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Decoupling theSU„N…2-homogeneous sine-Gordon model
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We provide a systematic construction for alln-particle form factors of theSU(N)2 /U(1)N21-homogeneous
sine-Gordon model in terms of general determinant formulas for a large class of local operators. The ultraviolet
limit is carried out and the corresponding Virasoro central charge, together with the conformal dimensions of
various operators, are identified. The renormalization-group flow is studied and we find a precise rule, depend-
ing on the relative order of magnitude of the resonance parameters, according to which the theory decouples
into new cosets along the flow.
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I. INTRODUCTION

For most integrable quantum field theories in 111 space-
time dimensions, it remains an open challenge to comp
the entire bootstrap program@1#, i.e., to compute the exac
on-shell S matrix, closed formulas for then-particle form
factors, identify the entire local operator content, and in p
ticular, thereafter compute the related correlation functio
Recently we investigated@2–4# a class of models, the
SU(3)2 /U(1)2 homogeneous sine-Gordon model@5#
~HSG!, for which this task was completed to a large exte
In particular, we provided general formulas for then-particle
form factors related to a large class of local operators.
order to understand the generic group theoretical structur
then-particle form factor expressions it is highly desirable
extend that analysis to a higher rank as well as to a hig
level. One of the main purposes of this manuscript is to
the former, that is, to investigate theSU(N)2 /U(1)N21 case.
This model may be viewed as the perturbation of a gau
Wess-Zumino-Novikov-Witten~WZNW! coset with the Vi-
rasoro central charge

cSU(N)2 /U(1)N215
N~N21!

~N12!
~1!

by an operator of conformal dimensionD5N/(N12). The
theory already possesses a fairly rich particle conte
namely, N21 asymptotically stable particles characteriz
by a mass scalemi and N22 unstable particles whose en
ergy scale is characterized by the resonance parameters i j
(1< i , j <N21). We relate the stable particles in a one-
one fashion to the vertices of theSU(N)-Dynkin diagram
and associate them with the link between the verticesi and j
and the resonance parameterss i j . Because of the additiona
constraintsu i 2 j u51, see Ref.@5# for the details, there are
N22 linearly independent ones.

We find that once an unstable particle becomes extrem
heavy the original coset decouples into a direct produc
two cosets different from the original one:
0556-2821/2001/64~8!/085007~10!/$20.00 64 0850
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lim
s i ,i 11→`

SU~N!2 /U~1!N21

[SU~ i 11!2 /U~1! i
^ SU~N2 i !2 /U~1!N2 i 21.

~2!

Equivalently we may summarize the flow along the ren
malization group~RG! trajectory with increasing renormal
ization group parameterr 0 to cutting the related Dynkin dia
grams at decreasing values of thes ’s. For instance, taking
s i ,i 11 to be the largest resonance parameter at some en
scale, the following cut takes place:

Using the usual expressions for the coset central cha
@6#, the decoupled system has the central charge

lim
s i ,i 11→`

cSU(N)2 /U(1)N215N251
6~N15!

~N122 i !~31 i !
. ~3!

Our paper is organized as follows. In Sec. II we pres
the main characteristics of the HSG scattering matrix. In S
III we systematically construct solutions to the form-fact
consistency equations, which correspond to a large clas
local operators. In Sec. IV we investigate the renormalizat
group flow of the Virasoro central charge, reproducing t
decoupling~2!. In Sec. V we compute the operator content
terms of primary fields of the underlying conformal fie
theory. In Sec. VI we investigate the RG flow of conform
dimensions. Our conclusions are stated in Sec. VII.

II. THE S MATRIX

The prerequisite for the computation of form factors a
correlation functions thereafter is the knowledge of the ex
scattering matrix. The two-particleS matrix describing the
©2001 The American Physical Society07-1
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scattering of two stable particles of typei and j, with 1
< i , j <N21, as a function of the rapidityu related to this
model, was proposed in Ref.@7#. Adapted to a slightly dif-
ferent notation it may be written as

Si j ~u!5~21!d i j Fci tanh
1

2 S u1s i j 2 i
p

2 D G I i j

. ~4!

The incidence matrix of theSU(N)-Dynkin diagram is de-
noted byI. The parity breaking which is characteristic for th
HSG models and manifests itself by the fact thatSi j ÞSji ,
takes place through the resonance parameterss i j 52s j i and
the color valueci . The latter quantity arises from a partitio
of the Dynkin diagram into two disjoint sets, which we ref
to as ‘‘1 ’’ and ‘‘ 2.’’ We then associate the valuesci561 to
the verticesi of the Dynkin diagram ofSU(N), in such a
way that no two vertices, related to the same set, are lin
together. Likewise we could simply divide the particles in
odd and even, however, such a division would be specifi
SU(N) and the bicoloration just outlined admits a genera
zation to other groups as well. The resonance poles inSi j (u)
at (uR) i j 52s i j 2 ip/2 are associated in the usual Bre
Wigner fashion to theN22 unstable particles as explaine
for instance in Refs.@8,7# and @4#. It is important for us to
recall that the mass of the unstable particleMc̃ formed in the
scattering between the stable particlesi and j behaves as
Mc̃;eus i j u/2. There are no poles present on the imagin
axis, which indicates that no stable bound states may
formed.

It is clear from the expression of the scattering matrix~4!,
that whenever a resonance parameters i j with I i j Þ0 goes to
infinity, we may view the whole system as consisting of tw
sets of particles that only interact freely among each ot
The unstable particle, which was created in an interac
process between these two theories before taking the li
becomes so heavy that it cannot be formed anymore at
energy scale.

Besides the scattering matrices related to the HSG m
els, there exists classes of models, usually referred to
roaming or staircase models@9#, which also contain unstabl
particles in their spectrum. Nonetheless, the unstable
ticles enter in a different manner. Whereas in the HSG mo
they may be introduced by a rapidity shift of a parity brok
theory, in the staircase models they enter through an ana
continuation of the effective coupling constant. The oth
distinction between the two classes of models is the origin
the staircase pattern observed in the scaling functions of
models~see Sec. IV!. For the HSG models one may associa
the steps directly to the energy scale of the unstable partic
which is not possible for the staircase models.

III. FORM FACTORS

We are now in the position to compute then-particle form
factors related to this model, i.e., the matrix elements o
local operatorO(xW ) located at the origin between a multipa
ticle in-state of particles~solitons! of speciesm, created by
Vm(u), and the vacuum
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Oum1 . . . mn~u1 , . . . ,un!

5^O~0!Vm1
~u1!Vm2

~u2!, . . . ,Vmn
~un!&. ~5!

We proceed in the usual fashion by solving the form fac
consistency equations@10,11#. For this purpose we extrac
explicitly, according to standard procedure, the singula
structure. Since no stable bound states may be formed du
the scattering of two stable particles, the only poles pres
are the ones associated to the kinematic residue equat
that is, a first-order pole for particles of the same type wh
rapidities differ by ip. Therefore, we parametrize th
n-particle form factors as

Fn
OuM( l 1 ,l 2)

~u1 , . . . ,un!5Hn
OuM( l 1 ,l 2)Qn

OuM( l 1 ,l 2)
~X!

3 )
1< i , j <n

Fmin
m im j~u i j !

~x
i

cm i1x
j

cm j!dm im j

.

~6!

As usual we abbreviate the rapidity difference asu i j 5u i
2u j . Aiming towards a universally applicable and conci
notation, it is convenient to collect the particle spec
m1 , . . . ,mn in the form of particular sets

Mi~ l i !5$mum5 i %, ~7!

M6~ l 6!5ø i P6Mi~ l i !, ~8!

M~ l 1 ,l 2!5M1~ l 1!øM2~ l 2!. ~9!

The number of elements belonging to the setsMi ,M6 is
indicated by their argumentsl i ,l 6 , respectively. We under
stand here that inside the setsM6 , the order of the indi-
vidual setsMi is arbitrary. This simply reflects the fact tha
particles of different species but identical color intera
freely. However,M is an ordered set since elements ofM1

andM2 do not interact freely and w.l.g., we adopt the co
vention that particles belonging to the ‘‘1 ’’-color set come
first. TheHn are some overall constants and theQn are poly-
nomial functions depending on the variablesxi5expui ,
which are collected in the setsX,Xi ,X6 in a one-to-one
fashion with respect to the particle species setsM,Mi,M6.
The functionsFmin

mimj(uij) are the so-called minimal form fac
tors, which by construction contain no singularities in t
physical sheet and solve Watson’s equations@10,11# for two
particles. For theSU(N)2-HSG model they are found to be

Fmin
i j ~u!5N I i j S sin

u

2i D
d i j

3expH 2I i j E
0

`dt

t

sin2@~ ip2u7s i j !t/~2p!#

sinht cosht/2 J .

~10!

Here N521/4exp@ip(12ci)/41ciu/42G/4# is a normaliza-
tion function with G being the Catalan constant. It is als
7-2
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convenient to introduce the function F̃min
ij (u)

5@e2ciu/4Fmin
ij (u)#Iij. The minimal form factors obey the func

tional identities

Fmin
i j ~u1 ip!Fmin

i j ~u!5S 2
i

2
sinhu D d i j S i (12ci /2)e(u/2)ci

cosh~u/22 ip/4! D
I i j

.

~11!

Substituting the ansatz~6! into the kinematic residue equa
tion @10,11,2#, we obtain with the help of Eq.~11! a recursive
equation for the overall constants form iPM1 :

Hn12
OuM( l 112,l 2)

5 i l̄ i22l i2 l̄ i11eI i j s i j l j /2Hn
OuM( l 1 ,l 2) . ~12!

We introduced here the numbersl̄ i5(m j PM2
I i j l j , which

count the elements in the neighboring sets ofMi .
The Q polynomials have to obey the recursive equatio

Qn12
OuM(21 l 1 ,l 2)

~Xxx!

5 (
k50

s̄i

x2si22k1t i112§ is2k1§ i
~ I i j X̂j !

3~2 i !2si1t i11s2si1t i
~Xi !Q

OuM( l 1 ,l 2)~X).

~13!

For convenience we defined the setsXxx
ª$2x,x%øX, X̂

ª ies i ,i 11X, and the integersz i , which are 0 or 1 depending
on whether the sumq1t i is odd or even, respectively.q is
related to the factor of local commutativityv5(21)q5
61. sk(x1 , . . . ,xm) is thekth elementary symmetric poly
nomial. Furthermore, we used the sum conventionI i j X̂j

[øm j PMI i j X̂j and parametrizedl i52si1t i , l̄ i52s̄i1 t̄ i in
order to distinguish between odd and even particle numb

We will now solve the recursive equations~12! and ~13!
systematically. The equations for the constants are solve

Hn
OuM( l 1 ,l 2)

5 )
m iPM1

i si l̄ i2si (2si2 l̄ i2122t i )e(si I i j s i j l j /2)HOut i , l̄ i.

~14!

The lowest nonvanishing constantsHOut i , l̄ i are fixed by de-
manding, similar to theSU(3)2 case@2–4#, that any form
factor that involves only one-particle type should correspo
to a form factor of the thermally perturbed Ising model.
achieve this we exploit the ambiguity present in Eq.~12!,
mainly the fact that we can multiply it by any constant th
only depends on thel 2-quantum numbers.

As the main building blocks for the construction of theQ
polynomials serve the determinants of the (t1s)3(t1s)
matrix

A2s1t1,2t1t2
n1,n2

~X1 ,X̂2! i j

5H s2( j 2 i )1n1~X1!, 1< i<t,

s2( j 2 i 1t)1n2~X̂2!, t, i<s1t
~15!
08500
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for n6,t650,1, which were introduced in Ref.@3#. The de-
terminant ofA essentially captures the summation in E
~13! due to the fact that it satisfies the recursive equation

detA21 l ,2t1t2
n1,n2

~X1
xx ,X̂2!5S (

p50

t

x2(t2p)s2p1n2~X̂2!D
3detAl ,2t1t2

n1,n2

~X1 ,X̂2! ~16!

as was shown in Ref.@3#. Analogously to the procedure in
Ref. @3# we can build up a simple product from elementa
symmetric polynomials, which takes care of the prefactor
the recursive equation~13!. Therefore, defining the polyno
mials

Qn
M( l 1 ,l 2)

~X1 ,X2!5 )
m i /kPM1/2

detA
2si1t i , l̄ i

n i ,§ i ~Xi ,I i j X̂j !

3s2si1t i
~Xi !

(2si1t i22s̄i212§ i )/2

3s l̄ i
~ I i j X̂j !

~ n̄ i21!/2s l k
~X̂k!

~12 l k!/2

~17!

it follows immediately, with the help of property~16!, that
they obey the recursive equations

Q21n
M(21 l 1 ,l 2)

~X1
xx ,X2!

5Qn
M( l 1 ,l 2)

~X1 ,X2!s2si1t i
~Xi !

3 (
p50

s̄i

x2(si2p)1t i112§ is2p1§ i
~ I i j X̂j !. ~18!

Comparing now Eqs.~13! and ~18! we obtain complete
agreement. Notice that the numbersn̄ i are not constrained a
all at this point of the construction. However, by demandi
relativistic invariance, which on the other hand means t
the overall power in Eq.~6! has to be zero, we obtain th
additional constraints

n i511t i2 n̄ i and t i§ i5 t̄ i~ n̄ i21!. ~19!

In addition, taking the constraints into account, which a
needed to derive Eq.~16! ~see Ref.@3#!, this is most conve-
niently written as

t i§ i1 t̄ in i5t i t̄ i , 21§ i. t̄ i , 21n i.t i . ~20!

For eachm iPM1 Eqs.~20! admit the 10 feasible solution
found in Ref.@3#. However, one should notice that the ind
vidual solutions for different values ofi are not all indepen-
dent of each other. We would like to stress that despite
fact that Eq.~17! represents a large class of independ
solutions, it certainly does not exhaust all of them. Nonet
less, many additional solutions, such as the ener
momentum tensor, may be constructed from Eq.~20! by
simple manipulations such as the multiplication of som
Castillejo-Dalitz-Dyson~CDD!-like ambiguity factors or by
7-3
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O. A. CASTRO-ALVAREDO AND A. FRING PHYSICAL REVIEW D64 085007
setting some expressions to zero on the base of asymp
considerations~see Ref.@3# for more details!. For many ap-
plications we wish to show in Sec. IV, we require the for
factors for the trace of the energy momentumQ. We find it
convenient to use a normalization for this operator in wh
the overall mass scale is already included, such thatQ is a
dimensionless quantity. This will avoid any unnecessary,
for our purpose, irrelevant complication of dimensionfull p
rameters. The first nonvanishing form factors for this ope
tor read

F2
Qum im i522p i sinh~u/2!,

F4
Qum im im jm j5

pF21(
i , j

cosh~u i j !G)
i , j

F̃min
m im j~u i j !

22 cosh~u12/2!cosh~u34/2!
,

F6
Qum im im im im jm j5

pF31(
i , j

cosh~u i j !G)
i , j

F̃min
m im j~u i j !

4 )
1< i , j <4

cosh~u i j /2!

,

F6
Qum im imkmkm jm j5

pF31(
i , j

cosh~u i j !G)
i , j

F̃min
m im j~u i j !

4 cosh~u12/2!cosh~u34/2!

for I i j Þ0 andI k jÞ0. When considering the RG flow in Se
IV, it will be important to note that from
lims i ,i 11→`Fmin

mimi11(u);exp(2si,i11/4) follows

lim
s i ,i 11→`

Fn
Qum im i 11 . . .

~u!50. ~21!

Having determined the form factors, we are in principle
the position to compute the two-point correlation functi
between two local operators in the usual way by expandin
in terms ofn-particle form factors

^O~r !O 8~0!&5 (
n51

`

(
m1 . . . mn

E
2`

` du1 , . . . ,dun

n! ~2p!n
e2rE

3Fn
Oum1 . . . mn~u1 , . . . ,un!

3@Fn
O 8um1 . . . mn~u1 , . . . ,un!#* . ~22!

We abbreviated the sum of the normalized on-shell ener
asE5( i 51

n mm i
/m coshui . We divided the massesmm i

by an
overall mass scale such thatE as well asr are dimensionless
Now we want to evaluate expression~22! in several different
applications in order to compute various quantities of int
est.

IV. RENORMALIZATION GROUP FLOW

Renormalization group methods have been develo
originally @12# to carry out qualitative analysis of regions
quantum-field-theories, which are not accessible by pertu
08500
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tion theory in the coupling constant. In particular theb func-
tion provides an insight into various possible asymptotic
haviors and especially it allows to identify the fixed points
the theory. We now want to employ this method to check o
solutions and at the same time the physical picture advoc
for the HSG models.

For this purpose we want to investigate first of all t
renormalization group flow, in a similar spirit as for th
SU(3)2 /U(1)2 case in Ref.@4#, by evaluating thec theorem
@13#:

c~r 0!5
3

2Er 0

`

drr 3^Q~r !Q~0!&. ~23!

Note thatr 0 is a dimensionless quantity and, in particular, f
r 050 the functionc(r 0) coincides withDc5cuv2cir , i.e.,
the difference between the ultraviolet and infrared Viraso
central charges. Computing the correlation function for
trace of the energy-momentum tensorQ in Eq. ~23! by
means of Eq.~22!, and using the form-factor expressions
the previous section, the individualn-particle contributions
turn out to be

Dc(2)5~N21!30.5, ~24!

Dc(4)5~N22!30.197, ~25!

Dc(6)5~N22!30.0021~N23!30.0924, ~26!

(
k52

6

Dc(k)5N30.791421.1752. ~27!

Apart from the two-particle contribution~24!, which is usu-
ally quite trivial and in this situation can even be evaluat
analytically, we have carried out the multidimensional in
grations in Eq.~22! by means of a Monte Carlo method. W
use this method up to a precision that is higher than the
digit we quote. For convenience we report some expl
numbers in Table I.

The evaluation of Eqs.~24!–~27! illustrates that the serie
~22! converges slower and slower for increasing values ofN,
such that the highern-particle contributions become mor
and more important to achieve high accuracy. Our analy
suggests that it is not the functional dependence of the i
vidual form factors that is responsible for this behavior. I
stead, this effect is simply due to the fact that the symme

TABLE I. n-particle contributions to thec theorem versus the
SU(N)2 /U(1)N21 -WZNW coset model central charge.

N c Dc(2) Dc(4) Dc(6) (k52
6 Dc(k)

3 1.2 1 0.197 0.002 1.199
4 2 1.5 0.394 0.096 1.990
5 2.857 2 0.591 0.191 2.782
6 3.75 2.5 0.788 0.285 3.573
7 4.6̄ 3 0.985 0.380 4.365

8 5.6 3.5 1.182 0.474 5.156
7-4
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factor, that is, the sum(m1 . . . mn
, resulting from permutations

of the particle species, increases drastically for largerN.
Having confirmed the expected ultraviolet central char

we now study the RG flow by varying the dimensionle
parameterr 0 in Eq. ~23!. The scaling function as defined i
Eq. ~23! qualitatively carries the same information as t
scaling function obtained from the thermodynamic Bethe
satz, see Ref.@21# for the model at hand. In this spirit w
may formally draw an analogy of the typer 0;m1 /T, where
T denotes the temperature. We stress, however, that we
consider this to be a formal identification on which we do n
intend to capitalize any further. We, therefore, anticipate
find that whenever we reach an energy scale at which
unstable particle can be formed, the model will flow to
different coset. Recalling@4# that the mass of an unstab
particleMc̃ is proportional tom exp(usu/2), with m being an
overall mass scale, and that the RG flow is achieved bym
→r 0m, we will encounter a situation with increasingr 0 in
which certains i ,i 11 are considered to be large, and we o
serve the decoupling into two freely interacting systems
the way described in Eq.~2!. For instance for the situation
s12.s23.s34. . . . , we observe the following decoupling
along the flow with increasingr 0:

SU~N!2 /U~1!N21

↓
SU~N21!2 /U~1!N22

^ SU~2!2 /U~1!

↓
SU~N22!2 /U~1!N23

^ @SU~2!2 /U~1!#2

↓
A

↓
@SU~2!2 /U~1!#N21.

We can understand this type of behavior in a semiana
cal way. The precise difference between the central cha
related to Eq.~2! is

cSU( i 11)2 /U(1)i ^ SU(N2 i )2 /U(1)N2 i 21

5cSU(N)2 /U(1)N212
2i ~N15!~N2 i 21!

~N12!~ i 13!~N2 i 12!
.

~28!

Noting with Eq.~21! that at each step we loose all the co
tributionsFn

Qum im i 11 . . . (u) to Dc, we may collect the values
~24!–~26!, which we have determined numerically and fin

lim
s i ,i 11→`

Dc~s i ,i 11 , . . . !5Dc~s i ,i 1150, . . . !

20.2914I i ,i 1120.0924I j , j 21

~29!

for j Þ1,N22. Similarly as for the deep ultravialet~UV!
region, we find a relatively good agreement between E
08500
,
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-
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s.

~28! and~29! for small values ofN. The difference for larger
values is once again due to the convergence behavior o
series in Eq.~22!.

For r 050, qualitatively a similar kind of behavior wa
previously observed, for the two-particle contribution on
in the context of the roaming sinh-Gordon model@14#. None-
theless, there is a slight difference between the two sit
tions. Instead of a decoupling into different cosets in the
types of models, the entireS matrix takes on the value21,
when the resonance parameter goes to infinity. The resu
effect, i.e., a depletion ofDc, is the same. However, we d
not comply with the interpretation put forward in Ref.@14#,
namely, that such a behavior should constitute a ‘‘violati
of the c-theorem sum rule.’’ The observed effect is precise
what one expects from the physical point of view and thc
theorem sum rule.

We present our full numerical results in Fig. 1, whic
confirm the outlined flow for various values ofN. We ob-
serve that thec function remains constant, at a value corr
sponding to the new coset, in some finite interval ofr 0. In
particular, we observe the nonequivalence of the flows w
the relative order of magnitude among the different re
nance parameters is changed. ForN55 we confirm@we omit
here theU(1) factors and report the corresponding cent
charges as superscripts on the last factor#

The precise difference in the central charges is explai
with Eq. ~29!, since the contribution 0.0924I j , j 21 only oc-
curs for j 52.

FIG. 1. RG flow for the Virasoro central charge.
7-5
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O. A. CASTRO-ALVAREDO AND A. FRING PHYSICAL REVIEW D64 085007
To establish more clearly that the plateaus admit an in
pretation as fixed points and extract the definite values of
corresponding Virasoro central charge, we can also, follo
ing Ref. @13#, determine ab type function fromc(r ). Theb
function should obey the Callan-Symanzik equation@15#

r
d

dr
g5b~g!. ~30!

The ‘‘coupling constant’’gªcUV2c(r ) is normalized in
such a way that it vanishes at the ultraviolet fixed poi
Whenever we findb(g̃)50, we can identifyc̃5cUV2g̃ as
the Virasoro central charge of the corresponding confor
field theory. Hence, taking the data obtained from Eq.~23!,
we computeb as a function ofg by means of Eq.~30!. Our
results for various values ofN are depicted in Fig. 2, which
allow a definite identification of the fixed points correspon
ing to the coset models expected from the decoupling~2!.

For SU(4)2 we clearly identify from Fig. 2 the four fixed
pointsg̃50,0.3,0.5, and 2 with high accuracy. The five fix
points g̃50,0.357,0.657,0.857, and 2.857, which we exp
to find for SU(5)2, are all slightly shifted due to the absen
of the higher-order contributions.

V. OPERATOR CONTENT OF SU„N…2 ÕU„1…NÀ1

We now want to identify the operator content of o
theory by carrying out the ultraviolet limit and matching th
conformal dimension of each operator with the one in
SU(N)2 /U(1)N21-WZNW coset model. For this purpos
first of all we have to determine the entire operator conten
the conformal field theory.

According to Ref.@16#, the conformal dimensions of th
parafermionic vertex operators are given by

D~L,l!5
@L•~L12r!#

~412N!
2

~l•l!

4
. ~31!

Here L is a highest dominant weight of level smaller
equal to 2 andr51/2(a.0a is the Weyl vector, i.e., half the
sum of all positive roots. Thel ’s are the corresponding
lower weights, which may be constructed in the usual fa
ion ~see, e.g., Ref.@17#!. Consider a complete weight strin

FIG. 2. Theb function.
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l1na, . . . ,l, . . . ,l2ma, that is all the weights obtained
by successive additions~subtractions! of a root a from the
weight l, such thatl1(n11)a @l2(m11)a# is not a
weight anymore. It is a well-known fact that the differen
between the two integersm,n is m2n5l•a for simply
laced Lie algebras. This means starting with the high
weight L, we can work our way downwards by decidin
after each subtraction of a simple roota i , whether the new
vector, sayx, is a weight or not using the criterionmi5ni
1x•a i.0. With the procedure just outlined we obtain a
possible weights of the theory. Nonetheless, it may hap
that a weight corresponds to more than one linear indep
dent weight vector, such that the weight space may be m
than one dimensional. The dimension of each weight vec
nl

L is computed by means of

nl
L5

(
a.0

(
l 51

`

2nl1 la@~l1 la!•a#

@~L1l12r!•~L2l!#
. ~32!

For consistency it is useful to compare the sum of all th
multiplicities with the dimension of the highest weight re
resentation computed directly from the Weyl dimensiona
formula ~see, e.g., Ref.@17#!

(
l

nl
L5dimL5 )

a.0

@~L1r!•a#

~r•a!
. ~33!

To compute all the conformal dimensionsD(L,l) according
to Eq.~31! in general, is a formidable task and, therefore,
concentrate on a few distinct ones for genericN and only
compute the entire content forN54.

Noting thatl i•l j5Ki j
21 , with K being the Cartan matrix

we can obtain relative concrete formulas from Eq.~31!. For
instance,

D~l i ,l i !5

4 (
l 51

N21

Kil
212NKii

21

812N
. ~34!

Similarly we may computeD(l i1l j ,l i1l j ), etc. in
terms of components of the inverse Cartan matrix. Ev
more explicit formulas are obtainable when we express
simple rootsa i and fundamental weightsl i of SU(N) in
terms of a concrete basis. For instance we may choos
orthonormal basis$« i% in RN ~see, e.g., Ref.@18#!, i.e.,
« i•« j5d i j ,

a i5« i2« i 11 , l i5(
j 51

i

« j2
i

N (
j 51

N

« j , i 51, . . . ,N21.

Noting further that the set of positive roots is given by$« i
2« j :1< i , j <N%, we can evaluate Eqs.~31!, ~32!, and~33!
explicitly. This way we obtain, for instance,

D~l i ,l i !5
i ~N2 i !

814N
and D~2l i ,2l i !50. ~35!
7-6
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Of special physical interest is the dimension of the pertu
ing operator. As was already argued in Ref.@4#, it corre-
sponds toD(c,0), with c being the highest root, and more
over it is unique. Noting that forSU(N) we havec5l1
1lN21, we confirm once more

D~c5l11lN21,0!5
N

N12
. ~36!

Other dimensions may be computed similarly.

The SU„4…ÕU„1…3 example

For SU(4)/U(1)3 we present the result of the comput
tion of the entire operator content in Table II. In case t
multiplicity of a weight vector is bigger than one, we ind
cate this by a superscript on the conformal dimension.

The remaining dominant weights of level smaller or eq
to 2, namely,L5l3,2l3 ,l21l3, including their multiplici-
ties, may be obtained from Table II simply by the exchan
1↔3, which corresponds to theZ2 symmetry of the
SU(4)-Dynkin diagram.

Summing up all the fields corresponding to differe
lower weights, i.e., not counting the multiplicities, we ha

TABLE II. Conformal dimensions for O D(L,l) in the
SU(4)2 /U(1)3 -WZNW coset model.

l/L l1 l2 2l1 2l2 l11l2 l11l3

dim L 4 6 10 20 20 15
L 1/8 1/6 0 0 1/8 1/6
L2a1 1/8 1/2 1/8 1/6
L2a2 1/6 1/2 1/8
L2a3 1/6
L2a12a2 1/8 1/6 1/2 1/2 5/82 1/6
L2a22a3 1/6 1/2 1/8 1/6
L2a12a3 1/6
L22a1 0
L22a2 0
L22a122a2 0 0
L22a222a3 0
L22a12a2 1/2 1/8
L2a122a2 1/2 1/8
L22a22a3 1/2
L2a12a22a3 1/8 1/6 1/2 1/2 5/82 2/33

L22a12a22a3 1/2 1/8 1/6
L2a122a22a3 1/6 12 5/82 1/6
L2a12a222a3 1/6
L22a122a22a3 1/2 1/2 5/82 1/6
L2a122a222a3 1/2 1/8 1/6
L22a122a2 1/8
L22a122a222a3 0 0 1/8 1/6
L2a123a222a3 1/2
L2a123a22a3 1/2
L22a123a22a3 1/2 1/8
L22a123a222a3 1/2 1/8
L22a124a222a3 0
08500
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the following operator content:

O 2/3,O 1,143O 0,83O 5/8,183O 1/6,243O 1/2,323O1/8,

i.e., 98 fields.

VI. OPERATOR CONTENT OF HSG

We will now turn to the massive model and evaluate t
flow of the conformal dimension@4#

DO~r 0!52
1

2^O~0!&Er 0

`

drr ^Q~r !O~0!&. ~37!

Here O is a local operator, which in the conformal lim
corresponds to a primary field in the sense of Ref.@19#. In
particular for r 050, expression~37! constitutes the delta
sum rule@20#, which expresses the difference between
ultraviolet and infrared conformal dimension of the opera
O.

We start by investigating the operator, which in the ca
when all particles in Eq.~5! are of the same type, corre
sponds to the disorder operatorm in the Ising model. Using
the fact that we should always be able to reduce to t
situation, we consider the solution corresponding tot i5 t̄ i
5n i5§ i50 for all i. Then theD sum rule~37! yields for the
individual n-particle contributions

Dm(2)5~N21!30.0625, ~38!

Dm(4)5~22N!30.0263, ~39!

Dm(6)5~N22!30.00171~32N!30.0113, ~40!

(
k52

6

Dm(k)50.02661N30.0206. ~41!

We assume that this solution has the conformal dimens
D(l1 ,l1) in the ultraviolet limit. For comparison we repo
a few explicit numbers in Table III. As we already observ
for thec theorem, the series converges slower for larger v
ues ofN. The reason for this behavior is the same, name
the increasing symmetry factor. Note also that the next c
tribution is negative.

Following now the RG flow for the conformal dimensio
~37! by varyingr 0, we assume that theD(l1 ,l1) field flows

TABLE III. n-particle contributions to theD theorem versus
conformal dimensions in theSU(N)2 /U(1)N21 -WZNW coset
model.

N D(l1 ,l1) Dm(2) Dm(4) Dm(6) (k52
6 Dm

3 0.1 0.125 20.0263 0.0017 0.1004
4 0.125 0.1875 20.0526 20.0079 0.1270
5 0.143 0.25 20.0789 20.0175 0.1536
6 0.156 0.3125 20.1052 20.0271 0.1802
7 0.16̄ 0.375 20.1315 20.0367 0.2068

8 0.175 0.4375 20.1578 20.0463 0.2334
7-7
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to theD(l1 ,l1) field in the corresponding new cosets. Sim
lar to the Virasoro central charge, we may compare the e
expression

D~l1 ,l1!SU( i 11)2 /U(1)i ^ SU(N2 i )2 /U(1)N2 i 21

5D~l1 ,l1!SU(N)2 /U(1)N211
i ~N15!~N2 i 21!

4~N12!~ i 13!~N2 i 12!

~42!

with the numerical results. The contributions~38!–~40! yield

lim
s i ,i 11→`

Dm~s i ,i 11 , . . . !5Dm~s i ,i 1150, . . . !

10.0359I i ,i 1110.0113I j , j 21

~43!

for j Þ1,N22. Once again we find good agreement betwe
the two computations for small values ofN. Our complete
numerical results are presented in Fig. 3, which confirm
outlined flow for various values ofN.

Notice by comparing Figs. 3 and 1, that, as we expect,
transition from one value forD to the one in the decouple
system occurs at the same energy scalet0 at which the value
of the Virasoro central charge flows to the new one.

In analogy to Eq.~30!, we may now define a function
‘‘ b8’ ’ and demand that it obeys the Callan-Symanzik eq
tion

r
d

dr
g85b8~g8!. ~44!

The ‘‘coupling constant’’ related tob8 is normalized in
such a way that it vanishes at the ultraviolet fixed point, i
g8ªD(r )2DUV , such that whenever we findb8(g̃8)50,
we can identifyD̂5g̃82DUV as the conformal dimension o
the operator under consideration of the corresponding c
formal field theory. From our analysis of Eq.~37! we may
determineb8 as a function ofg8 by means of Eq.~44!. Our
results are presented in Fig. 4.

Once again, forSU(4)2 the accuracy is very high and w
clearly read off from Fig. 4 the expected fixed pointsg̃8

FIG. 3. RG flow for the conformal dimension ofm.
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520.125,0,0.0375, and 0.0625. TheSU(5)2-fixed points
g̃8520.1429,0,0.0446,0.0821, and 0.1071, are once ag
slightly shifted.

Unfortunately, whenever the correlation function betwe
O andQ is vanishing, or when we consider an operator th
does not flow to a primary field, we cannot employ the de
sum rule~37!. Alternatively, we may exploit the well-known
relation

lim
r→0

^O~r !O~0!&;r 24DO
~45!

near the critical point in order to determine the conform
dimension. To achieve consistency with the proposed ph
cal picture we want to identify, in particular, the conform
dimension of the perturbing operator. Recalling that the tr
of the energy-momentum tensor is proportional to the p
turbing field, we analyzêQ(r )Q(0)& for this purpose.

According to Eq. ~45!, we deduce from Fig. 5D
52/3,5/7 forN54,5, respectively, which coincides with th
expected values.

VII. CONCLUSIONS

One of the main deductions from our analysis is that
scattering matrix proposed in Ref.@7# may certainly be asso
ciated to the perturbed gauged WZNW coset. This is ba
on the fact that we reproduce all the predicted features of
picture, namely, the expected ultraviolet Virasoro cent
charge, various conformal dimensions of local operators,
the characteristics of the unstable particle spectrum.

Our construction of general solutions to the form fac
consistency equations certainly constitutes a further imp
tant step towards a generic group theoretical understan
of the n-particle form factor expressions. The next natu
step is to extend the investigation towards higher level al
bras@22#.

Concerning the computation of correlation functions, o
results also indicate that the ‘‘folkloristic belief’’ of the fas
convergence of the series expansion of Eq.~22! has to be
challenged. In fact, for large values ofN, this is not true
anymore. It would be highly desirable to have more concr
quantitative criteria at hand.

FIG. 4. Theb8 function.
7-8
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Despite the fact of having identified some part of the o
erator content, it remains a challenge to perform a defi
one-to-one identification between the solutions to the fo
factor consistency equations and the local operators.
clear that we require new additional technical tools to
this, since theD sum rule ~37! may not be applied in al

FIG. 5. Rescaled correlation functionG(r )5^Q(r )Q(0)& as a
function of r.
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situations and Eq.~45! does not allow a clear-cut deductio
of D.

In comparison with other methods to achieve the sa
goal, we should note that in principle one can obtain, ap
from conformal dimensions different from the one of th
perturbing operator, the same qualitative picture from a th
modynamic Bethe Anzatz~TBA! analysis. For instance, in
Ref. @21# several of the HSG models related to the algeb
treated in this paper have been analyzed by means of
TBA. The scaling functions obtained that way exhibit qua
tatively the same kind of staircase pattern. It would be de
able to carry out the TBA also for a wider class of algebr
Nonetheless, one should stress that the scaling functions
tained by means of these two different methods differ qu
titatively, as one may easily check analytically for instan
for the free fermion, but agree only qualitatively. Concerni
the efficiency of the methods, one should point out that in
TBA approach the number of coupled nonlinear integ
equations to be solved increases withN, which means the
system becomes extremely complex and cumbersome
solve even numerically. Computing the scaling function w
the help of form factors only adds more terms to ea
n-particle contribution, but is technically not more involve
The price we pay in this setting is, however, the slow co
vergence of Eq.~22!.

We conjecture that the ‘‘cutting rule,’’ which describes th
renormalization group flow, also holds for other groups. T
is supported by the general structure of the HSG scatte
matrix.
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