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Abstract

We provide general determinant formulae for al n-particle form factors related to the trace of the energy momentum
tensor and the analogue of the order and disorder operator in the SU(3),-homogeneous sine-Gordon model. We employ the
form factors related to the trace of the energy momentum tensor in the application of the c-theorem and find perfect
agreement with the physical picture recently obtained by means of the thermodynamic Bethe ansatz. For finite resonance
parameter we recover the expected WZNW-coset central charge and for infinite resonance parameter the theory decouples
into two free fermions. © 2000 Elsevier Science B.V. All rights reserved.

PACS 11.10; 11.55.Ds; 05.70.; 05.30.-d; 64.60.Fr; 11.30.Er

1. Introduction

In [1] a certain physical picture for the quantum field theory of the Homogeneous Sine-Gordon models
(HSG) [2] was extracted from a thermodynamic Bethe ansatz analysis. The central aim of this manuscript is to
inspect the picture for consistency by means of the form factor approach [3,4].

The HSG-models have been constructed as integrable perturbations of WZNW-models. The related scattering
matrices belong to a general class [5,6], which describe the scattering of particles labeled by two quantum
numbers, where each of them may be associated to a simple Lie algebra. Characteristic features of these
S-matrices are the breaking of the parity invariance of some amplitudes and in addition the presence of a
resonance parameter which enables the formation of unstable bound states. In [1] we recovered the expected
Virasoro coset central charge and found that when the resonance parameter tends to infinity the system
decouples into several copies of minimal affine Toda field theories. Since the ultraviolet central charge is also
accessible by the c-theorem, the findings in [1] may be checked for consistency.
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Our manuscript is organised as follows: In Section 2 we recall the general properties of form factors. In
Section 3 we specialise the equations to the case of the SU(3),-HSG model and provide the general solutions
related to the energy momentum tensor and the analogue of the order and disorder operators. Our conclusions
and a further outlook are presented in Section 4.

2. Generalities on form factors

In order to fix our conventions and to set up the general framework we commence by recalling briefly some
general properties of form factors. For a proper justification of them in terms of genera principles of quantum
field theory and analytic properties in the complex plane we refer the reader to [3,4,7,8].

Form factors are tensor valued functions, representing matrix elements of some local operator #(x) at the
origin between a multiparticle in-state and the vacuum, which we denote by

Foliain(y, ..., 0,) =(0l@(0)IV, (6,)V, (6,) ...V, (6,)), - (1)

Here the VM((}) are some vertex operators representing a particle of species w depending on the rapidity 6
satisfying the so-called Zamolodchikov agebra.
As a consequence of CPT-invariance or the braiding of two operators V,(6) one obtains

R (LB, B g ) = R (010 ) S (01141) 2)

As usua we abbreviate 6,; = 6, — 6;. The analytic continuation in the complex 6-plane a the cuts when
0 = 21ri together with crossing leads to

ok to( 9, + 27i,...,0,) = FF k2 raia(g,,...,60,,0,). (3)
Since we are describing relativistically invariant theories we expect for an operator ¢ with spin s
Folkto(9, + A,...,0,+ ) =Rt g,,...,0,), (4)

with A being an arbitrary real number. For a form factor whose first two particles are conjugate to each other we
have a kinematical pole at i, which leads to a recursive equation relating the (n — 2)- and the n-particle form
factor

n
_Res FllGrtatn(0y+im,00,0,...,60,) =i|1— o[ 1S,,(00)|F'##(6y,....6,), (5)
I=1

09— 0¢

with o being the factor of local commutativity and w the anti-particle of w. We restrict our initia
considerations to a model in which stable bound states may not be formed and therefore we do not need to
report the so-called bound state residue equation.

To be able to associate a solution of the Egs. (2)—(5) to a particular operator, the following upper bound on
the asymptotic behaviour [9]

[Folmmn(oy,...,0))] < A (6)

turns out to be very useful. Here A denotes the conformal dimension of the operator @ in the conformal limit.
For convenience we introduced the short hand notation lim, _,..f(6,,...,6,) = const.- exp((f(6,,...,6,)];6,).
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Ultimately form factors serve to compute correlation functions, but they may also be exploited to extract
various other properties as for instance the difference between the ultraviolet and infrared Virasoro central
charges, as stated in the so-called c-theorem [10]

- 9 . .
Ac= Y, ) n—n!(ZW)nf_m...f_w

n=1pwps...n

G| Femma(o,, 0] (7)

do, ... de,
n

( Y mﬂicoshei)
i=1

It is essentially the property (7) which we wish to employ for our purposes and check for consistency of the
physical picture which emerged in [1].

3. The SU(3),-HSG model

For finite resonance parameter the SU(3),-HSG model describes the WZNW-coset model with central charge
c = £ perturbed by an operator with conformal dimension A = 2. The model contains only two self-conjugate
solitons which are conveniently denoted by ** +'" and ** —'’, since that will allow for compact notations. The
S-matrix elements read [5]
1 T
Sii=_1 and Si¥(0)=itanh5(0ia—i5). (8)
This means the scattering of particles of the same type is simply described by the S-matrix of the thermal
perturbation of the Ising model. Also the remaining amplitudes do not possess poles inside the physical shest,
such that the formation of stable particles via fusing is not possible. For vanishing resonance parameter o the
amplitudes S, ; coincides formally with the ones which describe the massless flow between the tricritical 1sing
and the critical Ising model as analysed in [11]. However, there is an important conceptual difference since we
view the expressions (8) as describing the scattering of massive particles. This has important consequences on
the construction of the form factors and in fact the solution we compute below will be different from the one
proposed in [11]. In the HSG setting the massless flow was recovered in the context of the thermodynamic
Bethe ansatz [1] only as a subsystem in terms of specially introduced variables combining the inverse
temperature and the resonance parameter. When the resonance parameter tends to infinity the amplitudes S, -
become one, describing non-interacting scattering, such that the ** +'’-system and the ** —'’-system decouple.
Attempting now to solve the equations presented in Section 2, we proceed as usua in this context and we
make a factorization ansatz which aready extracts explicitly some of the singularity structure we expect to find.
For the case at hand we have to have a kinematical pole at i when two particles are conjugate to each other

I X + mx F

Ol Oluyg... Olpyg... Fr#iir#j(aii)
|:n 1o M Mt Mn(gl___@n) = Hn M1 f‘-nQn My IJ'n( Xy.oe Xn) 1_[ —. (9)
T< (X X )

We introduced the variable x, = expf,. The HZ!#1---#n are normalization constants. As common we Suppose
that the so-called minimal form factor satisfies

Fln(0) = Fhin(—0)8,(0) = Flin(27i — 0) (10)
and has neither zeros nor poles in the physica sheet. Then, if we further assume that Q7!*+---#n(9,,...,6,) is
separately symmetric in the first | and the last m rapidities and in addition 2i-periodic function in all

rapidities, the ansatz (9) solves Watson's Egs. (2) and (3) by construction. In particular we have
I X+ mXx-— mXx-— I X+

—_—— —_—

Qf\ul---m I-L|+1---:U~n(xl,___,xn) = Qnﬁm|+1---unm---u|(XHl,___ Xy Xqs e - X|)7 (11)
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such that when we have constructed a solution for one particular ordering of the u’s, e.g. the upper signin (9),
we can obtain the solution for a permuted ordering by the monodromy properties. Especially the reversed order
we obtain by applying Eq. (11). Despite the fact that we do not gain anything new, it is still instructive to verify
(5) as a consistency check also for the different ordering. The monodromy properties allow some simplification
in the notation and from now on we restrict our attention w.l.g. to the upper sign in (9). In addition we deduce
from Eq. (4) that for a spinless operator @ the total degree of Q7 hasto be I(1 —1)/2 —m(m—1)/2.

A solution for the minimal form factors, i.e. of Egs. (10), is found easily

Fir(0) = —isinhg, (12)

m F(k+%)zr(k+%+2i—w(ei a))F(k—%—%(@ia))

(e )=/V+(9)kljlF(k—%)zr(k—%—;—W(eia))r(k+§+%(010)), (13)
.
=/ *(0)exp _f:? - ((m = t) 277) ' (14)

sinh t cosh—
2

Here F.:2(0) is the well-known minimal form factor of the thermally perturbed Ising model [12,13] and for the
upper choice of the signs, Eq. (14) coincides for vanishing o up to normalization with the expression found in
[11]. We introduced the normalization function .7 *(9) = ‘*exp(ﬂuL 2) with G = 0.91597 being the
Catalan constant. The minimal form factors possess various properties which we would like to employ in the

course of our argumentation. They obey the functional identities

[
Frf(o+im)FEE(0) = ——smhe (15)
2+1
— 0
2 eiz
Fan+(0+i7T)Fm+|—n+(0): 1 i\ ° (16)
cosh-|0+o— —
2 2
We will also exploit the asymptotic behaviour
0
+F -z ++ 1 +F 1
Ilm me (+0) ~€ a4, [Fm_in_(eij)]i = Ev [Fm_in (Oij)]i =y __- (17)
2
Together with the factorization ansatz (9) this leads us immediately to the relations
1-1
[Fom] =[Qgm]. + —— for 1<i<l (18)
m-—1-1 )
[Ff“'m]i=[Qf“’m]i+T for I<i<n, (19)

which are useful in the identification process of a particular solution with a specific operator. Since we may
restrict our attention to one particular ordering only, we abbreviate the r.h.s. of (9) from now on as F7I"™ and
similar for the Q’s.
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Substituting the ansatz (9) into the kinematic residue equation (5) reduces, with the help of (15) and (16), the
whole problem of determining the form factors to the following recursive equations:

Q2™ =%, %X, ..., X,) =Dy™(Xgy e, X)) QY M( Xy, ey X)) (20)
l m

DIM(X, Xy, ..., X,) = E(—ix)'”al+ Y (—ie'x) (1-w(-1)"" o (21)
k=0

Here we introduced yet another short hand notation, namely for elementary symmetric polynomias
o (Xy,...,x) =0 and o (X, q,...,X,) =0, . Below we shal also employ o, when the polynomials
depend on all n variables, &, when they depend on the n inverse variables, i.e. x; *and &, when they depend
on the n variables x,e 7.

The recursive eguations for the constants turn out to be

Hn@:lIZJrZ,m= im22I7m+1eam/2Hn@”|l,m_ (22)
Fixing one of the lowest constants, the solutions to these equations read
H@"|2's+t,m= ismzs(Zsfmf1+2t)esma/2Hﬁ\t,m t=01. (23)

For specific operators we will provide below the explicit expressions for the H?!"™ Notice that there is a
certain ambiguity contained in the Egs. (22), i.e. we can multiply HZ"™ by i2', i2"* or (—1)' and produce a
new solution. However, since in practical applications we are usually dealing with the absolute values of the
form factors, these ambiguities will turn out to be irrelevant.

3.1. Solutions

Whenever we consider F7I"™ with | even for vanishing resonance parameter o, we can use the kinematic
residue equation (5) 1 /2-times and finally construct F71%™, which should correspond to a form factor of the
thermally perturbed Ising model. In other words in that case we can always use the well-known solutions Q7™
as the initial condition for the recursive problem (20).

3.1.1. The energy momentum tensor @&
The only non-vanishing form factor of the energy momentum tensor in the thermally perturbed Ising model is
well know to be

F2(0) = —2mim?sinh(6/2) . (24)

From this equation we deduce immediately that [F.®"?]. = 1, which serves on the other hand to fix [Q¢!"2].
with the help of (18) and (19). Recalling that the energy momentum tensor is proportional to the perturbing field
[15] and the fact that the conformal dimension of the latter is A= 2 for the SU(2),-HSG model, the value
[FOI2], = 1 is compatible with the bound (6). As a further consequence of (24), we deduce

HO02 = 27 m? (25)

as the initia value for the computation of al higher constants in (23). The distinction between m_ and m,
indicates that in principle the mass scales could be very different as discussed in [1]. Notice that H®/%C s

' The elementary symmetric polynomials are generated by
n n
TIOcHx)= X X" o Xy %)y i ai(Xyees Xn)=—-95m [I(z+x0)
k=1 k=0 z k=1

(For more properties see e.g. [14].)
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reached only formally, since the kinematic residue equation does not connect to the vacuum expectation value.
The initial values for the recursive Egs. (20) are

Q92 =x1+x, and Q9°2'=0 fortx>2. (26)
Taking now w = 1, the solutions to (20), with the same asymptotic behaviour as the energy momentum tensor in
the thermally perturbed Ising model, are computed to

o252t = (1) Vet 7 (04 ° (05) " 'detr® fort>1,5>1, (27)
where &€ isa(t+ s— 2) X (t + s— 2)-matrix whose entries are given by
o [T for 1<i<t .
M” = . . .
T (-1 6y iy, for t<i<s+t—2 (28)
Explicitly we have
oy o od o7 - 0
0 of o3 of - 0
. 0 0 0 0o .- i 1
Y=\ 67 65 -6 67 - ol" (29)
0 -0 o; —0; 0
0 0 0 0 - (-1)'65,

One may easily verify case-by-case that (27) is a solution of (22) to relatively high ordersin s and t. A genera
proof of this result, which we present elsewhere [16], can be obtained by exploiting the fact that the determinant
of &/ may also be represented in terms contour integrals

t—1 2s s—1
det.or® = (—1) V', ... u,_yPeoy ... pogy [Tuz 2 2T (u+x) [Tof 22
j=1 i=1 j=1

2s+2t s—1t-1
x IT (y+%) 11 (uf—uf) 11 (sz—uiz)l_[ H(ui2+uj2). (30)
i=1+2s I<i<j<t-1 1<i<j<s—1 j=1i=1
In order to establish the equivalence between (29) and (30) we simply use the integral representation for the
symmetric polynomals as stated in the footnote. The integrals in (30) are understood as ¢dz = (Zwi)’lgslz‘: 0,0z
with o being an arbitrary positive real number.
Assembling now al the quantities we obtain for instance

o 22+ T o,

i<j v
Friki(g ). 31
2cosn( 0,/2) cosh( 63,/2) IljJ i (6) (&)
Having computed all form factors for the energy momentum tensor we are in the position to apply the
c-theorem, i.e. we can in principle evaluate (7). For finite values of o we obtain
Ac® =1, Ac®=1.197..., Ac®=1199..., foro<w, (32)

where in the notation Ac(™, the superscript n indicates the upper limit in (7). Thus, the expected value of ¢ = £

is well reproduced. Apart from Ac®, in which case the calculation can be performed analytically, the integrals
in (7) are computed directly by a brute force Monte Carlo integration.

F4@|++77(91192193704) =
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When the resonance parameter tends to infinity the system decouples and we are left with two non-inter-
acting free fermions, such that the only contribution in the sum (7) is twice the free fermion two-particle
(33)

contribution, such that

lim Ac=1
og— ®©
In order to see this we collect the leading order behaviours form our general solution
lim HE252 ~ 657, lim QEl2s2 ~ e (e, lim TTRAw(6,) ~e =, (34)
o—> ® g— ®© og— ®© |<J
which means
(35)

lim Fo252t ~ g (s~ Do
Hence the only non-vanishing form factors in this limit are FS1%2 and F2120, which establishes (33)

3.1.2. The order operator 3
For the other sectors we may proceed similarly, i.e. viewing always the thermally perturbed Ising model as a

benchmark. Taking now » = 1, we recall the solution for the order operator
D) ) 282+s- 3 mln (OIJ)
Foer1(O1,....055,1) =1°F; l_[tanh _'5(2') Fir(o2s1) TT——— (36)
i<j i<j X + X
With this information we may fix the initia values of the recursive Egs. (20) and (22) at once to
and HY0l=F7, (37)

- — t
2:‘4912“1 (0'2t+1) =(02141)
Furthermore, we deduce from Eq. (36) that [ F.>/252*1]. = 0. Respecting these constraints we find as explicit

solutions
1 1
(s+ Dt 2 —t-1, _\—%, _ —t
22s‘iszft++11 =(-1 * (o1) (0'2+s)s (1) 2(0%:1) deto> (38)
where & isa(t+s) X (t+ s)-matrix whose entries are given by
. .
Tai-i) for 1<i<t
ijE: (j—i+t+1) ~ . : (39)
(-1 Ooyj—itty+1 for t<i<s+t
Explicitly this reads
1 oy oy o - 0
0 1 oy oy 0
0 0 0 0 ok
>
I B . (40)
g1 g3 05 07
0 o7 o3 05 0
1) ~
o 0o 0 0 - (-n“Pg,
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Once again the determinant of .7 admits an integral representation

2s t 2s+2t+1
det.or* =(—1) S(tfl)sﬁdul . .ngutsﬁdul. ..95dus_]_[ u P AT (w4 x) T w22
i=1 j=1 i=1+2s

xj_ﬁl(ujmi) [T () T1 (v2—o?)T1I1(e2+0)

I<i<j<t 1<i<j<s j=1i=1

which may be used for a general proof [16].
When the resonance parameter tends to infinity we obtain the following asymptotic behaviour

: w2s2t+1 _ a-so
lim Q455%r1 ~¢e
o— ©

I|mH2"S‘2+52§‘jl1 Fhiti(6;)=const [T Fhn(6;) 11 Fin (0;5) -

min
o= i<j 1<i<j<2s 2s<i<j<2s+2t+1

(41)

(42)

(43)

This means unless s= 0, that is a reduction to the thermally perturbed Ising model, the form factors will vanish

in this limit.

3.1.3. The disorder operator u

For the disorder operator we have @ = — 1 and the solution acquires the same form as in the previous case

Fi(0,,...,0,5) =iF¢ ]_[tanh

i<j
Similar as for the order variable we can fix the initial values of the recursive Egs. (20) and (22) to
Qz\o,m = (O'Zt)l/zit = ( a'Zt)t_ Y2 and  HHOO0= =F§.

Furthermore, we deduce [ F*252!]. = 0. Respecting these constraints we find as a general solution

3
——t
t 2 s—2 _\—1
;s‘isé%t = ( - 1) ° (a-Zer 2t) ( 0-2+s) ( 021) det.o* ’
where &7* is a(t +s) X (t + s)-matrix whose entries are given by
Toi-i) for 1<i<t

= A _ .
Tl (m)Y 6, for t<i<s+t

Explicitly we have

1 o5 oy gy - 0
0 1 oy a - 0
0 0 0 0 o
= -6 & -6 0
0 1 -6, & 0
0 0 0 0 (—1)'65,

(44)

(45)

(46)

(47)

(48)
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Similarly as in the previous sections we can write the determinant of .« aternatively in form of an integral
representation

2s t 2s+2t
W o (_1\st=D 1-2s-2]j ) ) 1-2t-2j
deto* =(—1) ngul. ..95dutg§dul. ..SﬁduSiUlu] J_]:[1(uJ +X;) i=11_+IzsUJ
S S t
X_l_[(v]--l-xi) 1_[ (ujz_uiz) 1_[ (vjz—uiz)]_[.]_[(ui2+vj2). (49)
j=1 l<i<j<t 1<i<j<s j=1li=1
When the resonance parameter tends to infinity we observe the following asymptotic behaviour:
. t
lim QE! = (—1) Qs 0Q5° (50)
lim HEZS T TRA(6,;) =const. [T Foi (6,) 1 Foin (6:1) (51)
[andee i<j 1<i<j<2s 2s<i<j<2t+2s
such that
lim FARS2~ FAO2F 200, (52)

This means also in this sector we observe the decoupling of the theory into two free fermions.

4, Conclusions

The application of the c-theorem confirms very well the physical picture we found in [1] from the
thermodynamic Bethe ansatz. For finite resonance parameter we recover the expected Virasoro central charge of
c= ¢ and for o — « the theory decouples in al sectors into two non-interacting free fermions. Besides the
construction of all n-particle form factors related to the trace of energy momentum, we computed in addition the
complete solutions for the order and disorder operator in form of determinants whose entries are symmetric
polynomials. Such determinant formulae have occurred before in various places in the literature, e.g. [7,17].
Representing the solutions for form factors in this form has turned out to be useful in the construction of
correlation functions [18] and might eventually lead to a reformulation of the whole problem in terms of
differential equations analogous to the situation in conformal field theory [19]. Apart from higher spin solutions
which may aways be constructed by including the polynomials as suggested in [20], we did not find any
additional solutions related to other sectors. We expect that a careful analysis of the cluster decomposition
property will lead to more conclusive statements concerning the question whether such solutions exist at al.
From a mathematical point of view it is also desirable to present a rigorous proof of the determinant formulae
[16].
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