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Decoupling the SU(N),-homogeneous sine-Gordon model
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We provide a systematic construction for miparticle form factors of th&U(N), /U (1)~ *-homogeneous
sine-Gordon model in terms of general determinant formulas for a large class of local operators. The ultraviolet
limit is carried out and the corresponding Virasoro central charge, together with the conformal dimensions of
various operators, are identified. The renormalization-group flow is studied and we find a precise rule, depend-
ing on the relative order of magnitude of the resonance parameters, according to which the theory decouples
into new cosets along the flow.
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I. INTRODUCTION lim SUN),/U(1)N-?

Oji+1—%

For most integrable quantum field theories it 1 space- . i . i
time dimensionsg, it ren?ains an open challenge to F::omplete =SU(i+1)2/U(1)'@SUN=1), /U™
the entire bootstrap prograpi], i.e., to compute the exact 2
on-shell S matrix, closed formulas for the-particle form ) ]
factors, identify the entire local operator content, and in parEquivalently we may summarize the flow along the renor-
ticular, thereafter compute the related correlation functionsMalization group(RG) trajectory with increasing renormal-
Recently we investigated2—4] a class of models, the iZation group parameteg, to cutting the relgted Dynkin Q|a—
SU(3),/U(1)> homogeneous sine-Gordon moddb]  9drams at decreasing values of thé&. For instance, taking
(HSG), for which this task was completed to a large extent.”i,i+1 {0 be the largest resonance parameter at some energy
In particular, we provided general formulas for thearticle ~ Scale, the following cut takes place:
form factors related to a large class of local operators. In

order to understand the generic group theoretical structure of g12 o Gignl ON-2N-1
the n-particle form factor expressions it is highly desirable to o o o Qin QN_3 ON_1
extend that analysis to a higher rank as well as to a higher
level. One of the main purposes of this manuscript is to do !
the former, that is, to investigate taJ(N),/U(1)N"! case. ¢—o— " —6 66— —0—0
This model may be viewed as the perturbation of a gauged @ G @ o ON-i-1
Wess-Zumino-Novikov-Witte{WZNW) coset with the Vi- Using the usual expressions for the coset central charge
rasoro central charge [6], the decoupled system has the central charge
) 6(N+5)
N(N—1) lim  csymy,/u@n-1=N—=5+ NT2=D(311)" €

CsuM, VN TN o) () Tiir1—

Our paper is organized as follows. In Sec. Il we present
. . the main characteristics of the HSG scattering matrix. In Sec.
by an operator of conformal dimensidr=N/(N+2). The |} e systematically construct solutions to the form-factor
theory already possesses a fairly rich particle contentggnsistency equations, which correspond to a large class of
namely, N—1 asymptotically stable particles characterized|oca| operators. In Sec. IV we investigate the renormalization
by a mass scalen; andN—2 unstable particles whose en- group flow of the Virasoro central charge, reproducing the
ergy scale is characterized by the resonance paramefers decoupling(2). In Sec. V we compute the operator content in
(1=<i,j=sN—1). We relate the stable particles in a one-to-terms of primary fields of the underlying conformal field

one fashion to the vertices of tf@U(N)-Dynkin diagram  theory. In Sec. VI we investigate the RG flow of conformal
and associate them with the link between the vertia@sdj  dimensions. Our conclusions are stated in Sec. VII.

and the resonance parametets. Because of the additional
constraints|i —j| =1, see Ref[5] for the details, there are
N—2 linearly independent ones.

We find that once an unstable particle becomes extremely The prerequisite for the computation of form factors and
heavy the original coset decouples into a direct product otorrelation functions thereafter is the knowledge of the exact
two cosets different from the original one: scattering matrix. The two-particl® matrix describing the

IIl. THE S MATRIX
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scattering of two stable particles of typeand j, with 1 FO‘#l---Mn(aly 00
<i,j<N-1, as a function of the rapidity related to this "
model, was proposed in Ref7]. Adapted to a slightly dif- :<(’)(O)VM1( 01V, (62), . .. ,V#n(an)). (5)

ferent notation it may be written as
We proceed in the usual fashion by solving the form factor
Car\ ]l consistency equationdl0,11]. For this purpose we extract
0+ gij—l5 } (4) explicitly, according to standard procedure, the singularity
structure. Since no stable bound states may be formed during
the scattering of two stable particles, the only poles present
are the ones associated to the kinematic residue equations,
that is, a first-order pole for particles of the same type whose
rapidities differ by i7. Therefore, we parametrize the
n-particle form factors as

1
Ci tanhz—

Sj(6)=(—1)7%

The incidence matrix of th&U(N)-Dynkin diagram is de-
noted byl. The parity breaking which is characteristic for the
HSG models and manifests itself by the fact tgtS;;,
takes place through the resonance parametgrs — oj; and
the color valuec; . The latter quantity arises from a partition
of the Dynkin diagram into two disjoint sets, which we refer ol 'l’)(é’l 8 ):HO\W(M ,L)QO\WT(M "*)(36)

to as “+”and “ —.” We then associate the values= +1 to n Pt n

the verticesi of the Dynkin diagram ofSU(N), in such a FAi4i( g, )

way that no two vertices, related to the same set, are linked X %
together. Likewise we could simply divide the particles into 1<i<j=n (xi ”i+xj #1) Omi
odd and even, however, such a division would be specific to

SU(N) and the bicoloration just outlined admits a generali- ©)
zation to other groups as well. The resonance pole; (i)

at (0g)ij=—o;;—im/2 are associated in the usual Breit-
Wigner fashion to theN—2 unstable particles as explained
for instance in Refs[8,7] and[4]. It is important for us to

As usual we abbreviate the rapidity difference @gs= 6,
— 6. Aiming towards a universally applicable and concise
notation, it is convenient to collect the particle species

recall that the mass of the unstable partidlg formed in the 1s + - fn In the form of particular sets

scatterin? between the stable particieand j behaves as M (1) ={plu=i} 7)

Mz~el?il”2. There are no poles present on the imaginary n

:g(rlri,e\évhlch indicates that no stable bound states may be M. (1.)=U, (), ®)
It is clear from the expression of the scattering mat4ix M, 1 )=, (1) UM (). 9)

that whenever a resonance parametgmwith I;;#0 goes to

infinity, we may view the whole system as consisting of tWoTe number of elements belonging to the s®ts, M. is
sets of particles that only _mteract freely among e_ach Otherindicated by their arguments,| .., respectively. We under-
The unstable particle, which was created in an interaction,nq here that inside the Sem. . the order of the indi-

process betw;]aen thehse two theories fbefore taking the limi;qy o) sets; is arbitrary. This simply reflects the fact that
becomes so heavy that it cannot be formed anymore at anyticles of different species but identical color interact

energy scale. reely. However O is an ordered set since elementsi
Besides the scattering matrices related to the HSG mo%ndi));t do not iir?:eract freely and w.l.g., we adopt theLcon-

els, t.here exi;ts classes of moc_iels, usually (eferred 0 3R ntion that particles belonging to thet”-color set come
roaming or staircase moddl8], which also contain unstable first. TheH, are some overall constants and @gare poly-
particles in_their_spectrum. Nonetheless, lthe unstable Pako mial fur?ctions depending on the variables=expé
ticles enter in a different manner. Whereas in the HSG mOd%hich are collected in the sefs X X. in a one-to-oHe
they may be introduced by a rapidity shift of a parity bmkenfashion with respect to the partiélel 'spécies SBLN. M

1 ) +-

theory, in the staircase models they enter through an analyt ) i .
continuation of the effective coupling constant. The otherLFhe functionsF () are the so-called minimal form fac-

distinction between the two classes of models is the origin of0rS, Which by construction contain no singularities in the
the staircase pattern observed in the scaling functions of thhysical sheet and solve Watson’s equatifi®; 11] for two
models(see Sec. IY. For the HSG models one may associateParticles. For thesU(N),-HSG model they are found to be
the steps directly to the energy scale of the unstable particles,

N . . N 0 Sij
which is not possible for the staircase models. Fil( g)zNuij(sz_i)
lll. FORM FACTORS " p[ | det Sine[ (i m— 6% o)t/ (21)]
exp — 1l | — .
We are now in the position to compute thearticle form Vot sinht cosht/2

factors related to this model, i.e., the matrix elements of a (10)

local operato(?(i) located at the origin between a multipar-
ticle in-state of particlegsolitons of speciesu, created by Here N'=2Yexdim(1—c)/4+ c,0/4— G/4] is a normaliza-
V,(6), and the vacuum tion function with G being the Catalan constant. It is also
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) for v=,r==0,1, which were introduced in Ref3]. The de-
terminant of A essentially captures the summation in Eg.
(13) due to the fact that it satisfies the recursive equations

convenient to introduce the function [
=[e %F L. (6)]i. The minimal form factors obey the func-
tional identities

t

C(1-ci2)al02)c; \ Lii . R B A
; J detA; 'y, - (X X) = > x2l Poops,-(X2)
cosh 6/2—i/4) p=0

(11)

i Gij
m|n(0+|77) m|n(0) ( - §S|nh0> (

XdetAl ! (X, %) (1)
Substituting the ansat®) into the kinematic residue equa-
tion [10,11,, we obtain with the help of Eq11) a recursive as was shown in Ref3]. Analogously to the procedure in

equation for the overall constants fof e M1 : Ref.[3] we can build up a simple product from elementary
_ symmetric polynomials, which takes care of the prefactor in
H(r?ng(l++2’l’):i|i22| =1 +1e'uv.j'j/2|-|(:m('+ 1-) (120  the recursive equatio(L3). Therefore, defining the polyno-
mials
We introduced here the numbekyEM eam_lijlj, which
count the elements in the neighboring setémf an(l* "*)(3€+ x0)= 1 detA:'Sfi'T ,T(xi i %)
The Q polynomials have to obey the recursive equations Hifk €M) Lo
X X, (2sj+1j—2s5i—1—5;)I2
Qﬂwzunu 1) 025+ 7, |)7
gi X O_I—i(lij%j)(Vifl)/Zo_lk(ik)(lflk)/Z
— 2i72k Tj 17i ”A.
—kzo XS TS o-2k+§i(lljxj) (17)
X (=)t g, L (X)QOML 1) (%), it follows immediately, with the help of propert{16), that
Y they obey the recursive equations
(13 MR+,

H - ~ 2+(n o 7)(‘%)2(7%7)
For convenience we defined the sét8:={—x,x}UX, % (1)
:=ie”ii+1X, and the integers;, which are 0 or 1 depending =Q, "Xy ,36_)025i+7i(3€i)
on whether the sun¥+ 7; is odd or even, respectively: is _
related to the factor of local commutativity=(—1)"= Si ol oyt r i1 a .
+1. ok(X1, ... Xm) is thekth elementary symmetric poly- XF)ZO XGRS, (%)), (18)
nomial. Furthermore, we used the sum conventhm
=U,, EWI,,SE and parametrizeti=2s,+ 7, |;=2s,+ 7 in  Comparing now Egs(13) and (18) we obtain complete

order to distinguish between odd and even particle numbergigreement. Notice that the numbefsare not constrained at
We will now solve the recursive equatiofs2) and(13)  all at this point of the construction. However, by demanding
systematically. The equations for the constants are solved biglativistic invariance, which on the other hand means that
the overall power in Eq(6) has to be zero, we obtain the
O 1) _ 11 i1 98i(25 11— 1-27) gsil 7y /2 Ol 7 T additional constraints

n
K€My

(14) Vi=1+7'i_7i and 7;5;= 7',(1}I 1). (19

In addition, taking the constraints into account, which are
needed to derive Eq16) (see Ref[3]), this is most conve-
Jiently written as

The lowest nonvanishing constartt€’ i - are fixed by de-
manding, similar to theSU(3), case[2—4], that any form
factor that involves only one-particle type should correspon
to a form factor of the thermally perturbed Ising model. To —
achieve this we exploit the ambiguity present in E#2), nsitnvi=nT, 2+si>7, 2+v>7. (20
mainly the fact that we can multiply it by any constant that
only depends on the_-quantum numbers.

As the main building blocks for the construction of Qe
polynomials serve the determinants of thier6) X (t+5s)

For eachu; e M, Egs.(20) admit the 10 feasible solutions
found in Ref.[3]. However, one should notice that the indi-
vidual solutions for different values afare not all indepen-
dent of each other. We would like to stress that despite the

matrix fact that Eq.(17) represents a large class of independent
ot - solutions, it certainly does not exhaust all of them. Nonethe-
Ads it o (X, X)) less, many additional solutions, such as the energy-
T e (X2) 1<i<t momentum tensor, may be constructed from Ezp) by
20-D+w t’ ' (15) simple manipulations such as the multiplication of some
Oa(j—it+r(X2), t<iss+t Castillejo-Dalitz-Dyson(CDD)-like ambiguity factors or by
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setting some expressions to zero on the base of asymptotic TABLE I. n-particle contributions to the theorem versus the
considerationgsee Ref[3] for more details For many ap- SU(N),/U(1)""* -WZNW coset model central charge.

plications we wish to show in Sec. IV, we require the form
factors for the trace of the energy moment@mWe find it N c Ac® Ac®  Ac® xR Ak
convenient to use a normalization for this operator in which3

. . . 1.2 1 0.197 0.002 1.199
the overall mass scale is already included, such @has a
. : . S . 2 15 0.394 0.096 1.990
dimensionless quantity. This will avoid any unnecessary, ané
- S . - 2.857 2 0.591 0.191 2.782
for our purpose, irrelevant complication of dimensionfull pa- 3.75 25 0.788 0.285 3573
rameters. The first nonvanishing form factors for this opera- - ' ’ : )
7 4.6 3 0.985 0.380 4.365
tor read
8 5.6 3.5 1.182 0.474 5.156

F\Mi#i: —2ri Sinh(6/2),

tion theory in the coupling constant. In particular fBdéunc-

T 2+2 cosli 6;;) H 'lf’r;iiﬁi(aij) tion provides an insight into various possible asymptotic be-
O lmiminm _ < Jr=l haviors and especially it allows to identify the fixed points of
4 — 2 cosli01,/2)cosh 034/2) ' the theory. We now want to employ this method to check our

solutions and at the same time the physical picture advocated
for the HSG models.
For this purpose we want to investigate first of all the
, renormalization group flow, in a similar spirit as for the

T 3+2 COSKHU-) ]_;_[J ﬁ';;‘lﬁl(eu)

i<j

O | i i mimi i i _
Fe =

4 [I costig;/2 SU(3),/U(1)? case in Ref[4], by evaluating the theorem
l<i<j<4 ! [13]
— 3 (=
m 3+ 2 costigy)| L1 Frificoy) C(ro)=§f drr3(O(r)®(0)). (23
Ol wi i picrti i — 1<l i<j o
6 4 coshi 6,4/2)cosh 634/2)

Note thatr is a dimensionless quantity and, in particular, for
for 1;;#0 andl;# 0. When considering the RG flow in Sec. ro=0 the functionc(ro) coincides withAc=c,,~c;, i.e.,
IV, ‘it will be important to note that from the difference between the ultraviolet and infrared Virasoro

lim, . FMM+I(g) ~exp(—ai ;. 4/4) follows central charges. Computing the correlation function for the
i+ min ' trace of the energy-momentum tenser in Eq. (23) by
lim ECOlkikic1- " (0)=0 1) means of Eq(22), and using the form-factor expressions of
o a1 the previous section, the individuatparticle contributions

turn out to be
Having determined the form factors, we are in principle in

the position to compute the two-point correlation function Ac®)=(N-1)x0.5, (24)
between two local operators in the usual way by expanding it
in terms ofn-particle form factors Ac=(N-2)x0.197, (29
” = dfy, ... d6, Ac®=(N-2)x0.002+(N—3)x0.0924, (26)
(ono'o)n=2 > —————"e
n=1p1...pq J== nI(27) 6
Olug - . pin W=Nx0. : .
KEOLbncg ) ngc NX0.7914-1.1752 (27)
X[Fno"“l"'“”(el, o0 T (22)  Apart from the two-particle contributio(24), which is usu-

ally quite trivial and in this situation can even be evaluated
We abbreviated the sum of the normalized on-shell energiesnalytically, we have carried out the multidimensional inte-
asE=2i“:lmMi /mcoshé,. We divided the masses,, by an  grations in Eq(22) by means of a Monte Carlo method. We
overall mass scale such tHagas well ag are dimensionless. Use this method up to a precision that is higher than the last
Now we want to evaluate expressit2p) in several different  digit we quote. For convenience we report some explicit
applications in order to compute various quantities of internumbers in Table I.
est. The evaluation of Eqg24)—(27) illustrates that the series
(22) converges slower and slower for increasing valuel,of
IV. RENORMALIZATION GROUP ELOW such that the highen-particle contributions become more
and more important to achieve high accuracy. Our analysis
Renormalization group methods have been developeduggests that it is not the functional dependence of the indi-
originally [12] to carry out qualitative analysis of regions of vidual form factors that is responsible for this behavior. In-
guantum-field-theories, which are not accessible by perturbastead, this effect is simply due to the fact that the symmetry
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factor, that is, the suld, . . resulting from permutations \ y - - ' . . .

of the particle species, increases drastically for lafger
Having confirmed the expected ultraviolet central charge, ;s
we now study the RG flow by varying the dimensionless
parameter, in Eq. (23). The scaling function as defined in 20
Eq. (23) qualitatively carries the same information as the <)
scaling function obtained from the thermodynamic Bethe an- 15
satz, see Ref[21] for the model at hand. In this spirit we
may formally draw an analogy of the typg~m, /T, where

10F

oo 8U(4),:06,750 0,720
. — SU(5),:0,750,05,~30,0,~20
T denotes the temperature. We stress, however, that we just S

consider this to be a formal identification on which we do not
intend to capitalize any further. We, therefore, anticipate to

find that whenever we reach an energy scale at which an T -50 o 20 -10 0
unstable particle can be formed, the model will flow to a o &
different coset. Recalling4] that the mass of an unstable FIG. 1. RG flow for the Virasoro central charge.

particle My is proportional tom exp(ol/2), with m being an
overall mass scale, and that the RG flow is achieveanby
—TfoMm, we \.N'” encounter a ;ltuatlon with increasimg in values is once again due to the convergence behavior of the
which certaino; ;, are considered to be large, and we Ob'series in Eq(22)

serve the decoupling into two freely interacting systems in For ry=0, qualitatively a similar kind of behavior was

the way described in Ed2). For instance for the situation previously observed, for the two-particle contribution only,
0127 0237 0347 - - - Weob_serve the following decoupling i, e context of the roaming sinh-Gordon mofiet|. None-
along the flow with increasingy: theless, there is a slight difference between the two situa-

(28) and(29) for small values oN. The difference for larger

SU(N),/U(1)N-? tions. Instead of a decoupling into different cosets in these
types of models, the entirf® matrix takes on the value 1,
! when the resonance parameter goes to infinity. The resulting
SUN=1),/U(1)N"2@SU(2),/U(1) effect, i.e., a depletion alc, is the same. However, we do
not comply with the interpretation put forward in R¢L4],
l namely, that such a behavior should constitute a “violation
SUN—2),/U(1)N3c[SU(2),/U(1)]? of the c-theorem sum rule.” The observed effect is precisely
! what one expects from the physical point of view and ¢he

theorem sum rule.
We present our full numerical results in Fig. 1, which
i confirm the outlined flow for various values &f. We ob-
N1 serve that the function remains constant, at a value corre-
[SU2)2/U(D)]™. sponding to the new coset, in some finite interval gf In

We can understand this type of behavior in a semianalytiparticma.r' we observe the nonequivalence of the flows when
Qe relative order of magnitude among the different reso-

cal way. The precise difference between the central chargé . . .
related to Eq(2) is nance parameters is changed. Ret5 we confirm[we omit

here theU(1) factors and report the corresponding central

CSU(i + 1), U(L)l & SUN~ i), /U(LN -1~ 1 charges as superscripts on the last fdctor

. L 20
¢ i 2HN+S(N—I—1) SU(5),
SUN)2/U(1) (N+2)(i+3)(N=-i+2)"
(28) N N\

5 12
Noting with Eq.(21) that at each step we loose all the con-SU(4)2 ® SU(2)3 SU(3), ® SU(3)y
tributions F?'“"‘”l " () to Ac, we may collect the values
(24)—(26), which we have determined numerically and find N 4

11
im Ac(oiis1,...)=Ac(0ii41=0,...) SU(3)2 ® SU(2)2 ® SU(2);
Oji+1—%
’ !

~0.2914;;,,-0.0924;; ,

The precise difference in the central charges is explained
for j#1N—2. Similarly as for the deep ultravialéUV) with Eq. (29), since the contribution 0.0924; _; only oc-

region, we find a relatively good agreement between Eqscurs forj=2.
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' ' ' ' ' ' ' ' ' N+na, ...\, ... A\—ma, that is all the weights obtained
by successive additionsubtractions of a roota from the
weight \, such that\+(n+1)a [N—(m+1)a] is not a
. weight anymore. It is a well-known fact that the difference
between the two integersy,n is m—n=X\-«a for simply
. laced Lie algebras. This means starting with the highest
weight A, we can work our way downwards by deciding
_ after each subtraction of a simple ragt, whether the new
vector, sayy, is a weight or not using the criteriom,=n;
+x-«;>0. With the procedure just outlined we obtain all
possible weights of the theory. Nonetheless, it may happen
that a weight corresponds to more than one linear indepen-
30 dent weight vector, such that the weight space may be more
than one dimensional. The dimension of each weight vector
FIG. 2. Theg function. n) is computed by means of

©

To establish more clearly that the plateaus admit an inter-
pretation as fixed points and extract the definite values of the go |§1 2Ny 11 l(N @) - a]
corresponding Virasoro central charge, we can also, follow- nf:
ing Ref.[13], determine &3 type function fromc(r). The 8 [(A+N+2p)-(A=N)]
function should obey the Callan-Symanzik equalfi®f]

(32)

For consistency it is useful to compare the sum of all these
multiplicities with the dimension of the highest weight rep-
fag=ﬂ(9)- (30)  resentation computed directly from the Weyl dimensionality
formula (see, e.g., Ref17])
The “coupling constant"g:=c,—c(r) is normalized in
such a way that it vanishes at the ultraviolet fixed point. > nt=dimAa=1] [((A+p)-a] 33)
Whenever we fing3(g) =0, we can identifyc=c_,—g as X as0  (pra)
the Virasoro central charge of the corresponding conformal ) ) )
field theory. Hence, taking the data obtained from g, 10 compute all the conformal dimensioAgA ,\) according
we computeg as a function ofy by means of Eq(30). Our 1O Eqg.(31) in general, is a fprm|dable task and, therefore, we
results for various values ® are depicted in Fig. 2, which concentrate on a few distinct ones for gene¥iand only
allow a definite identification of the fixed points correspond-compute the entire content for=4.
ing to the coset models expected from the decouplifig Noting thath;-A;=K;j; *, with K being the Cartan matrix,
For SU(4), we clearly identify from Fig. 2 the four fixed We can obtain relative concrete formulas from E2f). For

pointsg=0,0.3,0.5, and 2 with high accuracy. The five fixed NStance,

points g=0,0.357,0.657,0.857, and 2.857, which we expect N-1
to find for SU(5),, are all slightly shifted due to the absence 4 K '-NK;?
of the higher-order contributions. AN = =1

i)

8+2N (34

V. OPERATOR CONTENT OF SU(N),/U(1)N~?
] ] Similarly we may computeA(\;+X;,\j+]\;), etc. in
We now want to identify the operator content of ourterms of components of the inverse Cartan matrix. Even
theory by carrying out the ultraviolet limit and matching the more explicit formulas are obtainable when we express the
conformal dimension of each operator with the one in thesimple rootse; and fundamental weights; of SU(N) in
N—-1 H . .
SU(N),/U(1)"" *-WZNW coset model. For this purpose terms of a concrete basis. For instance we may choose an
first of all we have to determine the entire operator content Ofthonormal basis(e;} in RN (see, e.g., Ref[18)]), i.e.,
the conformal field theory.

-8 =5,
According to Ref[16], the conformal dimensions of the ' ' "
parafermionic vertex operators are given by i i N
ai=ei—&i41, A= gj— = gj, 1=1, N—1
_[A-(A+2p)] (AN meTee NS e TR 2

A(AN)= (3D

(4+2N) 4 . " L
Noting further that the set of positive roots is given {y

Here A is a highest dominant weight of level smaller or —&;:1<i<j=<Nj}, we can evaluate Eqe31), (32, and(33)
equal to 2 angh=1/25 - ye is the Weyl vector, i.e., half the explicitly. This way we obtain, for instance,

sum of all positive roots. The's are the corresponding {(N=1)

lower weights, which may be constructed in the usual fash- o HNT oy ) —

ion (see, e.g., Ref.17]). Consider a complete weight string AN and A(2A;,21) =0. (35)

~ 844N
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TABLE 1l. Conformal dimensions for O*AN in the TABLE lIl. n-particle contributions to the\ theorem versus
SU(4),/U(1)% -WZNW coset model. conformal dimensions in th&U(N),/U(1)N"1 -WZNW coset
model.
MA ARSI VIR WD WS WD W W
N A()\l-)\l) A#?2) An4) A(6) EE:ZA/A

dimA 4 6 10 20 20 15
A 1/8 1/6 O 0 1/8 1/6 3 0.1 0.125 —0.0263 0.0017 0.1004
A—ay 1/8 1/2 1/8 1/6 4 0.125 0.1875 —0.0526 —0.0079 0.1270
A—ay 1/6 1/2 1/8 5 0.143 0.25 —0.0789 —0.0175 0.1536
A—as 1/6 6 0.156 0.3125 —-0.1052 -—-0.0271 0.1802
A—a—ap 8 16 12 12 58 16 7 0.16 0375 —0.1315 —0.0367  0.2068
A—ay,—aj 1/6 1/2 1/8 1/6 8 0.175 0.4375 —0.1578 —0.0463 0.2334
A_ a)1— A3 1/6
A—Zal 0 .
A—2a, 0 the following operator content:
A—2e—2a, °o 0 023,01,14x 0°,8x 09818x O V6, 24x O ¥2.32x O,
A* 26(27 2(13 O
A=2a1—a; 172 1/8 i.e., 98 fields.
A—2a;= a3 172 VI. OPERATOR CONTENT OF HSG
A—a—ar,—ag 1/8 1/6 12 1/2 5/8 213 _
A—2a;—a,— as 1/2 1/8 1/6 We will now turn to the massive model and evaluate the
A—ay—2a,— as 1/6 12 g5 1/6 flow of the conformal dimensiof4]
A—al—a2—2a3 1/6 1 ©
A—2a,—2a,— ag 12 12 5/8 1/6 AO(rO)z_TO))j drr(O(r)0(0)). (37)
A—ay—2a,—2as 12 18 1/6 (0(0)) Jr,
A=2a,—2 1/8 . . . -
A—2zl—2zz—2a o o 1 U6 Here O is a local operator, which in the conformal limit
A g Lo s corresponds to a primary field in the sense of R&€]. In
Ao Bor s particular forr,=0, expression(37) constitutes the delta
A_gl _gz s e 18 sum rule[20], which expresses the difference between the

®17 9™ 23 ultraviolet and infrared conformal dimension of the operator
A=2a;~4ay,=2a, 0 We start by investigating the operator, which in the case

when all particles in Eq(5) are of the same type, corre-

. L : : : sponds to the disorder operaterin the Ising model. Using
Of special physical interest is the dimension of the perturbthe fact that we should always be able to reduce to that

ing operator. As was already argued in Rgf], it corre- o ] ] i —
sponds toA (,0), with ¢ being the highest root, and more- Situation, we consider the solution correspondingrite ;

over it is unique. Noting that foSU(N) we havey=x, = vi=si=0 foralli. Then theA sum rule(37) yields for the
+\n_1, We confirm once more individual n-particle contributions
A#2)=(N—-1)x0.0625, (38)
AT AN0T g (39 AHH=(2—N)x0.0263, (39)
Other dimensions may be computed similarly. A#®)=(N—-2)x0.0017 (3—N)x0.0113, (40)
The SU(4)/U(1)? example 5

m(k) =
For SU(4)/U(1)® we present the result of the computa- ,(22 A 0.0266+ N> 0.0206. (41)

tion of the entire operator content in Table Il. In case the
multiplicity of a weight vector is bigger than one, we indi-  We assume that this solution has the conformal dimension
cate this by a superscript on the conformal dimension. A(Nq,N\q) in the ultraviolet limit. For comparison we report
The remaining dominant weights of level smaller or equala few explicit numbers in Table IIl. As we already observed
to 2, namelyA =\3,2\3,\ >+ \3, including their multiplici-  for the c theorem, the series converges slower for larger val-
ties, may be obtained from Table Il simply by the exchangeues ofN. The reason for this behavior is the same, namely,
13, which corresponds to th&, symmetry of the the increasing symmetry factor. Note also that the next con-
SU(4)-Dynkin diagram. tribution is negative.
Summing up all the fields corresponding to different Following now the RG flow for the conformal dimension
lower weights, i.e., not counting the multiplicities, we have (37) by varyingr,, we assume that thi&(\1,\;) field flows
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FIG. 4. Thep' function.

FIG. 3. RG flow for the conformal dimension @f.

to theA(Nq,\,) field in the corresponding new cosets. Simi-

lar to the Virasoro central charge, we may compare the exa§_0'125’0’0'0375’ and 0.0625. TI®U(S),-fixed points )
expression g'=-0.1429,0,0.0446,0.0821, and 0.1071, are once again

slightly shifted.
AN, N 1) sUGi+1), V) & SUN-1), UN=i-1 Unfortunately, whenever the correlation function between
O and® is vanishing, or when we consider an operator that
i(N+5)(N—i—1) does not flow to a primary field, we cannot employ the delta
=A(A 'xl)SU(N)z/U(l)N’1+4(N+ 2)(i+3)(N=i+2) sum rule(37). Alternatively, we may exploit the well-known
relation
(42)

lim (O(r)O(0))~r 447 (45)

r—0

with the numerical results. The contributiof88)—(40) yield

lim  A*(oii+1, ... )=A%(07i+1=0,...)

Oji+17%

near the critical point in order to determine the conformal
dimension. To achieve consistency with the proposed physi-
+0.0359;;,,+0.0113; ; cal picture we want to identify, in particular, the conformal
43) dimension of the perturbing operator. Recalling that the trace
of the energy-momentum tensor is proportional to the per-

for j#1,N—2. Once again we find good agreement betweerfurbing field, we analyz¢® (r)®(0)) for this purpose.

the two computations for small values Nf Our complete According to Eq. (45, we deduce from Fig. 5A
numerical results are presented in Fig. 3, which confirm the=2/3,5/7 forN=4,5, respectively, which coincides with the
outlined flow for various values dfl. expected values.

Notice by comparing Figs. 3 and 1, that, as we expect, the
transition from one value foA to the one in the decoupled VII. CONCLUSIONS

system occurs at the same energy staket which the value
of the Virasoro central charge flows to the new one.

In analogy to Eq.(30), we may now define a function
‘B’ and demand that it obeys the Callan-Symanzik equa
tion

One of the main deductions from our analysis is that the
scattering matrix proposed in R¢¥] may certainly be asso-
ciated to the perturbed gauged WZNW coset. This is based
on the fact that we reproduce all the predicted features of this
picture, namely, the expected ultraviolet Virasoro central

d charge, various conformal dimensions of local operators, and
a9 =p'(9'). (44)  the characteristics of the unstable particle spectrum.

Our construction of general solutions to the form factor
consistency equations certainly constitutes a further impor-
such a way that it vanishes at the ultraviolet fixed point, i.e.,tant step tovyards a generic group theoretical understanding

of the n-particle form factor expressions. The next natural

9":=A(r)—Ayy, such that whenever we fing’(g") =0, step is to extend the investigation towards higher level alge-
we can identifyA =g’ — Ay as the conformal dimension of pras[22].
the operator under consideration of the corresponding con- Concerning the computation of correlation functions, our
formal field theory. From our analysis of E(B7) we may  results also indicate that the “folkloristic belief” of the fast
determineB’ as a function ofy’ by means of Eq(44). Our  convergence of the series expansion of E2P) has to be
results are presented in Fig. 4. challenged. In fact, for large values & this is not true
Once again, foSU(4), the accuracy is very high and we anymore. It would be highly desirable to have more concrete
clearly read off from Fig. 4 the expected fixed poims  quantitative criteria at hand.

The “coupling constant” related tg@’ is normalized in
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W= - T - T situations and Eq45) does not allow a clear-cut deduction
of A.
12'§ T In comparison with other methods to achieve the same
ol ] goal, we should note that in principle one can obtain, apart
; e p=23 from conformal dimensions different from the one of the
g sf,. Pi;"; 4 perturbing operator, the same qualitative picture from a ther-
e K e | —Pows modynamic Bethe AnzatfTBA) analysis. For instance, in
6f I it . Ref.[21] several of the HSG models related to the algebras

____________________ treated in this paper have been analyzed by means of the
TBA. The scaling functions obtained that way exhibit quali-
tatively the same kind of staircase pattern. It would be desir-

I T T T T T e able to carry out the TBA also for a wider class of algebras.
o 1 L 1 L Nonetheless, one should stress that the scaling functions ob-
tained by means of these two different methods differ quan-

titatively, as one may easily check analytically for instance

' ' ' ' for the free fermion, but agree only qualitatively. Concerning
IS ] the efficiency of the methods, one should point out that in the
e TBA approach the number of coupled nonlinear integral
) L e ) equations to be solved increases wih which means the
T oep=25 | system becomes extremely complex and cumbersome to
o T e ---p=26 solve even numerically. Computing the scaling function with
54;,' o _§;§07,7 the help of form factors only adds more terms to each
Sl e =3 ... n-particle contribution, but is technically not more involved.
B The price we pay in this setting is, however, the slow con-
N — ] vergence of Eq(22).
L T T T We conjecture that the “cutting rule,” which describes the
. . . . . renormalization group flow, also holds for other groups. This
0.00 0.02 004 0gs 0.08 0.10 is supported by the general structure of the HSG scattering

matrix.

FIG. 5. Rescaled correlation functids(r)=(®(r)®(0)) as a
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