .el.offset for further XML experiment.

All the commands are the same as the old BSS system, except that we use the function ‘bm2500’ to output the results for XML retrieval. For example, to search “artificial intelligence”, we use the following command:

dotty.soi.city.ac.uk% i1+

U: ch inex05.xml

U: p t=artificial intelligence

2 t=artifici t=intellig

U: f t=artifici

S0 np=3715 t=artifici

U: w

1.260

U: f t=intellig

S1 np=6190 t=intellig

U: w

0.541

U: f s=0 w=1.260 s=1 w=0.541 op=bm2500

S4 np=6735 maxwt=0.000 nmaxwt=6735 ngw=6735 mpw=3.962 nmpw=0

Note: the xml_path command is released under the GPL, however Okapi itself remains Closed source software.
