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Abstract

We provide general determinant formulae for all n-particle form factors related to the trace of the energy momentum
Ž .tensor and the analogue of the order and disorder operator in the SU 3 -homogeneous sine-Gordon model. We employ the2

form factors related to the trace of the energy momentum tensor in the application of the c-theorem and find perfect
agreement with the physical picture recently obtained by means of the thermodynamic Bethe ansatz. For finite resonance
parameter we recover the expected WZNW-coset central charge and for infinite resonance parameter the theory decouples
into two free fermions. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 11.10; 11.55.Ds; 05.70.Jk; 05.30.-d; 64.60.Fr; 11.30.Er

1. Introduction

w xIn 1 a certain physical picture for the quantum field theory of the Homogeneous Sine-Gordon models
Ž . w xHSG 2 was extracted from a thermodynamic Bethe ansatz analysis. The central aim of this manuscript is to

w xinspect the picture for consistency by means of the form factor approach 3,4 .
The HSG-models have been constructed as integrable perturbations of WZNW-models. The related scattering

w xmatrices belong to a general class 5,6 , which describe the scattering of particles labeled by two quantum
numbers, where each of them may be associated to a simple Lie algebra. Characteristic features of these
S-matrices are the breaking of the parity invariance of some amplitudes and in addition the presence of a

w xresonance parameter which enables the formation of unstable bound states. In 1 we recovered the expected
Virasoro coset central charge and found that when the resonance parameter tends to infinity the system
decouples into several copies of minimal affine Toda field theories. Since the ultraviolet central charge is also

w xaccessible by the c-theorem, the findings in 1 may be checked for consistency.
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Our manuscript is organised as follows: In Section 2 we recall the general properties of form factors. In
Ž .Section 3 we specialise the equations to the case of the SU 3 -HSG model and provide the general solutions2

related to the energy momentum tensor and the analogue of the order and disorder operators. Our conclusions
and a further outlook are presented in Section 4.

2. Generalities on form factors

In order to fix our conventions and to set up the general framework we commence by recalling briefly some
general properties of form factors. For a proper justification of them in terms of general principles of quantum

w xfield theory and analytic properties in the complex plane we refer the reader to 3,4,7,8 .
Ž .Form factors are tensor valued functions, representing matrix elements of some local operator OO x at the

origin between a multiparticle in-state and the vacuum, which we denote by

OO < m1 . . . m n < <F u , . . . ,u [ 0 OO 0 V u V u . . . V u . 1² :Ž . Ž . Ž . Ž . Ž . Ž .n 1 n m 1 m 2 m n1 2 n in

Ž .Here the V u are some vertex operators representing a particle of species m depending on the rapidity um

satisfying the so-called Zamolodchikov algebra.
Ž .As a consequence of CPT-invariance or the braiding of two operators V u one obtainsm

F OO < . . . m i m iq 1 . . . . . . ,u ,u , . . . sF OO < . . . m iq 1 m i . . . . . . ,u ,u , . . . S u . 2Ž . Ž . Ž . Ž .n i iq1 n iq1 i m m i , iq1i iq1

As usual we abbreviate u s u yu . The analytic continuation in the complex u-plane at the cuts wheni j i j

us2p i together with crossing leads to

F OO < m1 . . . m n u q2p i , . . . ,u sF OO < m 2 . . . m n m1 u , . . . ,u ,u . 3Ž . Ž . Ž .n 1 n n 2 n 1

Since we are describing relativistically invariant theories we expect for an operator OO with spin s

F OO < m1 . . . m n u ql, . . . ,u ql selF OO < m1 . . . m n u , . . . ,u , 4Ž . Ž . Ž .n 1 n n 1 n

with l being an arbitrary real number. For a form factor whose first two particles are conjugate to each other we
Ž .have a kinematical pole at ip , which leads to a recursive equation relating the ny2 - and the n-particle form

factor

n
OO < mmm . . . m OO < m . . . m1 n 1 nRes F u q ip ,u ,u . . . ,u s i 1yv S u F u , . . . ,u , 5Ž . Ž . Ž .Ž . Łnq2 0 0 1 n mm 0 l n 1 nlž /

u ™u ls10 0

with v being the factor of local commutativity and m the anti-particle of m. We restrict our initial
considerations to a model in which stable bound states may not be formed and therefore we do not need to
report the so-called bound state residue equation.

Ž . Ž .To be able to associate a solution of the Eqs. 2 – 5 to a particular operator, the following upper bound on
w xthe asymptotic behaviour 9

OO < m . . . m1 nF u , . . . ,u F D 6Ž . Ž .n 1 n i

turns out to be very useful. Here D denotes the conformal dimension of the operator OO in the conformal limit.
Ž . Žw Ž .x .For convenience we introduced the short hand notation lim f u , . . . ,u s const.Pexp f u , . . . ,u u .u ™` 1 n 1 n i ii
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Ultimately form factors serve to compute correlation functions, but they may also be exploited to extract
various other properties as for instance the difference between the ultraviolet and infrared Virasoro central

w xcharges, as stated in the so-called c-theorem 10
` ` `9 du . . . du 21 n OO < m . . . m1 nDcs . . . F u , . . . ,u . 7Ž . Ž .Ý Ý H Hn n 1 n4nn! 2pŽ . y` y`m . . . mns1 1 n m coshuÝ m iiž /

is1

Ž .It is essentially the property 7 which we wish to employ for our purposes and check for consistency of the
w xphysical picture which emerged in 1 .

( )3. The SU 3 -HSG model2

Ž .For finite resonance parameter the SU 3 -HSG model describes the WZNW-coset model with central charge2
6 3cs perturbed by an operator with conformal dimension Ds . The model contains only two self-conjugate5 5

solitons which are conveniently denoted by ‘‘q’’ and ‘‘y’’, since that will allow for compact notations. The
w xS-matrix elements read 5

1 p
S sy1 and S u s"tanh u"sy i . 8Ž . Ž ."" ". ž /2 2

This means the scattering of particles of the same type is simply described by the S-matrix of the thermal
perturbation of the Ising model. Also the remaining amplitudes do not possess poles inside the physical sheet,
such that the formation of stable particles via fusing is not possible. For vanishing resonance parameter s the
amplitudes S coincides formally with the ones which describe the massless flow between the tricritical Ising".

w xand the critical Ising model as analysed in 11 . However, there is an important conceptual difference since we
Ž .view the expressions 8 as describing the scattering of massive particles. This has important consequences on

the construction of the form factors and in fact the solution we compute below will be different from the one
w xproposed in 11 . In the HSG setting the massless flow was recovered in the context of the thermodynamic

w xBethe ansatz 1 only as a subsystem in terms of specially introduced variables combining the inverse
temperature and the resonance parameter. When the resonance parameter tends to infinity the amplitudes S".

become one, describing non-interacting scattering, such that the ‘‘q’’-system and the ‘‘y’’-system decouple.
Attempting now to solve the equations presented in Section 2, we proceed as usual in this context and we

make a factorization ansatz which already extracts explicitly some of the singularity structure we expect to find.
For the case at hand we have to have a kinematical pole at ip when two particles are conjugate to each other

l = " m = .
m m! # "! # " i jF uŽ .min i jOO < m . . . m m . . . m OO < m . . . m OO < m . . . m1 l lq1 n 1 n 1 nF u . . . u sH Q x . . . x . 9Ž . Ž . Ž .Łn 1 n n n 1 n dm mm m i ji ji-j x qxŽ .i j

We introduced the variable x sexpu . The H OO < m1 . . . m n are normalization constants. As common we supposei i n

that the so-called minimal form factor satisfies

F i j u sF ji yu S u sF ji 2p iyu 10Ž . Ž . Ž . Ž . Ž .min min i j min

OO < m1 . . . m nŽ .and has neither zeros nor poles in the physical sheet. Then, if we further assume that Q u , . . . ,u isn 1 n

separately symmetric in the first l and the last m rapidities and in addition 2p i-periodic function in all
Ž . Ž . Ž .rapidities, the ansatz 9 solves Watson’s Eqs. 2 and 3 by construction. In particular we have

l =q m =y m =y l =q
! # "! # " ! # "! # "

OO < m . . . m m . . . m OO < m . . . m m . . . m1 l lq1 n lq1 n 1 lQ x , . . . , x sQ x , . . . x , x , . . . x , 11Ž . Ž . Ž .n 1 n n lq1 n 1 l
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Ž .such that when we have constructed a solution for one particular ordering of the m’s, e.g. the upper sign in 9 ,
we can obtain the solution for a permuted ordering by the monodromy properties. Especially the reversed order

Ž .we obtain by applying Eq. 11 . Despite the fact that we do not gain anything new, it is still instructive to verify
Ž .5 as a consistency check also for the different ordering. The monodromy properties allow some simplification

Ž .in the notation and from now on we restrict our attention w.l.g. to the upper sign in 9 . In addition we deduce
Ž . OO Ž . Ž .from Eq. 4 that for a spinless operator OO the total degree of Q has to be l ly1 r2ym my1 r2.n

Ž .A solution for the minimal form factors, i.e. of Eqs. 10 , is found easily

u
""F u syisinh , 12Ž . Ž .min 2

21 1 i 3 i
G kq G kq q u"s G ky y u"sŽ . Ž .` ž / ž / ž /4 4 2p 4 2p". "F u sNN u , 13Ž . Ž . Ž .Łmin 21 1 i 3 iks1
G ky G ky y u"s G kq q u"sŽ . Ž .ž / ž / ž /4 4 2p 4 2p

t
2sin ipyu.sŽ .ž /` dt 2p"sNN u exp y . 14Ž . Ž .H tt0� 0sinh t cosh

2
""Ž . w xHere F u is the well-known minimal form factor of the thermally perturbed Ising model 12,13 and for themin

Ž .upper choice of the signs, Eq. 14 coincides for vanishing s up to normalization with the expression found in
1 Ž .ip 1 . 1 " u G" 4w x Ž .11 . We introduced the normalization function NN u s2 exp y with Gs0.91597 being theŽ .4 p

Catalan constant. The minimal form factors possess various properties which we would like to employ in the
course of our argumentation. They obey the functional identities

i
"" ""F uq ip F u sy sinhu , 15Ž . Ž . Ž .min min 2

2.1
u

2 "i e 2
". ".F uq ip F u s . 16Ž . Ž . Ž .min min 1 i p

cosh u"syž /2 2

We will also exploit the asymptotic behaviour

0°
s 1

". y "" ". ~ 1lim F "u ;e , F u s , F u s . 17Ž . Ž .Ž . Ž .4min min i j min i ji i y2s™` ¢
2

Ž .Together with the factorization ansatz 9 this leads us immediately to the relations

1y l
OO < l ,m OO < l ,mF s Q q for 1F iF l 18Ž .n ni i 2

my ly1
OO < l ,m OO < l ,mF s Q q for l- iFn , 19Ž .n ni i 2

which are useful in the identification process of a particular solution with a specific operator. Since we may
Ž . OO < l,mrestrict our attention to one particular ordering only, we abbreviate the r.h.s. of 9 from now on as F andn

similar for the Q’s.
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Ž . Ž . Ž . Ž .Substituting the ansatz 9 into the kinematic residue equation 5 reduces, with the help of 15 and 16 , the
whole problem of determining the form factors to the following recursive equations:

Q OO < lq2,m yx , x , . . . , x sDl ,m x , . . . , x Q OO < l ,m x , . . . , x , 20Ž . Ž . Ž . Ž .nq2 n n 1 n n 1 n

m1 lq1 yk lqkl ,m q s yD x , x , . . . , x s yix s yie x 1yv y1 s 21Ž . Ž . Ž . Ž . Ž .Ž .Ýn 1 n l k2 ks0

Here we introduced yet another short hand notation, namely for elementary symmetric polynomials
Ž . q Ž . y1s x , . . . , x 's and s x , . . . , x 's . Below we shall also employ s when the polynomialsk 1 l k k lq1 n k k

y1depend on all n variables, s when they depend on the n inverse variables, i.e. x and s when they dependˆk i k

on the n variables x eys .i

The recursive equations for the constants turn out to be

H OO < lq2,m s im22 lymq1es m r2H OO < l ,m . 22Ž .nq2 n

Fixing one of the lowest constants, the solutions to these equations read

H OO <2 sqt ,m s i sm2 sŽ2 symy1q2 t .e sms r2H OO < t ,m , ts0,1 . 23Ž .
For specific operators we will provide below the explicit expressions for the H OO < l,m. Notice that there is a

Ž . OO < l,m 2 l 2 l 2 Ž . lcertain ambiguity contained in the Eqs. 22 , i.e. we can multiply H by i , i or y1 and produce an

new solution. However, since in practical applications we are usually dealing with the absolute values of the
form factors, these ambiguities will turn out to be irrelevant.

3.1. Solutions

Whenever we consider F OO < l,m with l even for vanishing resonance parameter s , we can use the kinematicn
Ž . OO <0,mresidue equation 5 lr2-times and finally construct F , which should correspond to a form factor of then

thermally perturbed Ising model. In other words in that case we can always use the well-known solutions Q OO <0,m
n

Ž .as the initial condition for the recursive problem 20 .

3.1.1. The energy momentum tensor Q

The only non-vanishing form factor of the energy momentum tensor in the thermally perturbed Ising model is
well know to be

FQ u sy2p im2 sinh ur2 . 24Ž . Ž . Ž .2

1Q < l,2 Q < l,2w x w xFrom this equation we deduce immediately that F s , which serves on the other hand to fix Qn i n i2

Ž . Ž .with the help of 18 and 19 . Recalling that the energy momentum tensor is proportional to the perturbing field
3w x Ž .15 and the fact that the conformal dimension of the latter is Ds for the SU 2 -HSG model, the value35

1Q < l,2w x Ž . Ž .F s is compatible with the bound 6 . As a further consequence of 24 , we deducen i 2

HQ <0,2 s2p m2 25Ž .y

Ž .as the initial value for the computation of all higher constants in 23 . The distinction between m and my q
w x Q <0,0indicates that in principle the mass scales could be very different as discussed in 1 . Notice that H is

1 The elementary symmetric polynomials are generated by
n n n1 dz

ny kxq x s x s x , . . . , x , i.e. s x , . . . , x s zq xŽ . Ž . Ž . Ž .EŁ Ý Łk k 1 n k 1 n knykq12p i zks1 k s1k s 0

Ž w x .For more properties see e.g. 14 .



( )O.A. Castro-AlÕaredo et al.rPhysics Letters B 484 2000 167–176172

reached only formally, since the kinematic residue equation does not connect to the vacuum expectation value.
Ž .The initial values for the recursive Eqs. 20 are

QQ <0,2 sxy1 qxy1 and QQ <0,2 t s0 for tG2 . 26Ž .2 1 2 2 t

Ž .Taking now vs1, the solutions to 20 , with the same asymptotic behaviour as the energy momentum tensor in
the thermally perturbed Ising model, are computed to

Ž . syt 1ytsq1 tQ <2 s ,2 t yts q y QQ s y1 e s s s s det AA for tG1,sG1, 27Ž . Ž .Ž . Ž .2 sq2 t 1 1 2 s 2 t

Q Ž . Ž .where AA is a tqsy2 = tqsy2 -matrix whose entries are given by
qs for 1F i- t2 jyi q1Ž .

QAA s . 28Ž .Ž .i j jyiqt y½ y1 s for tF iFsq ty2Ž . ˆ2Ž jyiqt .y1

Explicitly we have

sq sq sq sq PPP 0° ¶1 3 5 7
q q q0 s s s PPP 01 3 5

. . . . ... . . . . ... . . . .
q0 0 0 0 PPP s2 sy1

QAA s . 29Ž .y y y yys s ys s PPP 0ˆ ˆ ˆ ˆ1 3 5 7
y y y0 ys s ys PPP 0ˆ ˆ ˆ1 3 5

. . . . ... . . . . ... . . . .
t y¢ ß0 0 0 0 PPP y1 sŽ . ˆ2 ty1

Ž . Ž .One may easily verify case-by-case that 27 is a solution of 22 to relatively high orders in s and t. A general
w xproof of this result, which we present elsewhere 16 , can be obtained by exploiting the fact that the determinant

of AA may also be represented in terms contour integrals
ty1 2 s sy1

Ž .sq1 tQ 2y2 sy2 j 2y2 ty2 jdet AA s y1 du . . . du dÕ . . . dÕ u u qx ÕŽ . Ž .Ł Ł ŁE E E E1 ty1 1 sy1 j j i j
js1 is1 js1

=
2 sq2 t sy1 ty1

2 2 2 2 2 2Õ qx u yu Õ yÕ u qÕ . 30Ž .ˆŽ . Ž . Ž . Ž .Ł Ł Ł Ł Łj i j i j i i j
is1q2 s 1Fi-jFty1 1Fi-jFsy1 js1 is1

Ž . Ž .In order to establish the equivalence between 29 and 30 we simply use the integral representation for the
Ž . Ž .y1symmetric polynomals as stated in the footnote. The integrals in 30 are understood as Edz' 2p i E dz< z <sD

with D being an arbitrary positive real number.
Assembling now all the quantities we obtain for instance

yp m2 eŽu 31qu 42 .r2 2q cosh uŽ .Ýy i jž /
i-j

Q <qqyy m mi jF u ,u ,u ,u s F u . 31Ž . Ž .Ž .Ł4 1 2 3 4 min i j2cosh u r2 cosh u r2Ž . Ž . i-j12 34

Having computed all form factors for the energy momentum tensor we are in the position to apply the
Ž .c-theorem, i.e. we can in principle evaluate 7 . For finite values of s we obtain

DcŽ2.s1, DcŽ4.s1.197 . . . , DcŽ6.s1.199 . . . , for s-` , 32Ž .
6Žn. Ž .where in the notation Dc , the superscript n indicates the upper limit in 7 . Thus, the expected value of cs 5

is well reproduced. Apart from DcŽ2., in which case the calculation can be performed analytically, the integrals
Ž .in 7 are computed directly by a brute force Monte Carlo integration.
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When the resonance parameter tends to infinity the system decouples and we are left with two non-inter-
Ž .acting free fermions, such that the only contribution in the sum 7 is twice the free fermion two-particle

contribution, such that

lim Dcs1 . 33Ž .
s™`

In order to see this we collect the leading order behaviours form our general solution

lim HQ <2 s ,2 t ;e sts , lim QQ <2 s ,2 t ;eyŽ tqsy1.s , lim F m i m j u ;eys ts , 34Ž .Ž .Ł2 sq2 t 2 sq2 t min i j
s™` s™` s™` i-j

which means

lim FQ <2 s ,2 t ;eyŽ tqsy1.s . 35Ž .2 sq2 t
s™`

Q <0,2 Q <2,0 Ž .Hence the only non-vanishing form factors in this limit are F and F , which establishes 33 .2 2

3.1.2. The order operator S

For the other sectors we may proceed similarly, i.e. viewing always the thermally perturbed Ising model as a
benchmark. Taking now vs1, we recall the solution for the order operator

u F "" uŽ .2i j min i js2 s qsS s S s SF u , . . . ,u s i F tanh s i 2 i F s . 36Ž . Ž . Ž . Ž .Ł Ł2 sq1 1 2 sq1 1 1 2 sq12 x qxi-j i-j i j

Ž . Ž .With this information we may fix the initial values of the recursive Eqs. 20 and 22 at once to

tytS <0,2 tq1 S <0,1 SQ s s s s and H sF . 37Ž . Ž .Ž .2 tq1 2 tq1 2 tq1 1

Ž . w S <2 s,2 tq1 xFurthermore, we deduce from Eq. 36 that F s0. Respecting these constraints we find as explicitn i

solutions

1
1

yŽ . syty1 yt2sq1 tS <2 s ,2 tq1 q y y S2Q s y1 s s s s det AA , 38Ž . Ž . Ž .Ž . Ž . Ž .2 sq2 tq1 1 2 s 1 2 tq1

S Ž . Ž .where AA is a tqs = tqs -matrix whose entries are given by

qs for 1F iF t2 jyiŽ .
SAA s . 39Ž .Ž .i j jyiqtq1 y½ y1 s for t- iFsq tŽ . ˆ2Ž jyiqt .q1

Explicitly this reads

1 sq sq sq PPP 0° ¶2 4 6
q q0 1 s s PPP 02 4

. . . . ... . . . . ... . . . .
q0 0 0 0 PPP s2 s

SAA s . 40Ž .y y y yys s ys s PPP 0ˆ ˆ ˆ ˆ1 3 5 7
y y y0 ys s ys PPP 0ˆ ˆ ˆ1 3 5

. . . . ... . . . . ... . . . .
Ž .tq1 y¢ ß0 0 0 0 PPP y1 sŽ . ˆ2 tq1
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Once again the determinant of AA admits an integral representation

2 s t 2 sq2 tq1
Ž .s ty1S 1y2 sy2 j 2y2 ty2 jdet AA s y1 du . . . du dÕ . . . dÕ u u qx ÕŽ . Ž .Ł Ł ŁE E E E1 t 1 s j j i j

is1 js1 is1q2 s

=
s s t

2 2 2 2 2 2Õ qx u yu Õ yÕ u qÕ 41Ž .ˆŽ . Ž . Ž . Ž .Ł Ł Ł Ł Łj i j i j i i j
js1 1Fi-jFt 1Fi-jFs js1 is1

w xwhich may be used for a general proof 16 .
When the resonance parameter tends to infinity we obtain the following asymptotic behaviour

lim Q m <2 s ,2 tq1 ;eyss 42Ž .2 sq2 tq1
s™`

lim H m <2 s ,2 tq1 F m i m j u sconst Fqq u Fyy u . 43Ž .Ž . Ž . Ž .Ł Ł Ł2 sq2 tq1 min i j min i j min i j
s™` i-j 1Fi-jF2 s 2 s-i-jF2 sq2 tq1

This means unless ss0, that is a reduction to the thermally perturbed Ising model, the form factors will vanish
in this limit.

3.1.3. The disorder operator m

For the disorder operator we have vsy1 and the solution acquires the same form as in the previous case

u i jm s mF u , . . . ,u s i F tanh . 44Ž . Ž .Ł2 s 1 2 s 0 2i-j

Ž . Ž .Similar as for the order variable we can fix the initial values of the recursive Eqs. 20 and 22 to

ty1r21r2ytm <0,2 t m <0,0 mQ s s s s and H sF . 45Ž . Ž .Ž .2 t 2 t 2 t 0

w m <2 s,2 t xFurthermore, we deduce F s0. Respecting these constraints we find as a general solutionn i

3
yt

sy2 y12stm <2 s ,2 t q y mQ s y1 s s s det AA , 46Ž . Ž . Ž .Ž . Ž .2 sq2 t 2 sq2 t 2 s 2 t

m Ž . Ž .where AA is a tqs = tqs -matrix whose entries are given by

qs for 1F iF t2 jyiŽ .
mAA s . 47Ž .Ž .i j jyiqt y½ y1 s for t- iFsq tŽ . ˆ2Ž jyiqt .

Explicitly we have

1 sq sq sq PPP 0° ¶2 4 6
q q0 1 s s PPP 02 4

. . . . ... . . . . ... . . . .
q0 0 0 0 PPP s2 s

mAA s . 48Ž .y y y1 ys s ys PPP 0ˆ ˆ ˆ2 4 6
y y0 1 ys s PPP 0ˆ ˆ2 4

. . . . ... . . . . ... . . . .
t y¢ ß0 0 0 0 PPP y1 sŽ . ˆ2 t
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Similarly as in the previous sections we can write the determinant of AA alternatively in form of an integral
representation

2 s t 2 sq2 t
Ž .s ty1m 1y2 sy2 j 1y2 ty2 jdet AA s y1 du . . . du dÕ . . . dÕ u u qx ÕŽ . Ž .Ł Ł ŁE E E E1 t 1 s j j i j

is1 js1 is1q2 s

=
s s t

2 2 2 2 2 2Õ qx u yu Õ yÕ u qÕ . 49Ž .ˆŽ . Ž . Ž . Ž .Ł Ł Ł Ł Łj i j i j i i j
js1 1Fi-jFt 1Fi-jFs js1 is1

When the resonance parameter tends to infinity we observe the following asymptotic behaviour:

stm <2 s ,2 t m <2 s ,0 m <0,2 tlim Q s y1 Q Q 50Ž . Ž .2 sq2 t 2 s 2 t
s™`

lim H m <2 s ,2 t F m i m j u sconst. Fqq u Fyy u 51Ž .Ž . Ž . Ž .Ł Ł Ł2 sq2 t min i j min i j min i j
s™` i-j 1Fi-jF2 s 2 s-i-jF2 tq2 s

such that

lim F m <2 s ,2 t ;F m <0,2 tF m <2 s ,0 . 52Ž .2 sq2 t 2 t 2 s
s™`

This means also in this sector we observe the decoupling of the theory into two free fermions.

4. Conclusions

w xThe application of the c-theorem confirms very well the physical picture we found in 1 from the
thermodynamic Bethe ansatz. For finite resonance parameter we recover the expected Virasoro central charge of

6cs and for s™` the theory decouples in all sectors into two non-interacting free fermions. Besides the5

construction of all n-particle form factors related to the trace of energy momentum, we computed in addition the
complete solutions for the order and disorder operator in form of determinants whose entries are symmetric

w xpolynomials. Such determinant formulae have occurred before in various places in the literature, e.g. 7,17 .
Representing the solutions for form factors in this form has turned out to be useful in the construction of

w xcorrelation functions 18 and might eventually lead to a reformulation of the whole problem in terms of
w xdifferential equations analogous to the situation in conformal field theory 19 . Apart from higher spin solutions

w xwhich may always be constructed by including the polynomials as suggested in 20 , we did not find any
additional solutions related to other sectors. We expect that a careful analysis of the cluster decomposition
property will lead to more conclusive statements concerning the question whether such solutions exist at all.
From a mathematical point of view it is also desirable to present a rigorous proof of the determinant formulae
w x16 .
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