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PROCEEDINGS

Conductance from Non-perturbative Methods I
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Abstract:We investigate different methods to compute the DC conductance in a quan-

tum wire doped with some impuritied by exploiting the integrability of the theories under

consideration. As an essential ingredient in all methods we evaluate the reflection and

transmission amplitudes of the impurities for a variety of defects. When the impurities in

the wire are coupled to an external three dimensional laser field, we predict the generation

of harmonic emission spectra. We propose a modified version of the well-known Kubo for-

mula, which incorporates the impurities of the system and evaluate the current-current

two-point correlation function it involves with the help of a form factor expansion. A

comparison with the corresponding quantities computed in a Landauer transport theory

picture is carried out in part II.

The work I want to report about is based on a series of papers [1, 2, 3, 4, 5, 6] with an

emphasis on the first two. Olalla Castro-Alvaredo will present the second part of this talk.

1. Generalities on conductance

In the context of 1+1 dimensional quantum field theories an impressive arsenal of non-

perturbative techniques has been developed over the last 25 years. The original motivation

was to use the lower dimensional set up as a testing ground for general conceptual ideas and

possibly to apply them in the context of string theory, such that most of the work in this

area can be characterized very often as rather formal. However, lately the experimental

techniques have advance to such an extent that one might realistically hope to measure

various quantities which can be predicted based on these approaches.

One of those quantities, which is particularly easy to access, is the conductance (con-

ductivity). It can be measured in general directly without perturbing very much the

behaviour of the system, e.g. a rigid-lattice bulk metal, such that the uncertainty of ex-

perimental artefacts is reduced to a minimum. Indeed, there have been some fairly recent
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measurements [7] of this quantity in 1+1 dimensions and the challenge is of course to

explain these data theoretically and possibly inspire more experiments of a similar type.

There exist two main theoretical descriptions to compute the conductance, the Kubo

formula [8, 9], which is the outcome of a dynamical linear-response theory and the Landauer-

Büttinger theory [10], which is a semi-classical transport theory. The main purpose of the

work I want to present is a comparison between these two descriptions by employing non-

perturbative methods of 1+1 dimensional integrable models. It is in this sense the wording

non-perturbative is to be understood, that is despite the fact that the overall theoretical

description is of a perturbative nature, within these frameworks we use non-perturbative

methods. I will concentrate on our proposal of a generalized Kubo formula and in the

second part, presented by Olalla Castro-Alvaredo, the computations within the Landauer-

Büttinger transport theory framework will be presented.

I will start by anticipating the quantities we have to compute. The system we consider

is a one dimensional quantum wire doped with some impurities (defects). For the time being

we leave the theory describing the wire and also the nature of the impurities unspecified.

In linear response theory one essentially needs the Fourier transform of the current-current

two-point correlation function. This so-called Kubo formula has been adopted to a situation

with a boundary [11]. Since this only captures effects coming from the constriction of the

wire a generalization to a set up with defects was needed, which we proposed in [1] as

Gα(T ) = − lim
ω→0

1

2ωπ2

∫ ∞
−∞

dt eiωt 〈J(t)Zα J(0)〉T,m . (1.1)

Here the defect operator Zα enters in-between the two local currents J within the temper-

ature T and mass m dependent correlation function. The Matsubara frequency is denoted

by ω.

The other possibility of determining the conductance which we want to study, is a

generalization of the Landauer-Büttinger transport theory picture. Within this framework

a proposal for the conductance through a quantum wire with a defect (impurity) has been

made in [12, 13]

Gα(T ) =
∑
i

lim
(µli−µri )→0

qi
2

∫ ∞
−∞

dθ
[
ρri (θ, T, µ

l
i)|Tαi (θ) |2 − ρri (θ, T, µri )|T̃αi (θ) |2

]
, (1.2)

which we only modify to accommodate parity breaking. This means we allow the trans-

mission amplitudes for a particle of type i with charge qi passing with rapidity θ through

a defect of type α from the left Tαi (θ) and right T̃
α
i (θ) to be different. The density distri-

bution function ρri (θ, T, µi) depends on the temperature T , and the potential at the left µ
l
i

and right µri constriction of the wire.

The main quantities we have to compute before we can evaluate (1.1) and (1.2) are

the transmission amplitudes Ti, the current-current correlation functions 〈. . .〉T,m and the
density distributions ρi. We obtain all of them non-perturbatively, the T ’s by means of

potential scattering theory, e.g. [14], the correlation function from a form factor [15, 16, 17]

expansion and the ρ’s from a thermodynamic Bethe (TBA) ansatz [18] analysis.
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2. Impurity systems

2.1 Constraints from the generalized Yang-Baxter equations

Let me start with the evaluation of the transmission amplitudes, since they will be required

in (1.1) as well as in (1.2). One of the great advantages of integrability in 1+1 dimensional

models is that the n-particle scattering matrix factorises into two-particle S-matrices, which

can be determined by some constraining equations such as the Yang-Baxter [19] and boot-

strap equations [20]. Similar equations hold in the presence of a boundary [21, 22, 23]

or a defect [24, 4]. It is clear that with regard to the conductance a situation with a

pure boundary, i.e. non-trivial effects on the constrictions, or purely transmitting defects

will be rather uninteresting and we would like to consider the case when R and T are

simultaneously non-vanishing. Unfortunately, it will turn out that for that situation the

Yang-Baxter equations are so constraining that not many integrable theories will be left

to consider. Thus this section serves essentially to motivate the study of the free Fermion,

which after all is very close to a realistic system of electrons propagating in quantum wires.

We label now particle types by Latin and degrees of freedom of the impurity by Greek

letters, the bulk scattering matrix by S, and the left/right reflection and transmission am-

plitudes of the defect by R/R̃ and T/T̃ , respectively. Then the transmission and reflection

amplitudes are constrained by the “unitarity” relations

R
jβ
iα (θ)R

kγ
jβ(−θ) + T

jβ
iα (θ)T̃

kγ
jβ (−θ) = δki δ

γ
α, (2.1)

Rjβiα (θ)T
kγ
jβ (−θ) + T

jβ
iα (θ)R̃

kγ
jβ (−θ) = 0 , (2.2)

and the crossing-hermiticity relations

Rα
̄
(θ) = R̃α

̄
(−θ)∗ = Sj̄(2θ)R̃αj (iπ − θ) , (2.3)

Tα
̄
(θ) = T̃α

̄
(−θ)∗ = T̃αj (iπ − θ) . (2.4)

The equations (2.1) and (2.2) also hold after performing a parity transformation, that is

for R↔ R̃ and T ↔ T̃ .

Depending now on the choice of the initial asymptotic condition one can derive the

following two non-equivalent sets of generalized Yang-Baxter equations by exploiting the

associativity of the extended Zamolodchikov-Faddeev algebra [21, 22, 23, 24, 4]

S(θ12)[I⊗Rβα(θ1)]S(θ̂12)[I⊗R
γ
β(θ2)] = [I⊗R

β
α(θ2)]S(θ̂12)[I⊗R

γ
β(θ1)]S(θ12), (2.5)

S(θ12)[I⊗Rβα(θ1)]S(θ̂12)[I⊗ T
γ
β (θ2)] = Rγβ(θ1)⊗ T

β
α (θ2), (2.6)

S(θ12)[T
β
α (θ2)⊗ T

γ
β (θ1)] = [T

β
α (θ1)⊗ T

γ
β (θ2)]S(θ12), (2.7)

and

Rβα(θ1)⊗ R̃
γ
β(θ2) = R

γ
β(θ1)⊗ R̃

β
α(θ2), (2.8)

[T βα (θ2)⊗ I]S(θ̂12)[R̃
γ
β(θ1)⊗ I]S(θ12) = T γβ (θ2)⊗ R̃

β
α(θ1), (2.9)

[I⊗ T̃ βα (θ2)]S(θ̂12)[I⊗R
γ
β(θ1)]S(θ12) = Rβα(θ1)⊗ T̃

γ
β (θ2), (2.10)

[T βα (θ1)⊗ I]S(θ̂12)[T̃
γ
β (θ2)⊗ I] = [I⊗ T̃

β
α (θ2)]S(θ̂12)[I⊗ T

γ
β (θ1)]. (2.11)

– 3 –
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We used here the convention (A ⊗ B)klij = AkiB
l
j for the tensor product and abbreviated

the rapidity sum θ̂12 = θ1+ θ2 and difference θ12 = θ1− θ2. Once again the same equations
also hold for R↔ R̃ and T ↔ T̃ .

Apart from some discrepancies in the indices the equations (2.5)-(2.7) correspond to a

more simplified, in the sense that there were no degrees of freedom in the defect and parity

invariance is assumed, set of equations considered previously in [24]. For diagonal scattering

it was argued in [24] that one can only have reflection and transmission simultaneously when

S = ±1. In [4] a more general set up which includes all degrees of freedom was studied.
A second set of equations (2.8)-(2.11), which is not equivalent to (2.5)-(2.7) was found. It

was shown that in the absence of degrees of freedom in the defect no theory which has

a non-diagonal bulk scattering matrix admits simultaneous reflection and transmission.

This result even holds for the completely general case including degrees of freedom in the

defect upon a mild assumption on the commutativity of R and T in these variables. It

was further shown that besides S = ±1 also the Federbush model [25] and the generalized
coupled Federbush models [6] allow for R 6= 0 and T 6= 0.

2.2 Multiple impurity systems

The most interest situation in impurity systems arises when instead of a single one considers

multiple defects, since that leads to the occurrence of resonance phenomena and when the

number of defects tends to infinity even to band structures. Assuming that the distance

between the defects is small in comparison to the length of the wire one can easily construct

the transmission and reflection amplitudes of the multiple defect system from the knowledge

of the corresponding quantities in the single defect system. For instance for two defects

one obtains

Tαβi (θ) =
Tαi (θ)T

β
i (θ)

1−Rβi (θ)R̃αi (θ)
, Rαβi (θ) = R

α
i (θ) +

Rβi (θ)T
α
i (θ)T̃

α
i (θ)

1−Rβi (θ)R̃αi (θ)
, (2.12)

T̃
αβ
i (θ) =

T̃αi (θ)T̃
β
i (θ)

1−Rβi (θ)R̃αi (θ)
, R̃

αβ
i (θ) = R̃

β
i (θ) +

Rαi (θ)T
β
i (θ)T̃

β
i (θ)

1−Rβi (θ)R̃αi (θ)
. (2.13)

These expressions allow for a direct intuitive understanding, for instance we note that the

term [1 − Rβi (θ)R̃αi (θ)]−1 =
∑∞
n=1(R

β
i (θ)R̃

α
i (θ))

n simply results from the infinite number

of reflections which we have in-between the two defects. This is of course well known from

Fabry-Perot type devices of classical and quantum optics. For the case T = T̃ , R = R̃ the

expressions (2.12) and (2.13) coincide with the formulae proposed in [26]. When absorbing

the space dependent phase factor into the defect matrices, the explicit example presented in

[24] for the free Fermion perturbed with the energy operator agree almost for T = T̃ , R = R̃

with the general formulae (2.12). They disagree in the sense that the equality of Rαβi (θ)

and R̃αβi (θ) does not hold for generic α, β as stated in [24].

It is now straightforward to generalize the expressions for an arbitrary number of

defects, say n, in a recursive manner

T ~αi (θ) =
Tα1...αki (θ)T

αk+1...αn
i (θ)

1− R̃α1...αki (θ)R
αk+1...αn
i (θ)

, 1 < k < n , (2.14)

– 4 –
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R~αi (θ) = Rα1...αki (θ) +
R
αk+1...αn
i (θ)Tα1...αki (θ)T̃α1...αki (θ)

1− R̃α1...αki (θ)R
αk+1...αn
i (θ)

, 1 < k < n . (2.15)

We encoded here the defect degrees of freedom into the vector ~α={α1, · · · , αn}. Similar
expressions also hold for T̃ ~αi (θ) = T̃

α1...αn
i (θ) and R̃~αi (θ) = R̃

α1...αn
i (θ).

Alternatively, we can define, in analogy to standard quantum mechanical methods (see

e.g. [14]), a transmission matrix which takes the particle i from one side of the defect of

type α to the other

Mi
α(θ) =

(
Tαi (θ)

−1 −Rαi (θ)Tαi (θ)−1
−Rαi (−θ)Tαi (−θ)−1 Tαi (−θ)−1

)
. (2.16)

Then alternatively to the recursive way (2.14) and (2.15), we can also compute the multi-

defect transmission and reflection amplitudes as

T ~αi (θ) =

(
n∏
k=1

Mi
αk
(θ)

)−1
11

, R~αi (θ) = −
(
n∏
k=1

Mi
αk
(θ)

)
12

(
n∏
k=1

Mi
αk
(θ)

)−1
11

. (2.17)

This formulation has the virtue that it is more suitable for numerical computations, since

it just involves matrix multiplications rather than recurrence operations. In addition it

allows for an elegant analytical computation of the band structures for n → ∞, which I
will however not comment upon further in this talk.

2.3 Constraints from potential scattering theory

As we argued in section 2.1., in order to obtain a non-trivial conductance we are lead to

consider free theories, possibly with some exotic statistics. Trying to be as close as possible

to some realistic situation, i.e. electrons, we consider first the free Fermion, which with a

line of defect was first treated in [27]. Thereafter it has also been considered in [28, 24]

and [29] from different points of view. In [27, 28, 24] the defect line was taken to be of the

form of the energy operator and in [29] also a perturbation in form of a single Fermion has

been considered. In [1] we treated a much wider class of possible defects.

Let us consider the Lagrangian density for a complex free Fermion ψ with ` defects1

L = ψ̄(iγµ∂µ −m)ψ +
∑̀
n=1

Dαn(ψ̄, ψ, ∂tψ̄, ∂tψ)δ(x − xn) . (2.18)

The defect is described here by the functions Dαn(ψ̄, ψ, ∂tψ̄, ∂tψ), which we assume to
be linear in the Fermi fields ψ̄,ψ and their time derivatives. We can now proceed in

1We use the conventions:

xµ = (x0, x1), pµ = (m cosh θ,m sinh θ), g00 = −g11 = ε01 = −ε10 = 1,

γ0 =

(
0 1

1 0

)
, γ1 =

(
0 1

−1 0

)
, γ5 = γ0γ1, ψα =

(
ψ
(1)
α

ψ
(2)
α

)
, ψ̄α = ψ

†
αγ
0 .

We adopt relativistic units 1 = c = ~ = m ≈ e2137 as mostly used in the particle physics context rather

than atomic units 1 = e = ~ = m ≈ c/137 more natural in atomic physics.

– 5 –
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analogy to standard quantum mechanical potential scattering theory (see also [28, 24, 29])

and construct the amplitudes by adequate matching conditions on the field. We consider

first a single defect at the origin which suffices, since multiple defect amplitudes can be

constructed from the single defect ones, according to the arguments of the previous section.

We decompose the fields of the bulk theory as ψ(x) = Θ(x) ψ+(x) + Θ(−x) ψ−(x), with
Θ(x) being the Heavyside unit step function, and substitute this ansatz into the equations

of motion. As a matching condition we read off the factors of the delta function and hence

obtain the constraints

iγ1(ψ+(x)− ψ−(x))|x=0 =
∂D
∂ψ̄(x)

∣∣∣∣
x=0

− ∂

∂t

[
∂D

∂(∂tψ̄(x))

]∣∣∣∣
x=0

. (2.19)

We then use for the left (−) and right (+) parts of ψ the well-known Fourier decomposition
of the free field

ψfj (x) =

∫
dθ√
4π

(
aj(θ)uj(θ)e

−ipj ·x + a†
̄
(θ)vj(θ)e

ipj ·x
)
, (2.20)

with the Weyl spinors

uj(θ) = −iγ5vj(θ) =
√
mj

2

(
e−θ/2

eθ/2

)
(2.21)

and substitute them into the constraint (2.19). Treating the equations obtained in this

manner componentwise, stripping off the integrals, one can bring them thereafter into the

form

aj,−(θ) = Rj (θ)aj,−(−θ) + Tj(θ)aj,+(θ) , (2.22)

which defines the reflection and transmission amplitudes in an obvious manner. When

parity invariance is broken, the corresponding amplitudes from the right to the left do not

have to be identical and we also have

aj,+(−θ) = T̃j (θ)aj,−(−θ) + R̃j(θ)aj,+(θ) . (2.23)

The creation and annihilation operators a†i (θ) and ai(θ) satisfy the usual fermionic anti-
commutation relations {ai(θ1), aj(θ2)} = 0, {ai(θ1), a†j(θ2)} = 2πδijδ(θ12). In this way
one may construct the R’s and T ’s for any concrete defect which is of the generic form

as described in (2.18). After the construction one may convince oneself that the expres-

sions found this way indeed satisfy the consistency equations like unitarity (2.1), (2.2) and

crossing (2.3), (2.4). Unfortunately the equations (2.1)-(2.4) can not be employed for the

construction, since they are not restrictive enough by themselves to determine the R’s and

T ’s. We consider now some concrete examples:

2.3.1 Impurities of Luttinger liquid type D(ψ̄, ψ) = ψ̄(g1 + g2γ0)ψ
Luttinger liquids [30] are of great interest in condensed matter physics, which is one of

the motivations for our concrete choice of the defect D(ψ̄, ψ) = ψ̄(g1 + g2γ
0)ψ. When

taking the conformal limit of the defect one obtains an impurity which played a role in this

– 6 –
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context, see e.g. [31], after eliminating the bosonic number counting operator. In the way

outlined above, we compute the related transmission and reflection amplitudes

Rj(θ, g1, g2,−y) = R̃j(θ, g1, g2, y) =
4i(g2 + g1 cosh θ)e

2iym sinh θ

(4 + g21 − g22) sinh θ − 4i(g1 + g2 cosh θ)
, (2.24)

R̄(θ, g1, g2,−y) = R̃̄(θ, g1, g2, y) =
4i(g1 − g2 cosh θ)e−2iym sinh θ

(4 + g21 − g22) sinh θ − 4i(g1 − g2 cosh θ)
, (2.25)

Tj(θ, g1, g2) = T̃j(θ, g1, g2) =
(4 + g22 − g21) sinh θ

(4 + g21 − g22) sinh θ − 4i(g1 + g2 cosh θ)
, (2.26)

T̄(θ, g1, g2) = T̃̄(θ, g1, g2) =
(4 + g22 − g21) sinh θ

(4 + g21 − g22) sinh θ − 4i(g1 − g2 cosh θ)
. (2.27)

In the limit limg2→0D(ψ̄, ψ) = g1ψ̄ψ, we recover the related results for the T/T̃ ’s and

R/R̃’s for the energy defect operator. For this type of defect we present |T |2 and |R|2 in
figure 1 with varying parameters in order to illustrate some of the characteristics of these

functions.

Figure 1: (a) Single defect with varying coupling constant. |T |2 and |R|2 correspond to curves
starting at 0 and 1 of the same line type, respectively. (b) Double defect with varying distance y .

(c) Double defect with varying effective coupling constant B = arcsin(−4g1/(4 + g21)). (d) Double
defect ≡ dotted line, eight defects ≡ solid line.

– 7 –
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Part (a) of figure 1 confirms the unitarity relation (2.1). Part (b) and (c) show the

typical resonances of a double defect, which become stretched out and pronounced with re-

spect to the energy when the distance becomes smaller and the coupling constant increases,

respectively. Part (d) exhibits a general feature, that is when the number of defects is in-

creased, for fixed distance between the outermost defects, the resonances become more and

more dense in that region such that one may speak of energy bands.

2.3.2 The defect D(ψ̄, ψ, ∂tψ̄, ∂tψ) = ig/2(ψ̄∂tψ − ∂tψ̄ψ)

This type of defect reminds on the first non-trivial charge occurring in the free Fermion

model. In this case we compute by the same means the related transmission and reflection

amplitudes to

R̃αj (θ, y) = Rᾱ (θ, y) = R
α
j (θ,−y) = R̃ᾱ (θ,−y) =

−4ig cosh θe2iym sinh θ
4ig + tanh θ(4 + g2 cosh2 θ)

, (2.28)

Tαj (θ) = T̃αj (θ) = T
α
̄ (θ) = T̃

α
̄ (θ) =

(4− g2 cosh2 θ) tanh θ
4ig + tanh θ(4 + g2 cosh2 θ)

. (2.29)

In [1] we also computed the T/T̃ ’s and R/R̃’s for other types of defects, such as

D = gψ̄γ1ψ, D = gψ̄γ5ψ, D = gψ̄(γ1 ± γ5)ψ . . . As an overall conclusion we observed

that all possible types of parity breaking, that is T 6= T̃ ; R 6= R̃ or T 6= T̃ ; R = R̃, etc.,

do occur. We also confirm a general principle one knows well from quantum mechanics,

namely that parity is preserved when the potential is real, that is in this case the defect

satisfies D∗ = D.

2.4 Impurities coupled to laser fields

Let us now consider a more complex situation in which a three dimensional laser field hits

the quantum wire polarized in such a way that it has a vector field component along the

wire. Since the work of Weyl [32], one knows that matter may be coupled to light by

means of a local gauge transformation, which reflects itself in the usual minimal coupling

prescription, i.e. ∂µ → ∂µ − ieAµ, with Aµ being the vector gauge potential. The free

Fermions in the wire are then described by the Lagrangian density

LA = ψ̄(iγµ∂µ −m+ eγµAµ)ψ . (2.30)

When the laser field is switched on, we can solve the equation of motion associated to

(2.30)

(iγµ∂µ −m+ eγµAµ)ψ = 0 (2.31)

by a Gordon-Volkov type solution [33]

ψAj (x, t) = exp

[
ie

∫ x
dsA1(s, t)

]
ψfj (x, t) = exp

[
ie

∫ t
dsA0(x, s)

]
ψfj (x, t) . (2.32)

Using now a linearly polarized laser field along the direction of the wire, the vector potential

can typically be taken in the dipole approximation to be a superposition of monochromatic

– 8 –
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light with frequency ω, i.e.

A(t) := A1(t) =
1

x

∫ t
0
dsA0(s) = −

1

2

∫ t
0
dsE(s) = −E0

2

∫ t
0
dsf(s) cos(ωs) (2.33)

with f(t) being an arbitrary enveloping function equal to zero for t < 0 and t > τ , such that

τ denotes the pulse length. In the following we will always take f(t) = Θ(t)Θ(τ − t) , with
Θ(x) being again the Heavyside unit step function. The second equality in (2.33), A0(x, t) =

xȦ(t), follows from the fact that we have to solve (2.32).

I want to comment on the validity of the dipole approximation in this context. It

consists usually in neglecting the spatial dependence of the laser field, which is justified

when xω < c = 1, where x is a representative scale of the problem considered. In the

context of atomic physics this is typically the Bohr radius. In the problem investigated

here, this approximation has to hold over the full spatial range in which the Fermion follows

the electric field. We can estimate this classically, in which case the maximal amplitude is

eE0/ω
2 and therefore the following constraint has to hold(

eE0
ω

)2
= 4Up < 1 , (2.34)

for the dipole approximation to be valid. Due to the fact that x is a function of ω, we have

now a lower bound on the frequency rather than an upper one as is more common in the

context of atomic physics. We have also introduced here the ponderomotive energy Up for

monochromatic light, that is the average kinetic energy transferred from the laser field to

the electron in the wire.

The solutions to the equations of motion of the free system and the one which includes

the laser field are then related by a factor similar to the gauge transformation from the

length to the velocity gauge

ψAj (x, t) = exp [ixeA(t)]ψ
f
j (x) . (2.35)

In an analogous fashion one may use the same minimal coupling procedure also to couple

in addition the laser field to the defect. One has to invoke the equation of motion in order

to carry this out. For convenience we assume now that the defect is linear in the fields ψ̄

and ψ. The Lagrangian density for a complex free Fermion ψ with ` defects Dα(ψ̄, ψ,Aµ)
of type α at the position xn subjected to a laser field then reads

LAD = LA +
∑̀
n=1

Dαn(ψ̄, ψ,Aµ) δ(x − xn) . (2.36)

Considering for simplicity first the case of a single defect situated at x = 0, the solution

to the equation of motion resulting from (2.36) is taken to be of the form ψAj (x, t) =

Θ(x)ψAj,+(x, t) + Θ(−x)ψAj,−(x, t) , which means as before we distinguish here by notation
the solutions (2.35) on the left and right of the defect, ψAj,−(x, t) and ψAj,+(x, t), respectively.
Proceeding as before, the matching condition reads now

iγ1(ψAj,+(x, t)− ψAj,−(x, t))|x=0 =
∂DAD(ψ̄, ψ,Aµ)

∂ψ̄Aj (x, t)

∣∣∣∣∣
x=0

. (2.37)

– 9 –
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It is clear, that in this case the transmission and reflection amplitudes will in addition to

θ and g also depend on the characteristic parameters of the laser field

T (θ, g,E0, ω, t) and R(θ, g,E0, ω, t) . (2.38)

With regard to the main theme of this talk, it is clear that the laser field can be used to

control the conductance. For instance defects which have transmission amplitudes of the

form as the solid line in figure 1 (c), can be used as optically controllable switching devices.

I want to deviate now slightly from the main line of argument and report briefly on an

interesting phenomenon one can predict with solutions of the type (2.38).

2.5 Harmonic generation

Let me first briefly explain what harmonics are. The first experimental evidence can be

traced back to the early sixties [34]. Franken et al found that when hitting a crystalline

quartz with a weak ultraviolet laser beam of frequency ω, it emits a frequency which is 2ω.

Generalizing this phenomenon to higher multiples, one says nowadays that high harmonics

generation is the non-linear response of a medium (a crystal, an atom, a gas, ...) to a laser

field. Harmonic generation is important, since it allows to convert infrared input radiation

of frequency ω into light in the extreme ultraviolet regime whose frequencies are multiples

of ω (even up to order ∼ 1000, see e.g. [35] for a recent review). A typical experimental
spectrum is presented in figure 2.

In gases, composed of atoms or

Figure 2: Harmonic spectrum for Neon for a Ti:Sa laser

with λ = 795nm. Measured at the Max Born Institut

Berlin [36]

small molecules, this phenomenon is

well-understood and, to some extent,

even controllable in the sense that

the frequency of the highest harmonic,

the so-called “cut-off”, visible in fig-

ure 2, can be tuned as well as the in-

tensities of particular groups of har-

monics. In more complex systems,

however, for instance solids, or larger

molecules, high-harmonic generation

is still an open problem. This is due

to the fact that, until a few years

ago, such systems were expected not

to survive the strong laser fields one

needs to produce such effects. How-

ever, nowadays, with the advent of ultrashort pulses, there exist solid-state materials whose

damage threshold is beyond the required intensities of 1014W/cm2 [37]. As a direct con-

sequence, there is an increasing interest in such materials as potential sources for high-

harmonics. In fact, several groups are currently investigating this phenomenon in systems

such as thin crystals [38, 39], carbon nanotubes [40], or organic molecules [41, 42].

– 10 –
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We will therefore try to answer here the question, whether it is possible to generate

harmonics from solid state devices and as a prototype of such a system we study a quantum

wire coupled to the laser field in the way described in section 2.4.

In order to answer that question, we first have to study the spectrum of frequencies

which is filtered out by the defect while the laser pulse is non-zero. The Fourier transforms

of the reflection and transmission probabilities provide exactly this information

T (Ω, θ, E0, ω, τ) =
1

τ

∫ τ
0
dt|T (θ,E0, ω, t)|2 cos(Ωt), (2.39)

R(Ω, θ, E0, ω, τ) =
1

τ

∫ τ
0
dt|R(θ,E0, ω, t)|2 cos(Ωt). (2.40)

When parity is preserved for the reflection and transmission amplitudes, that is for real

defects with D∗ = D, we have |T |2+ |R|2 = 1, and it suffices to consider T in the following.

2.5.1 Type I defects

Many features can be understood analytically. Taking the laser field in form of monochro-

matic light in the dipole approximation (2.33), we may naturally assume that the trans-

mission probability for some particular defects can be expanded as

|TI(θ, Up, ω, t)|2 =
∞∑
k=0

t2k(θ)(4Up)
k sin2k(ωt). (2.41)

We shall refer to defects which admit such an expansion as “type I defects”. Assuming that

the coefficients t2k(θ) become at most 1, we have to restrict our attention to the regime

4Up < 1 in order for this expansion to be meaningful for all t. Note that this is no further

limitation, since it is precisely the same constraint as already encountered for the validity

of the dipole approximation (2.34). The functional dependence of (2.41) will turn out to

hold for various explicit defects considered below. Based on this equation, we compute for

such type of defect

TI(Ω, θ, Up, ω, τ) =
∞∑
k=0

(2k)!(Up)
k sin(τΩ)t2k(θ)

τΩ
∏k
l=1[l

2 − (Ω/2ω)2]
. (2.42)

It is clear from this expression that type I defects will preferably let even multiples of the

basic frequency ω pass, whose amplitudes will depend on the coefficients t2k(θ). When we

choose the pulse length to be integer cycles, i.e. τ = 2πn/ω for n ∈ Z, the expression in
(2.42) reduces even further. The values at even multiples of the basic frequency are simply

TI(2nω, θ, Up) = (−1)n
∞∑
k=0

t2k(θ) (Up)
k

(
2k

k − n

)
, (2.43)

which becomes independent of the pulse length τ . Notice also that the dependence on

E0 and ω occurs in the combination of the ponderomotive energy Up. Further statements

require the precise form of the coefficients t2k(θ) and can only be made with regard to a

more concrete form of the defect.

– 11 –
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2.5.2 Type II defects

Clearly, not all defects are of the form (2.41) and we have to consider also expansions of

the type

|TII(θ,E0/e, ω, t)|2 =
∞∑
k,p=0

t
p
2k(θ)

E2k+p0

ω2k
cosp(ωt) sin2k(ωt). (2.44)

We shall refer to defects which admit such an expansion as “type II defects”. In this case

we obtain

TII(Ω, θ, E0/e, ω, τ) =
∞∑
k,p=0

p∑
l=0

(
p

l

)
Ω sin(τΩ)

(−1)l+1τω2+2kE
2k+2p
0

×


 (2k + 2l)!t

2p
2k(θ)

k+l∏
q=0
[(2q)2 − (Ωω )2]

+
(2k + 2l)!t2p+12k (θ)E0
k+l+1∏
q=1
[(2q − 1)2 − (Ωω )2]


 . (2.45)

We observe from this expression that type II defects will filter out all multiples of ω. For

the pulse being once again of integer cycle length, this reduces to

TII(2nω, θ, Up, E0) =
∞∑
k,p=0

p∑
l=0

(−1)l+n t
2p
2k(θ)

22l−2p
(Up)

k+pE2p0

(
p

l

)(
2k + 2l

k + l − n

)
(2.46)

and

TII((2n − 1)ω, θ,E0/e) =
∞∑
k,p=0

p∑
l=0

(−1)l+n+1 t
2p+1
2k (θ)

22l−2p+1
(Up)

k+p

×
(
p

l

)
(2k + 2l)!(2n − 1)E2p+10

(l + k − n+ 1)!(l + n+ k)! , (2.47)

which are again independent of τ . We observe that in this case we can not combine the E0
and ω into a Up.

2.5.3 One particle approximation

In spite of the fact that we are dealing with a quantum field theory, it is known that a one

particle approximation to the Dirac equation is very useful and physically sensible when

the external forces vary only slowly on a scale of a few Compton wavelengths, see e.g. [43].

We may therefore define the spinor wavefunctions

Ψj,u,θ(x, t) : = ψ
A
j (x, t)

∣∣∣a†j(θ)〉√
2π2p0j

=
e−i~pj ·~x√
2πp0j

uj(θ) (2.48)

Ψj,v,θ(x, t)
† : = ψAj (x, t)

†

∣∣∣a†j(θ)〉√
2π2p0j

=
e−i~pj ·~x√
2πp0j

vj(θ)
† . (2.49)

– 12 –
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With the help of these functions we obtain then for the defect system

ΨAi,u,θ(x, t) : = ψ
A
i (x, t)

∣∣∣a†i,−(θ)〉√
2π2p0i

= Θ(−x) [Ψi,u,θ(x, t) + Ψi,u,−θ(x, t)R∗i (θ)]

+Θ(x)T ∗
i
(θ)
[
Ψi,u,θ(x, t) + Ψi,u,−θ(x, t)R̃∗i (−θ)

]
(2.50)

and the same function with u → v. Since this expression resembles a free wave, it can

not be normalized properly and we have to localize the wave in form of a wave packet

by multiplying with an additional function, g̃(p, t) in (2.20) and its counterpart g(x, t) in

(2.50), typically a Gaußian. Then for the function ΦAi,u,θ(x, t) = g(x, t)ΨAi,u,θ(x, t), we can

achieve that ‖Φ‖ = 1.

2.5.4 Harmonic spectra

We are now in the position to determine the emission spectrum for which we need to

compute the absolute value of the Fourier transform of the dipole moment

Xj,u,θ(Ω) =
∣∣∣∣
∫ τ
0
dt
〈
ΦAj,u,θ(x, t)

†xΦAj,u,θ(x, t)
〉
exp iΩt

∣∣∣∣ . (2.51)

We localize now the wave packet in a region much smaller than the classical estimate for

the maximal amplitude the electron will acquire when following the laser field. We achieve

this with a Gaußian g(x, t) = exp(−x2/∆), where ∆� eE0/ω
2.

2.5.5 An example: Impurity of energy operator type

As mentioned this type of defect, i.e. D(ψ̄, ψ) = gψ̄ψ(x) can be obtained in a limit from

the defect discussed in section 2.3.1. Coupling the vector potential minimally to it yields

DAD(ψ̄, ψ,Aµ) = gψ̄(1 + e/mγµAµ)ψ , (2.52)

by invoking the equation of motion. We can now determine the reflection and transmission

amplitudes as outlined above

Ri(θ, g,A/e, y) = R̃i(θ, g,−A/e,−y) = Rı̄(θ, g,A/e,−y) = R̃ı̄(θ, g,−A/e, y) =
[yȦ− cosh θ]e−2iy sinh θ

[1− yȦ cosh θ]− ig4 [
4
g2
+ 1 +A2 − y2Ȧ2] sinh θ

. (2.53)

We denoted the differentiation with respect to time by a dot. The transmission amplitudes

turn out to be

Ti(θ, g,A/e, y) = T̃i(θ, g,−A/e,−y) = Tı̄(θ, g,−A/e, y) = T̃ı̄(θ, g,A/e,−y) =
i
[
1− y2Ȧ2 + (A− 2ig )2

]
sinh θ

4
g [1− yȦ cosh θ]− i[

4
g2
+ 1 +A2 − y2Ȧ2] sinh θ

. (2.54)

Locating the defect at y = 0, the derivative of A does not appear anymore explicitly in

(2.53) and (2.54), such that it is clear that this defect is of type I and admits an expansion of

– 13 –
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the form (2.41). With the explicit expressions (2.53) and (2.54) at hand, we can determine

all the coefficients t2k(θ) in (2.41) analytically. For this purpose let us first bring the

transmission amplitude into the more symmetric form

|Ti(θ, g,A/e)|2 =
ã0(θ, g) + a2(θ, g)A

2 + a4(θ, g)A
4

a0(θ, g) + a2(θ, g)A2 + a4(θ, g)A4
, (2.55)

with

a0(θ, g) = 16g
2 + (4 + g2)2 sinh2 θ, ã0(θ, g) = (g

2 − 4)2 sinh2 θ, (2.56)

a2(θ, g) = 2g
2(4 + g2) sinh2 θ, a4(θ, g) = g

4 sinh2 θ. (2.57)

We can now expand |T (θ, g,A)|2 in powers of the field A(t) and identify the coefficients
t2k(θ, g) in (2.41) thereafter. To achieve this we simply have to carry out the series expan-

sion of the denominator in (2.55). The latter admits the following compact form

1

a0(θ, g) + a2(θ, g)A2 + a4(θ, g)A4
=
∞∑
k=0

c2k(θ, g)A
2k, (2.58)

with c0(θ, g) = 1/a0(θ, g) and

c2k(θ, g) = −
c2k−2(θ, g)a2(θ, g) + c2k−4(θ, g)a4(θ, g)

a0(θ, g)
, (2.59)

for k > 0. We understand here that all coefficients c2k with k < 0 are vanishing, such

that from this formula all the coefficients c2k may be computed recursively. Hence, by

comparing with the series expansion (2.41), we find the following closed formula for the

coefficients t2k(θ, g)

t2k(θ, g) = [ã0(θ, g)− a0(θ, g)]c2k(θ, g) k > 0. (2.60)

The first coefficients then simply read

t0(θ, g) =
ã0(θ, g)

a0(θ, g)
= |T (θ,E0 = 0)|2, (2.61)

t2(θ, g) =
a2(θ, g)

a0(θ, g)
[1− t0(θ, g)] =

8g4(4 + g2) sinh2 2θ

(16g2 + (4 + g2)2 sinh2 θ)2
, (2.62)

t4(θ, g) =

[
a4(θ, g)

a2(θ, g)
− a2(θ, g)

a0(θ, g)

]
t2(θ, g), (2.63)

and so on. It is now clear how to obtain also the higher terms analytically, but since they

are rather cumbersome we do not report them here.

Having computed the coefficients t2k, we can evaluate the series (2.42) and (2.43) in

principle to any desired order. For some concrete values of the laser and defect parameters

the results of our evaluations are depicted in figure 3.

The main observation from part (a) is that the defect acts as a filter selecting higher

harmonics of even order of the laser frequency. Furthermore, from the zoom of the peak

– 14 –
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Figure 3: Fourier transform of the transmission probability for a single (a) and double (b) defect

with E0 = 2.0, g = 3.5, θ = 1.2, ω = 0.2. Harmonic emission spectrum for a single (c) and double

(d) defect with E0 = 2.0, g = 3.5, θ = 1.2, ω = 0.2, ∆ = 6.

regions, we see that there are satellite peaks appearing near the main harmonics. They

reduce their intensity when τ is increased, such that with longer pulse length the harmonics

become more and more pronounced. We also investigated that for different frequencies ω

the general structure will not change. Increasing the field amplitude E0, simply lifts up the

whole plot without altering very much its overall structure. We support these findings in

two alternative ways, either by computing directly (2.39) numerically or, more instructively,

by evaluating the sums (2.42) and (2.43).

Part (b) shows the analysis for a double defect system with one defect situated at

x = 0 and the other at x = y. The double defect amplitudes are computed directly from

(2.12) and (2.13) with the expression for the single defect (2.53) and (2.54). Since now

both A and Ȧ appear explicitly in the formulae for the R’s and T ’s, it is clear that the

expansion of the double defect can not be of type I, but it turns out to be of type II, i.e.

of the form (2.44). Hence, we will now expect that besides the even also the odd multiples

of ω will be filtered out, which is indeed visible in part (b) for various distances. Here

we have only plotted a continuous spectrum for y = 0.5, whereas for reasons of clarity,

we only drew the enveloping function which connects the maxima of the harmonics for
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the remaining distances. We observe that now not only odd multiples of the frequency

emerge in addition to the ones in (a) as harmonics, but also that we obtain much higher

harmonics and the cut-off is shifted further to the ultraviolet. Furthermore, we observe a

regular pattern in the enveloping function, which appears to be independent of y. Similar

patterns were observed before in the literature, as for instance in the context of atomic

physics described by a Klein-Gordon formalism (see figure 2 in [44]).

Coming now to the main point of our analysis we would like to see how this structure

is reflected in the harmonic spectra. The result of the evaluation of (2.51) is depicted in

figure 3 parts (c) and (d). We observe a very similar spectrum as we have already computed

for the Fourier transform of the transmission amplitude, which is not entirely surprising

with regard to the expression (2.51). The cut-off frequencies are essentially identical. From

the comparison between X and the enveloping function for T we deduce, that the term

involving the transmission amplitude clearly dominates the spectrum.

The important general deduction from these computations is of course that harmon-

ics of higher order do emerge in the emission spectrum of impurity systems, such that

harmonics can be generated from solid state devices.

3. Conductance from the Kubo formula

Having characterized various features of defects, I will proceed with the main theme of the

talk, that is the computation of the DC conductance. In the absence of impurities it can

be obtained from the Kubo formula in the form

G(T ) = − lim
ω→0

1

2ωπ2

∫ ∞
−∞

dt eiωt 〈J(t)J(0)〉T,m . (3.1)

We proposed in [1] a generalization of (3.1) in the form of (1.1). The key quantity needed for

the explicit computation of (3.1) or (1.1) are the occurrence of the temperature dependent

current-current correlation functions 〈J(r)J(0)〉T,m or 〈J(r)ZαJ(0)〉T,m, respectively.
In the zero temperature regime two-point correlation functions can be computed in

general by means of the form factor bootstrap approach [15, 16, 17]. In this approach one

expands the two-point function between two local operators O and O′ in terms of the series

〈
O(r)O′(0)

〉
T=0,m

=

∞∑
n=1

∑
µ1···µn

∫
dθ1 · · · dθn
n!(2π)n

n∏
i=1

e−rmi cosh θi

×FO|µ1...µnn (θ1, . . . , θn)
[
FO

′|µ1...µn
n (θ1, . . . , θn)

]∗
, (3.2)

where we choose xµ = (−ir, 0). The form factors are defined as matrix elements of the
local operator O(~x) located at the origin between a multiparticle in-state and the vacuum,

FO|µ1...µnn (θ1, θ2 . . . , θn) := 〈0|O(0)|Z†µ1(θ1)Z
†
µ2(θ2) . . . Z

†
µn(θn)〉. (3.3)

The expansion (3.2) is simply obtained by inserting complete states on the r.h.s. One may

proceed similarly by inserting one more set of complete states when a defect is present and
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obtains

〈J(r)ZαJ(0)〉T=0,m=
∞∑

n,m=1

∑
µ1···µn;ν1···νm

∫
dθ1 · · · dθndθ̃1 · · · dθ̃m

m!n!(2π)n+m
F J |µ1...µnn (θ1 . . . θn)

×
〈
Zµn(θn) . . . Zµ1(θ1)|Zα|Zν1(θ̃1) . . . Zνm(θ̃m)

〉
F J |ν1...νmm (θ̃1 . . . θ̃m)

∗e
−r

n∑

i=1
mi cosh θi

. (3.4)

This means there are three principle steps left in order to obtain the conductance from

the expression in (1.1). (a) The computation of the form factors (3.3) and the matrix

elements involving the defect operator occurring in (3.4). (b) The integration in r and

(c) the limit ω → 0. Step (a) can be performed in two alternative ways either by solving
certain consistency equations for the form factors and defect matrix elements or by direct

computation. For the latter we require a representation for the particle creation operators

Zµ(θ), the defect operator Zα and the local operator O(r) which is the current in this case.

3.1 The massless limit

Remarkably when carrying out the massless limit of the above expressions, the steps (b)

and (c) can be carried out generically. To perform such a limit we proceed according to

the massless limit prescription as suggested originally in [45]. It consists of carrying out

the limit m → 0 in the high energy regime. In order to do this one replaces in every
rapidity dependent expression θ by θ ± σ, where an additional auxiliary parameter σ has
been introduced. Thereafter one takes the limit σ →∞, m→ 0 while keeping the quantity
m̂ = m/2 exp(σ) finite. For instance, carrying out this prescription for the momentum

yields p± = ±m̂ exp(±θ), such that one may view the model as splitted into its two chiral
sectors and one can speak naturally of left (L) and right (R) movers. For the form factors

in (3.4) the massless limit yields

lim
σ→∞F

O|µ1...µn
n (θ1 + η1σ, . . . , θn + ηnσ) = F

O|µ1...µn
ν1···νn (θ1, . . . , θn), (3.5)

with ηi = ±1 and νi = R for ηi = + and νi = L for ηi = −. Namely, in the massless limit
every massive n-particle form factor is mapped into 2n massless form factors. Using these

expressions, performing a Wick rotation and introducing the variable E =
∑n
i=1 m̂ie

θi , we

obtain from (3.4)

〈J(r)ZαJ(0)〉T=m=0=
∞∑

n,m=1

∑
µ1···µn;ν1···νm

∫
dθ1 · · · dθndθ̃1 · · · dθ̃m

m!n!(2π)n+m
F
J |µ1...µn
R1...Rn

(θ1, . . . , θn)

×
〈
ZRµn(θn) . . . Z

R
µ1(θ1)|Zα|Z

R
ν1(θ̃1) . . . Z

R
νm(θ̃m)

〉
F
J |ν1...νm
R1...Rm

(θ̃1, . . . , θ̃m)
∗e−irE . (3.6)

We note that for the massless prescription to work, the matrix element involving the defect

Zα can only depend on the rapidity differences, which will indeed be the case as we see

below. Performing the variable transformation θn → lnE′/m̂n −
∑n
i=1 m̂i/m̂ne

θi , we re-

write the r.h.s. of (3.6) as

∞∑
n,m=1

∑
µ1···µn;ν1···νm

∫ E
0
dE′

lnE′/m̂n∫
−∞

dθ1 · · · dθn−1
n!(2π)n

∞∫
−∞

dθ̃1 · · · dθ̃m
m!(2π)m

F
J |µ1...µn
R1...Rn

(θ1, . . . , θn(E
′))
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×
〈
ZRµn(θn(E

′)) . . . ZRµ1(θ1)|Zα|Z
R
ν1(θ̃1) . . . Z

R
νm(θ̃m)

〉
F
J |ν1...νm
R1...Rm

(θ̃1, . . . , θ̃m)
∗e−irE

′
. (3.7)

We substitute now this correlation function into the Kubo formula, shift all rapidities as

θi → θi+ lnE
′/m̂n, θ̃i → θ̃i+ lnE

′/m̂n, use the Lorentz invariance of the form factors2

and carry out the integration in dE′

Gα=− lim
ω→0

ω2s−2

m̂2sn π

∑
µ1···µn;ν1···νm

0∫
−∞

dθ1 · · · dθn−1
n!(2π)n

∞∫
−∞

dθ̃1 · · · dθ̃m
m!(2π)m

1

1−
∑n−1
i=1 m̂i/m̂ne

θi

×
〈
ZRµn(ln(1−

∑n−1
i=1

m̂i/m̂ne
θi)) . . . ZRµ1(θ1)|Zα|Z

R
ν1(θ̃1) . . . Z

R
νm(θ̃m)

〉
(3.8)

×F J |µ1...µnR1...Rn
(θ1, . . . , ln(1−

n−1∑
i=1

m̂i/m̂ne
θi))F

J |ν1...νm
R1...Rm

(θ̃1, . . . , θ̃m)
∗ .

We state various observations: Since the matrix element involving the defect only depends

on the rapidity difference, it is not affected by the shifts. Operators with Lorentz spin s = 1

play a very special role in (3.8), which makes the current operator especially distinguished.

In that case the r.h.s. of (3.8) becomes independent of the frequency ω and the limit is

carried out trivially. Furthermore, since the final expression has to be independent of m̂n,

we deduce that the form factors have to be linearly dependent on m̂n.

3.2 Realization of the defect operator

A realization of Zα can be achieved very much in analogy to a realization of local operators,

i.e. as exponentials of bilinears in Zamolodchikov–Faddeev operators [46]. For the case of

a boundary a generic model independent realization for the boundary operator B was

originally proposed in [28] for the parity invariant case, i.e. R = R̃ . This proposal was

generalized to the defect operator in [26] with the same restriction and for self-conjugated

particles. Here we extend this realization in order to incorporate the possibility of parity

breaking as well as non self-conjugated particles. A non-trivial consistency check for the

validity of our proposal will be ultimately provided when exploiting it in the computation

of the conductance, obtained by entirely different means as will be presented in part II.

The realization we want to propose here is a direct generalization of the one presented in

[26], namely

Zα =: exp[
1

4π

∫ ∞
−∞

Dα(θ) dθ] : , (3.9)

where : : denotes normal ordering and the operator Dα(θ) has the form

Dα(θ)=
∑
i

[
Kαi (θ)Z

†
i (θ)Z

†
ı̄ (−θ) + K̃αi (θ)∗ Zı̄(−θ)Zi(θ)

+Wα
i (θ)Z

†
i (θ)Zi(θ) + W̃

α
i (θ)

∗Z†i (−θ)Zi(−θ)
]
, (3.10)

2Denoting by s the Lorentz spin of the operator O and λ being a constant, the form factors satisfy
FO|µ1...µnn (θ1 + λ, . . . , θn + λ) = e

sλ FO|µ1...µnn (θ1, . . . , θn) .
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with Kαi (θ) := Rαi (
iπ
2 − θ), K̃αi (θ) := R̃αi (

iπ
2 − θ), Wα

i (θ) := Tαi (
iπ
2 − θ) and W̃α

i (θ) :=

T̃αi (
iπ
2 − θ). In comparison with [26] we have used a slightly different normalization factor,

since in general we have contributions in the sum over i in (3.10) including both particles

and anti-particles, as for the complex free Fermion we shall treat below. Following the

arguments given in [28], the operator Dα(θ) depends on the amplitudes R(θ), T (θ), R̃(θ)

and T̃ (θ) with their arguments shifted, as considered also in [24, 26].

3.3 Defect matrix elements

Having now a concrete generic realization of the defect (3.9), we can compute the defect

matrix elements. One way of doing this is to solve a set of consistency equations which

relate the lower particle matrix elements to higher particle ones, similar as in the standard

form factor program [15, 16, 17]. Such kind of iterative equations were proposed in [24] for

a parity invariant defect and for a real free fermionic and bosonic theory. We generalize

this here and note first that the operator (3.9) becomes

lim
R,R̃→0;T,T̃→1

Zα =: exp[
1

2π

∫ ∞
−∞

dθ
∑
i

Z
†
i (θ)Zi(θ) ] :, (3.11)

and the defect should act in this case as the identity operator, which fixes our normalization

to 〈Zi(θ1)ZαZ†j (θ2)〉 = 2π δ(θ12)δij after having contracted according to Wick’s theorem.
For two particles we find,

〈Zı̄(θ1)Zi(θ2)Zα〉 = πK̂αi (θ2)δ(θ̂12), (3.12)

〈ZαZ†i (θ1)Z
†
ı̄ (θ2)〉 = π K̂αi (θ1)

∗δ(θ̂12), (3.13)

〈Zi(θ1)ZαZ†j (θ2)〉 = π Ŵα
i (θ1)δ(θ12)δij . (3.14)

For later convenience we have introduced the functions

K̂αi (θ) = Kαi (θ) + Sı̄i(−2θ)Kαı̄ (−θ) = K̃αi (θ) + Sīı(2θ)K̃αı̄ (−θ), (3.15)

Ŵα
i (θ) = Wα

i (θ) + W̃
α
i (−θ)∗ = W̃α

ı̄ (−θ) +Wα
ı̄ (θ)

∗ = Ŵα
ı̄ (θ)

∗, (3.16)

since the Kαi , K̃
α
i ,W

α
i and W̃

α
i amplitudes defined before will repeatedly appear in the

combinations (3.15), (3.16) in what follows. The latter equalities in (3.15), (3.16) follow

simply from

W̃α
i (θ) =W

α
ı̄ (−θ) = W̃α

ı̄ (iπ−θ)∗, K̃αi (θ) = Sīı(2θ)Kαı̄ (−θ) = Sīı(2θ)K̃αı̄ (iπ−θ)∗, (3.17)

which are in turn consequences of the crossing-hermiticity properties (2.3)-(2.4). With

these matrix elements we can construct the ones involving more particles recursively from

Fµm...µ1ν1...νnα (θm . . . θ1, θ
′
1 . . . θ

′
n) :=

〈
Zµm(θm) . . . Zµ1(θ1)Zα Z

†
ν1(θ

′
1) . . . Z

†
νn(θ

′
n)
〉
=

π

m∑
l=2

δµ1µ̄lδ(θ̂1l)K̂
α
µ1(θ1)

l−1∏
p=1

Sµ1µp(θ1p)F
µm...µ̌l...µ2ν1...νn
α (θm . . . θ̌l . . . θ2, θ

′
1 . . . θ

′
n) (3.18)

+π

n∑
l=1

δµ1νlδ(θ1 − θ′l)Ŵα
µ1(θ1)

l−1∏
p=1

Sµ1νp(θ1p)F
µm...µ2ν1...ν̌l...νn
α (θm . . . θ2, θ

′
1 . . . θ̌

′
l . . . θ

′
n)
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Fµm...µ1ν1...νnα (θm . . . θ1, θ
′
1 . . . θ

′
n) = (3.19)

π

n∑
l=2

δν1ν̄lδ(θ̂
′
1l)K̂

α
ν1(θ

′
1)
∗
l−1∏
p=1

Sν1µp(θ1p)F
µm...µ1ν2...ν̌l...νn
α (θm . . . θ1, θ

′
2 . . . θ̌

′
l . . . θ

′
n)

+π

m∑
l=1

δν1µlδ(θ
′
1 − θl)Ŵα

ν1(θ
′
1)
∗
l−1∏
p=1

Sν1µp(θ1p)F
µm...µ̌l...µ1ν2...νn
α (θm . . . θ̌l . . . θ1, θ

′
2 . . . θ

′
n).

Here we denoted with the check on the rapidities θ̌ the absence of the corresponding particle

in the matrix element. It is clear from the expressions (3.9) and (3.10) that the only possible

non-vanishing matrix elements (3.18) are those when n +m is even. Taking (3.12)-(3.14)

as the initial conditions for the recursive equations (3.18)-(3.19), we can now either solve

them iteratively or use (3.9) and evaluate the matrix elements directly. Closed solutions

for these equations have been presented for the first time in [1].

3.4 Free Fermion wire with impurities

At this point we have to abandon the general discussion and consider a concrete theory,

which for the reasons already explained we choose to be the complex free Fermion. Then

the generators of the ZF-algebra Z i(θ), Z
†
i (θ) are just the usual creation and annihilation

operators ai(θ), a
†
i (θ).

3.4.1 Defect matrix elements
Let us now use (3.9)-(3.10) in order to evaluate matrix elements involving the defect oper-

ator. In what follows, the most relevant matrix elements are those involving four particles,

for which we compute

〈ai(θ1) aı̄(θ2)Zα a†ı̄ (θ3) a
†
i (θ4)〉 = wαīı(θ1,θ2)δ(θ14)δ(θ23) + k

α
ii(θ1,θ4)δ(θ̂12)δ(θ̂34),

〈ai(θ1) ai(θ2)Zα a†j(θ3) a
†
j(θ4)〉 = −π2Ŵα

i (θ1)Ŵ
α
i (θ2)δ(θ13)δ(θ24)δij ,

〈ai(θ1)ak(θ2)ai(θ3)Zαa†i (θ4)〉 = π2Ŵα
i (θ4)K̂

α
i (−θ2)

[
δ(θ14)δ(θ̂23)− δ(θ̂12)δ(θ34)

]
δik̄,

〈ai(θ1)Zαa†i (θ2)a
†
k(θ3)a

†
i (θ4)〉 = π2Ŵα

i (θ1)K̂
α
i (−θ3)∗

[
δ(θ̂23)δ(θ14)− δ(θ12)δ(θ̂34)

]
δik̄,

with the abbreviations

wαīı(θ1,θ2) = π
2Ŵα
i (θ1)Ŵ

α
ı̄ (θ2) and kαii(θ1,θ2) = π

2K̂αi (θ1)K̂
α
i (θ2)

∗ . (3.20)

One can now try to find solutions for all n-particle form factors either from (3.18)-(3.19) or

by direct computation. For instance for the stated choice of particles involved, we compute

Fm×(īı)n×(̄ıi)α (θ2m . . . θ1, θ
′
1 . . . θ

′
2n) =

min(n,m)∑
k=0

(−1)m+n−2kπn+m
(m− k)!(n − k)!k!k!

∫ ∞
−∞

dβ1 . . . dβ2n+2m

× detA2n(β1 . . . β2n; θ′1 . . . θ′2n) detA2m(β2n+1 . . . β2n+2m; θ1 . . . θ2m)

×
k∏
p=1

Ŵα
i (β2p)Ŵ

α
ı̄ (β2p−1)δ(β2p − β2n+2p)δ(β2p−1 − β2n+2p−1) (3.21)

×
n∏

p=1+k

K̂αi (β2p)
∗δ(β2p + β2p−1)

n+m∏
p=1+k+n

K̂αi (β2p)δ(β2p + β2p−1) ,
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where A`(θ1 . . . θ`; θ′1 . . . θ′`) is a rank ` matrix whose entries are given by

A`ij = cos2[(i− j)π/2]δ(θi − θ′j) , 1 ≤ i, j ≤ ` . (3.22)

The matrix elements are computed similarly as in [6] and references therein. Likewise we

compute

Fn×i+m×iα (θn . . . θ1, θ
′
1 . . . θ

′
m) = δn,m

πn(−1)n−1
n!

∫ ∞
−∞

dβ1 . . . dβn

n∏
k=1

Ŵα
i (θk)

× detBn(θn . . . θ1;β1 . . . βn) detBn(β1 . . . βn; θ′1 . . . θ′n), (3.23)

where we introduced a new rank `matrix B`(θ1 . . . θ`; θ′1 . . . θ′`) whose entries are now simply
given by

B`ij = δ(θi − θ′j), 1 ≤ i, j ≤ ` . (3.24)

One can verify explicitly [1] that these expressions indeed satisfy (3.18) and (3.19) .

3.4.2 Conductance in the T = m = 0 regime
It is well-known that for a free Fermion theory (also for a single complex free Fermion) the

conformal U(1)-current-current correlation function is simply

〈J(r)J(0)〉T=m=0 =
1

r2
. (3.25)

This expression can also be obtained by using the expansion (3.2), together with the mass-

less prescription as outlined above and the expressions for the only non-vanishing form

factors of the current operator in the complex free Fermion theory

F
J |̄ıi
2 (θ, θ̃) = −F

J |īı
2 (θ, θ̃) = −iπme

θ+θ̃
2 . (3.26)

In particular, the massless limit of the previous expressions gives, according to the massless

prescription,

F
J |̄ıi
RR (θ, θ̃) = −F

J |īı
RR (θ, θ̃) = −2πi m̂e

θ+θ̃
2 , (3.27)

F
J |̄ıi
LL (θ, θ̃) = F

J |̄ıi
LR (θ, θ̃) = F

J |̄ıi
RL (θ, θ̃) = F

J |īı
LL (θ, θ̃) = F

J |īı
LR (θ, θ̃) = F

J |īı
RL (θ, θ̃) = 0 . (3.28)

We these expressions we can evaluate (3.2) to (3.25). We may the insert (3.25) into (3.1)

and the problem is reduced to find the Fourier transform of the function r−2, which is given
by P

∫∞
−∞ dr e

iωrr−2 = −πω for ω > 0, with P denoting the principle value. This yields in
the absence of a defect G(0) = 1/2π, in complete agreement with the well-known classical

expression for the conductance in a wire without any impurities, see for instance [47].

For the more complicated situation of n defects Zα1 · · ·Zαn located in space at positions
yα1 . . . yαn , we compute in the zero temperature and zero mass regime

〈J(r)Zα1 · · ·ZαnJ(0)〉T=m=0 =
m̂2

2

∑
i


 ∞∫
−∞

dθ1
2
e−2rm̂ cosh θ1K̂α|Ri (θ1)

∞∫
−∞

dθ2
2
K̂
α|R
i (θ2)

∗

+

∞∫
−∞

dθ1
2
eθ1−rm̂e

θ1
Ŵ
α|R
i (θ1)

∞∫
−∞

dθ2
2
eθ2−rm̂e

θ2
Ŵ
α|R
ı̄ (θ2)


 . (3.29)
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The functions Ŵ
α|R
i (θ), K̂

α|R
i (θ), . . . defined in (3.29) are the massless limits of the cor-

responding functions Ŵα
i (θ), K̂

α
i (θ), . . . For all the defects we considered, it turned out

that the first contribution to the previous correlation function is actually vanishing, so

that (3.29) is considerably simplified. In many of the examples, this is due to the fact

that the amplitudes K̂αi (θ) are vanishing in the first place, as a consequence of the cross-

ing relations (3.17). The vanishing of the reflection part in (3.29) also occurs in some

cases as a consequence of the parity of the function K̂αi (θ). For instance, we find that,

for the energy operator defect such function, although initially non-vanishing, satisfies

K̂αi (θ) = −K̂αi (−θ), such that limm→0
∫∞
−∞ dθ K̂

α
i (θ)

∗ = 0.
We can now either use (3.29) to compute the conductance or evaluate the expression (3.8)

directly in which the frequency limit is already taken, in both cases we obtain

Gα(0) =
1

2(2π)3

∑
i

0∫
−∞

dθ eθ w
α|RR
īı [ln(1− eθ),θ] . (3.30)

There are, in addition, further generic results which can be obtained independently

of the specific form of the defect. We present them at this stage and will confirm their

validity below by some specific examples. Specializing to the case in which all ` defects are

of the same type and equidistantly separated, i.e. y = yα1 = · · · = yαn . We can identify

two distinct regimes

w
α|RR
īı (θ1,θ2) = π

2

{
Ŵ
α|R
i (θ1)Ŵ

α|R
i (θ2)∗ for finite y

|Ŵα|R
i |2 for y → 0

(3.31)

where we used in addition (3.16). Supported by our explicit examples below, we find that

for y → 0 in (3.31) the amplitudes Ŵα|R
i (θ) become independent functions of the rapidity.

As we have already argued above

k
α|RR
ii (θ1,θ2) = 0. (3.32)

It will turn out, that the two regimes specified in (3.31) are also of a very distinct nature

in the TBA context as presented in part II.

3.4.3 A wire with impurities of energy operator type

Let us exemplify the working of the above formulae with a concrete defect operator. As a

simple example we choose the energy operator defect as presented in section 2.3.1. Con-

sidering first a wire possessing a single defect of this type, we compute

Ŵα
i (θ) =

4 cosB cosh2 θ

cosh 2θ + cos 2B
, K̂αi (θ) =

2i sinB sinh θ

sinB − cosh θ , w
α|RR
īı (θ1,θ2) = (2π cosB)

2

(3.33)

with B being the effective coupling constant as defined in the caption of figure 1, such that

〈J(r)ZαJ(0)〉T=m=0 =
cos2B

r2
=⇒ Gα(0) =

cos2B

2π
. (3.34)
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It will turn out that this is in complete agreement with the corresponding result from the

Landauer formula (1.1).

Proceeding in the same way for a wire with two or four impurities we evaluated [1] in

the regime y � r

〈J(r)Zα1Zα2J(0)〉T=m=0 =
4
[
1 + sin4B

]
r2 [cos2(2B)− 3]2

, (3.35)

Gα1α2(0) =
2

π

1 + sin4B

[3− cos2(2B)]2
, (3.36)

〈J(r)Zα1Zα2Zα3Zα4J(0)〉T=m=0 =
1

2r2

[
1 +

cos8B

[cos4B − 2(1 + sin2B)2]2

]
, (3.37)

Gα1α2α3α4(0) =
1

4π

(
1 +

cos8B

[cos4B − 2(1 + sin2B)2]2

)
. (3.38)

In the regime y → 0, we obtained [1]

lim
y→0 〈J(r)Zα1Zα2J(0)〉T=m=0 =

1

r2
cos4B

(1 + sin2B)2
, (3.39)

lim
y→0G

α1α2(0) =
1

2π

cos4B

(1 + sin2B)2
, (3.40)

lim
y→0 〈J(r)Zα1Zα2Zα3Zα4J(0)〉T=m=0 =

1

r2

(
cos4B

cos4B − 2(1 + sin2B)2

)2
, (3.41)

lim
y→0G

α1α2α3α4(0) =
1

2π

(
cos4B

cos4B − 2(1 + sin2B)2

)2
. (3.42)

It will turn out that we can reproduce these expressions by evaluating the Landauer formula

(1.2) when computing the densities with the help of the TBA. This will now be outlined

in part II together with the general conclusions concerning also this part.
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