

CITY UNIVERSITY
SCHOOL OF ENGINEERING AND MATHEMAICAL SCIENCES

COMMON PART I
FORTRAN LECTURE 4

ARRAYS, SUBPROGRAMS, DATA and COMMON

4.1 ARRAYS
4.1.1 DATA STORAGE
 Write a program to calculate the average of a long list of numbers. We do not know how many
numbers to expect, but we know if we type in an incorrect number type Fortran will give a run time
error. We can trap this error ourselves and use it to terminate the input, also to count how many
numbers we have types in.

!-------
! read
!-------
!

101

!
!-------
! user
!with n
!-------
!
100 I
 W

S
1000
 E

Now
pro
can
mat

PROGRAM PROG14

in a long list of numbers and calculate the average

 WRITE (*,*) ‘ Please type in a list of real numbers. To end input type a letter’
 N=0
 SUM=0.0
 AVERAGE=0.0
 READ (*,1000, ERR=100) X ! trap format errors ourselves
 N=N+1
 SUM=SUM+X
 GOTO 101 ! loop until format error

ended input
on numeric character

F (N.GT.0)AVERAGE=SUM/N
RITE (*,*) ‘Sum of ‘, N ,’ numbers is ‘,SUM, ‘average is ‘,AVERAGE
TOP

FORMAT (F12.3)
ND
 if we want to calculate the number above average there is a problem, since the previous
gram did not save the input numbers. The computer has no record of what the user typed. We
 use some memory to store the long list of numbers. This is called an ARRAY. We can store a
rix with a two dimensional array. Think of an array as a matrix with only one column. Just as a

 1

matrix needs some subscripts to identify each number and array also needs a subscript. We can
write in Fortran:-

 PROGRAM PROG15
 DIMENSION X(100)
!-------------------
! read in a long list of numbers and calculate the average
!------------------
 WRITE (*,*) ‘ Please type in a list of real numbers. To end input type a letter’
 N=0
 SUM=0.0
 AVERAGE=0.0
 I=1 ! ARRAY SUBSCRIPT
101 READ (*,1000, ERR=100) X(I) ! trap format errors ourselves
 N=N+1
 SUM=SUM+X(I)
 I=I+1
 IF (I.GT.100) GO TO 102
 GOTO 101 ! loop until format error
!------------------------
! ran out of array memory
!------------------------
 102 WRITE (*,*) ‘ONLY ROOM FOR 100 NUMBERS’
!!
!------------------------
! user ended input
!with non numeric character
!------------------------
100 IF (N.GT.0)AVERAGE=SUM/N
 WRITE (*,*) ‘Sum of ‘, N ,’ numbers is ‘,SUM, ‘average is ‘,AVERAGE
!-----------------------------
! now we can go back and recheck the data
!------------------------------
 NABOVE=0
 IF (N.LE.0) GO TO 106
 DO 105 II=1,N
 IF(X(II).GT.AVERAGE) NABOVE=NABOVE+1
 105 CONTINUE
 106 Write (*,*) ‘number above average-=’,NABOVE

STOP
1000 FORMAT (F12.3)
 END

 2

4.1.2 A simple sort program

 Once the data is stored in memory we can write a sort program to put the data in numerical order.
A simple method is called a BUBLE sort. We compare every number with every other number and
change the position in the array if they are not in order. Eventually the biggest number will rise to
the top. Then we look for the second largest and so on. This is a poor sorting algorithm, but good
for teaching Fortran.

 PROGRAM PROG16
 DIMENSION X(100)
!-----------------------------
! read in a long list of numbers and calculate the average
!------------------------
 WRITE (*,*) ‘ Please type in a list of real numbers. To end input type a letter’
 N=0
 SUM=0.0
 AVERAGE=0.0
 I=1 ! ARRAY SUBSCRIPT
101 READ (*,1000, ERR=100) X(I) ! trap format errors ourselves
 N=N+1
 SUM=SUM+X(I)
 I=I+1
 IF (I.GT.100) GO TO 102
 GOTO 101 ! loop until format error
!-----------------------------
! ran out of array memory
!-----------------------------
 102 WRITE (*,*) ‘ONLY ROOM FOR 100 NUMBERS’
!-----------------------------
! user ended input
!with non numeric charcter
!------------------------------
100 IF (N.GT.0)AVERAGE=SUM/N
 WRITE (*,*) ‘Sum of ‘, N ,’ numbers is ‘,SUM, ‘average is ‘,AVERAGE
!-------------------------------
! we can go back and recheck the data
!-------------------------------
 NABOVE=0
 IF (N.LE.0) GO TO 106
 DO 105 II=1,N
 IF(X(II).GT.AVERAGE) NABOVE=NABOVE+1
 105 CONTINUE
 106 Write (*,*) ‘number above average-=’,NABOVE
! -------------------------------
!sort into numerical order
!-------------------------------

 3

4.2 SUBPROGRAMS

Engineering programs are often many thousands of lines long. The use of subroutines and user-defined functions make
such programs easier to write and understand. Subprograms can also decrease the size of a program as the same
mathematical expressions or operations frequently appear at several different locations in a program.

4.2.1 USER-DEFINED FUNCTIONS
User-defined functions are called by the (main) program in a manner similar to that used for intrinsic functions. The
structure of the user-defined function is shown in the example below.

 Program prog17
 write(*,*)'Radius of cylinder?'
 read(*,*)radius
 write(*,*)'Height of cylinder?'
 read(*,*)height
!
 vol = volume(radius,height)
!
 write(*,100)vol
 100 format(' ','Volume = ',e10.3)
 stop
 end
!
!---------------
 function volume(r,h)
 pi = 4*atan(1.0)
 base = pi*r**2
 volume = base*h
 return
 end

!--------------------
! nested do loops compare all the numbers in our list with each other
! outer loop starts with II =1, then inner loop starts with JJ=II
!---------
!
 IF (N.EQ.0) STOP
 DO 110 II=1,N
 DO 110 JJ=II,N
 IF (X(II).GE.X(JJ)) GO TO 110
 TEMP=X(II)
 X(II)=X(JJ)
 X(JJ)=TEMP
110 CONTINUE

!------------------
!print out answers
!------------------
 DO 111 JJ=1,N
 WRITE (*,1002) X(JJ)
111 CONTINUE

STOP
1000 FORMAT (F12.3)
 1002 FORMAT (1X,F12.3)
 END
 4

Notes:
• The function is defined in a self-contained, separate, program unit (or sub-program) that starts with the word

“function” followed by the name of the function (volume in the above), which is followed by an argument list.
• There must be a one-to-one correspondence between the number and type (i.e., real or integer) of variables in

the calling argument list and the function argument list.
• The names of the variables in the function argument list are local to the function. That is, “r” and “h” are only

known within the function. All other variables appearing in the function are also only known within the
function. For example, in the above, the main program would not know the value of pi.

• The result of the calculation performed in the function is returned to the main program through the function
name.

• The first letter of the function name defines the type of the function (i.e., real or integer).
• The function must contain a “return” and an “end” statement.

4.2.2 Single-line user-defined functions

A simplified user-defined function is possible if the required expression fits on one line. The structure of this type of
user-defined function is shown below

 !

 volume(r,h) = h*pi*r**2
!
 pi = 4*atan(1.0)
 write(*,*)'Radius of cylinder?'
 read(*,*)radius
 write(*,*)'Height of cylinder?'
 read(*,*)height
 vol = volume(radius,height)
 write(*,100)vol
 100 format(' ','Volume = ',e10.3)
 stop
 end

Notes:

• The definition of the function has to be placed above all executable or declaration statements.
• Not all parameters used in the function need to be passed through the function argument list (e.g., pi in the

above).

4.2.3 SUBROUTINES

Subroutines are in many ways similar to user-defined functions, but subroutines allow more than
one variable to be returned to the main program. For example, in the program below, three
variables, d, v, and a are returned.

 5

Notes:

• Unlike user-defin
are passed back to

• Control is passed
• Control is passed
• As with functions

nominally though
the corresponding
variable in a subro

• There must be a o
the calling argum

• Subroutines can b
• Subroutines may

4.2.4 Three more sub

 Program prog16 is getting
subroutines. Each subrouti
time.
Try editing PROG16 as be

 PROGRAM PROG18
 s0 = 0.0
 v0 = 98.1
 a0 = -9.81
 write(*,*)' time dist vel accel'
 do 10 i = 1,11
 t = 2.0*(i-1)
 ha0 = 0.5*a0
!
!-------------
 call trak(s0,v0,ha0,t,d,v,a)
!--------------
!
 write(*,100)t,d,v,a
 10 continue
 100 format(' ',4f10.3)
 stop
 end
!------------
!-------------

 subroutine trak(a,b,c,x,y,dy,dy2)
 y = a+b*x+c*x*x
 dy = b+2*c*x
 dy2 = 2*c
 return
 end
ed functions, results of the calculation performed in the subroutine (y,dy,dy2 in the above)
 the main program via the arguments list.
to the subroutine by a “call” to the subroutine name.
back to the main program by the subroutine’s “return” statement.
, variables in the subroutine are local to the subroutine. However, if the variables that are
t of as inputs (e.g., a, b, c, x in the above) are changed in the subroutine, then the values of
 variables (e.g., s0, v0, ha0, t in the above) are changed in the calling program. That is, a
utine argument list can be both an input and an output parameter.
ne-to-one correspondence between the number and type (i.e., real or integer) of arguments in
ent list and the function argument list.
e called by other subroutines.
contain read and write statements.

routines

 a bit long. We can make it easier to understand by splitting it into three different
ne can be in a separate source file, compiled separately and then linked together at build

low. Type in a new Prog16 and save as a file PROG16.f95.

 6

! type and store as prog16.f95
!Compile into a file prog16.obj
PROGRAM PROG16

DIMENSION X(100)

 CALL INPUT (X,N)
 IF(N.EQ.0) STOP
 CALL AVERAGE(X,N,AVERAGE)
 CALL ABOVE (X,N,AVERAGE,NABOVE)
 CALL SORT(X,N)
 CALL OUTPUT (X,N,AVERAGE,NABOVE)
 STOP
 END PROG16

The file prog16.f5 cn be compiled without any errors, but it will not build into an executable file.
The subroutines must be defined. These can be typed in and stored and compiled in separate files.

 SUBROUTINE INPUT(Y,M)
! read in a long list of numbers
!Save in a file input.f95. Compile into a file input.obj
!----------------
 DIMENSION Y(100)
 WRITE (*,*) ‘ Please type in a list of real numbers. To end input type a letter’
 M=0
101 READ (*,1000, ERR=100) Y(M) ! trap format errors ourselves
 IF (I.GT.100) GO TO 102
 GOTO 101 ! loop until format error
! run out of array memory
!
 102 WRITE (*,*) ‘ONLY ROOM FOR 100 NUMBERS’
!-----------------
! user ended input
!with non numeric charcter
!------------------
 100 RETURN
1000 FORMAT (F12.3)
 END

 7

 SUBROUTINE AVERAGE (Z,N,AV)
 DIMENSION Z(100)
!
! CALCULATE AVERAGE OF OUR LIST OF NUMBERS
! STORE IN FILE AVERAGE.F95
!
 SUM=0.0
 AV=0.0
 DO 100 KK=1,N
 SUM=SUM+Z(KK)
 100 CONTINUE
 AV=SUM/N
 RETURN

END
 SUBROUTINE ABOVE (F,NM,AV1,ABV2)
 DIMENSION F(100)
 ABV2=0
 DO 100 KK=1,NM
 IF (F(KK).GT.AV1) ABV2=ABV2+1
100 CONTINUE
 RETURN
 END

 SUBROUTINE SORT(G,NUMBERS)
 DIMENSION G(100)
 DO 110 II=1,NUMBERS
 DO 110 JJ=II,NUMBERS
 IF (G(II).GE.G(JJ)) GO TO 110
 TEMP=G(II)
 G(II)=G(JJ)
 G(JJ)=TEMP
110 CONTINUE

 RETURN
 END

 SUBROUTINE OUTPUT (X,N,AVERAGE,NABOVE)
 DO 111 JJ=1,N
 WRITE (*,1002) X(JJ)
111 CONTINUE

WRITE (*,*) ‘average of ‘ ,N,’ is ‘,AVERAGE,’nmber above is’,NABOVE
STOP

 1002 FORMAT (1X,F12.3)
 END
 8

4.3 COMMON BLOCKS
If variables are to be used in several subroutines it is sometimes more convenient to place them in a special part of the
computer memory, accessible by all routines, known as a common block. Several features of common blocks are
illustrated in the example below.

Output from
above
program

 common i,a,b
 i = 2
 a = 3.0
 b = 6.0
 c = 1.0
 d = 0.0
 e = 0.0
 f = 0.0
 call sub01(c,d)
 write(*,100)i,a,b,c,d,e,f
 call sub02(d,e)
 write(*,100)i,a,b,c,d,e,f
 call sub03(i,a,b,e,f)
 write(*,100)i,a,b,c,d,e,f
 10 continue
 100 format(' ',i4,6f8.2)
 stop
 end
 subroutine sub01(a,sum)
 common jj,aa,bb
 sum = 0.0
 do 10 i = 1,jj
 sum = sum+a+aa+bb
 10 continue
 return
 end
 subroutine sub02(a,sum)
 common k,ak,bk
 sum = 0.0
 do 10 i = 1,k
 sum = sum+a+2*ak+bk
 ak = 0.5*sum
 10 continue
 return
 end
 subroutine sub03(m,a,b,c,sum)
 sum = 0.0
 do 10 i = 1,m
 sum = sum+a+3*b+c
 10 continue
 return
 end

Notes:

• Variabl
list. Ho
list (e.g

• Like ar
commo
sub01,

 2 3.00 6.00 1.00 20.00 0.00 0.00
 2 45.00 6.00 1.00 20.00 90.00 0.00
 2 45.00 6.00 1.00 20.00 90.00 306.00
es appearing in a common statement in a subroutine cannot also appear in that subroutine’s argument
wever, variables in common in the calling routine can be passes to a subroutine through its argument
., sub03 in the above).
gument lists, variable names used in common are local to the program unit. It is only the position in the
n list, and type (real or integer) that must correspond. For instance, “a” in the main program is “aa” in
and “ak” in sub02; and the “c” in the argument list of sub03 is the variable “e” in the main program.

 9

• The value of variables in common can be changed at any point; i.e., in a subroutine. (e.g., ak is redefined in
sub02, which means that a in the main program is changed).

• Common statements appear before all other statements in the main program and in subroutines.

4.4 DATA STATEMENTS

DATA statements can be used to set the numerical value of constants stored in common.

 COMMON X,Y,Z
 DATA X,Y,Z /1.0,2.0,3.0/

 10

	CITY UNIVERSITY
	4.2 SUBPROGRAMS
	Notes:
	4.2.4 Three more subroutines
	4.3 COMMON BLOCKS
	Output from above program

