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Abstract

We apply the thermodynamic Bethe ansatz to investigate the high energy behaviour of a class of
scattering matrices which have recently been proposed to describe the Homogeneous sine-Gordon
models related to simply laced Lie algebras. A characteristic feature is that some elements of the
suggested S-matrices are not parity invariant and contain resonance shifts which allow for the
formation of unstable bound states. From the Lagrangian point of view these models may be viewed
as integrable perturbations of WZNW-coset models and in our analysis we recover indeed in the
deep ultraviolet regime the effective central charge related to these cosets, supporting therefore the
S-matrix proposal. For the SU(3)k-model we present a detailed numerical analysis of the scaling
function which exhibits the well known staircase pattern for theories involving resonance parameters,
indicating the energy scales of stable and unstable particles. We demonstrate that, as a consequence
of the interplay between the mass scale and the resonance parameter, the ultraviolet limit of the
HSG-model may be viewed alternatively as a massless ultraviolet–infrared flow between different
conformal cosets. Fork = 2 we recover as a subsystem the flow between the tricritical Ising and the
Ising model. 2000 Elsevier Science B.V. All rights reserved.

PACS:11.10.Kk; 11.55.Ds; 05.70.Jk; 05.30.-d; 64.60.Fr; 11.30.Er

1. Introduction

The thermodynamic Bethe ansatz (TBA) is established as an important method which
serves to investigate “off-shell” properties of 1+ 1 dimensional quantum field theories.
Originally formulated in the context of the non-relativistic Bose gas by Yang and Yang
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[1], it was extended thereafter by Zamolodchikov [2] to relativistic quantum field theories
whose scattering matrices factorize into two-particle ones. The latter property is always
guaranteed when the quantum field theory in question is integrable. Provided the S-
matrix has been determined in some way, for instance via the bootstrap program [3–5]
or by extrapolating semiclassical results, the TBA allows to calculate the ground state
energy of the integrable model on an infinite cylinder whose circumference is identified as
compactified space direction. When the circumference is sent to zero the effective central
charge of the conformal field theory (CFT) governing the short distance behaviour can
be extracted. In the case in which the massive integrable field theory is obtained from a
conformal model by adding a perturbative term which breaks the conformal symmetry, the
TBA constitutes therefore an important consistency check for the S-matrix.

The main purpose of this manuscript is to apply this technique to a class of scattering
matrices which have recently been proposed [6] to describe the Homogeneous sine-Gordon
models (HSG) [7,8] related to simply laced Lie algebras. The latter have been constructed
as integrable perturbations of WZNW-coset theories [10–14] of the formGk/H , where
G is a compact simple Lie group,H ⊂ G a maximal abelian torus andk > 1 an integer
called the “level”. These models constitute particular deformations of coset-models [10–
14], where the specific choice of the groups ensures that these theories possess a mass gap
[15]. The defining action of the HSG-models reads

SHSG[g] = SCFT[g] + m2

πβ2

∫
d2x

〈
Λ+, g(Ex)−1Λ−g(Ex)

〉
. (1)

HereSCFT denotes the coset action,〈 , 〉 the Killing form of G andg(Ex) a group valued
bosonic scalar field.Λ± are arbitrary semisimple elements of the Cartan subalgebra
associated withH , which have to be chosen not orthogonal to any root ofG and play
the role of continuous vector coupling constants. The latter constraints do not restrict the
parameter choice in the quantum case with regard to the proposed S-matrix which makes
sense for every choice ofΛ±. They determine the mass ratios of the particle spectrum as
well as the behaviour of the model under a parity transformation. The parametersm and
β2= 1/k +O(1/k2) are the bare mass scale and the coupling constant, respectively. The
non-perturbative definition of the theory is achieved by identifying〈Λ+, g(Ex)−1Λ−g(Ex)〉
with a matrix element of the WZNW-fieldg(Ex) taken in the adjoint representation, which
is a spinless primary field of the coset-CFT and in addition exchangingβ2 by 1/k and
m by the renormalized mass [15]. Some of the conformal data ofSCFT[g], which are in
principle extractable from the TBA analysis are the Virasoro central chargec of the coset
and the conformal dimensions∆,∆̄ of the perturbing operator in the massless limit

cGk =
k dimG

k + h − `=
k − 1

k + hh`, ∆= ∆̄= h

k + h. (2)

Here ` denotes the rank ofG andh its Coxeter number. Since we have∆ < 1 for all
allowed values ofk, the perturbation is always relevant in the sense of renormalization.5

5 We slightly abuse here the notation and usecGk instead ofc
Gk/U(1)`

. Since we always encounter these type
of coset in our discussion, we can avoid bulky expressions in this way.
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The simplest example of a HSG theory is the complex sine-Gordon model [8,9,16–19]
associated with the cosetSU(2)k/U(1). As we will argue below, more complicated HSG
theories can be viewed as interacting copies of complex sine-Gordon theories. The classical
equations of motion of these models correspond to non-abelian affine Toda equations [7,20,
21], which are known to be classically integrable and admit soliton solutions. Identifying
these solutions by a Noether charge allows for a semiclassical approach to the quantum
theory by applying the Bohr–Sommerfeld quantization rule. The integrability on the
quantum level was established in [15] by the construction of non-trivial conserved charges,
which suggests the factorization of the scattering matrix. Based on the assumption that the
semiclassical spectrum is exact, the S-matrix elements have then been determined in [6]
by means of the bootstrap program for HSG-models related to simply laced Lie algebras.

The proposed scattering matrix consists partially of` copies of minimalsu(k)-affine
Toda field theories (ATFT) [22], whose mass scales are free parameters. The scattering
between solitons belonging to different copies is described by an S-matrix which violates
parity [6]. These matrices possess resonance poles and the related resonance parameters
which characterize the formation of unstable bound states are up to free choice. In the
TBA-analysis these resonances lead to the “staircase patterns” in the scaling function,
which have been observed previously for similar models [23–25]. However, in comparison
with the models studied so far, the HSG models are distinguished in two aspects. First they
break parity invariance and second some of the resonance poles can be associated directly
to unstable particles via a classical Lagrangian.

One of the main outcomes of our TBA-analysis is that the suggested [6] scattering matrix
leads indeed to the coset central charge (2), which gives strong support to the proposal.

In addition, we present a detailed numerical analysis for the SU(3)-HSG model, but
expect that many of our findings for that case are generalizable to other Lie groups. The
presence of two parameters, i.e., the mass scale and the resonance parameter allow, similar
as for staircase models studied previously, to describe the ultraviolet limit of the HSG-
model alternatively as the flow between different conformal field theories in the ultraviolet
and infrared regime. We find the following massless flow

UV ≡ SU(3)k/U(1)2↔ SU(2)k/U(1)⊗SU(2)k/U(1)≡ IR. (3)

We also observe the flow(SU(3)k/U(1)2)/(SU(2)k/U(1))→ SU(2)k/U(1) as a subsys-
tem inside the HSG-model. Fork = 2 this subsystem describes the flow between the tri-
critical Ising and the Ising model previously studied in [26]. In terms of the HSG-model
we obtain the following physical picture: The resonance parameter characterizes the mass
scale of the unstable particles. Approaching the extreme ultraviolet regime from the in-
frared we pass various regions: At first all solitons are too heavy to contribute to the off-
critical central charge, then the two copies of the minimal ATFT will set in, leading to
the central charge corresponding to IR in (3) and finally the unstable bound states will
start to contribute such that we indeed obtain (2) as the ultraviolet central charge of the
HSG-model.

The two values of the resonance parameter 0 and∞ are special, corresponding in
the classical theory to a choice of the vector couplings in (1) parallel to each other or
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orthogonal to a simple root, respectively. In the former case parity is restored on the
classical as well as on the TBA-level and the central charge corresponding to UV in (3)
is also recovered, whereas in the latter case the two copies of the minimal ATFT are
decoupled and unstable bound states may not be produced leading to the central charge
IR in (3).

Our manuscript is organized as follows: In Section 2 we briefly recall the main features
of the two-particle HSG S-matrix elements stating them also newly in form of an integral
representation. In particular, we comment on the link between unstable particles and
resonance poles as well as on the loss of parity invariance. In Section 3 we introduce the
TBA equations for a parity violating system and carry out the ultraviolet limit recovering
the expected coset central charge. In Section 4 we present a detailed study for the SU(3)k-
HSG model. We discuss the staircase pattern of the scaling function and illustrate how
the UV limit for the HSG-model may be viewed as the UV–IR flow between different
conformal models. We extract the ultraviolet central charges of the HSG-models. We study
separately the case when parity is restored, derive universal TBA-equations and Y-systems.
In Section 5 we present explicit examples for the specific valuesk = 2,3,4,∞. Our
conclusions are stated in Section 6.

2. The homogeneous sine-Gordon S-matrix

We shall now briefly recall the main features of the proposed HSG scattering matrix in
a form most suitable for our discussion. Labeling the solitons by two quantum numbers,
we take the two-particle scattering matrix between soliton(a, i) and soliton(b, j), with
16 a, b 6 k − 1 and 16 i, j 6 `, as a function of the rapidity differenceθ to be of the
general formSijab(θ). The particular structure of the conjectured HSG S-matrix makes it
suggestive to refer to the lower indices as main quantum numbers and to the upper ones as
colour. In [6] it was proposed to describe the scattering of solitons which possess the same
colour by the S-matrix of theZk-Ising model or equivalently the minimalsu(k)-ATFT [22]

Siiab(θ)= (a + b)θ(|a − b|)θ
min(a,b)−1∏

n=1

(a + b− 2n)2θ (4)

= exp
∫

dt

t
2 cosh

πt

k

(
2 cosh

πt

k
− I

)−1

ab

e−itθ . (5)

Here we have introduced the abbreviation(x)θ = sinh1
2(θ + i πx

k
)/sinh1

2(θ − i πx
k
) for

the general building blocks and denote the incidence matrix of thesu(k)-Dynkin diagram
by I . We rewrote the above S-matrix from the block form (4) into a form of an integral
representation (5), since the latter is more convenient with respect to the TBA analysis. This
calculation may be performed by specializing an analysis in [27,28] to the particular case
at hand. The scattering of solitons with different colour quantum numbers was proposed to
be described by
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S
ij

ab(θ)= (ηij )ab
min(a,b)−1∏

n=0

(−|a − b| − 1− 2n
)
θ+σij , K

g

ij 6= 0,2 (6)

= (ηij )ab exp−
∫

dt

t

(
2 cosh

πt

k
− I

)−1

ab

e−it (θ+σij ), K
g
ij 6= 0,2, (7)

with Kg denoting the Cartan matrix of the simply laced Lie algebrag. Here theηij = η∗ji
are arbitrarykth roots of−1 taken to the powera timesb and the shifts in the rapidity
variables are functions of the vector couplingsσij , which are antisymmetric in the colour

valuesσij = −σji . Due to the fact that these shifts are real, the functionS
ij
ab(θ) for i 6=

j will have poles beyond the imaginary axis such that the parametersσji characterize
resonance poles. An important feature is that (6) is not parity invariant, where parity is
broken by the phase factorsη as well as the shiftsσ . As a consequence, the usual relations

Siiab(θ)= Siiba(θ)= Siiab(−θ∗)∗ and Siiab(θ)S
ii
ab(−θ)= 1 (8)

satisfied by the parity invariant objects (4), are replaced by

S
ij
ab(θ)= Sjiba(−θ∗)∗ and S

ij
ab(θ)S

ji
ba(−θ)= 1 (9)

for the scattering between solitons with different colour values. Important to note is that
the first equality in (8) has no analogue in (9). Thus, instead of being real analytic, as
Siiab(θ), the parity violation forces Hermitian analyticity ofSijab(θ) for i 6= j . Antiparticles
are constructed in analogy to the ATFT, that is from the automorphism which leaves the
su(k)-Dynkin diagram invariant, such that(a, i)= (k − a, i). The colour of a particle and
its antiparticle is identical. The crossing relation of the S-matrix then reads

S
ij

āb(θ)= Sij(k−a)b(θ)= Sjiba(iπ − θ). (10)

For a general and more detailed discussion of these analyticity issues see [29–31] and
references therein.

Analyzing the above S-matrix we have the following picture concerning the formation
of bound states: Two solitons with the same colour value may form a bound state of the
same colour, whilst solitons of different colour withKij 6= 0,2, say(a, i) and(b, j), may
only form an unstable state, say(c̃, k̃) whose lifetime and energy scale are characterized
by the parameterσ by means of the Breit–Wigner formula, see, e.g., [32,33], in the form(

Mk̃
c̃

)2− 1

4

(
Γ k̃c̃

)2= (Mi
a

)2+ (Mj
b

)2+ 2Mi
aM

j
b coshσ cosΘ (11)

Mk̃
c̃ Γ

k̃
c̃ = 2Mi

aM
j
b sinh|σ |sinΘ, (12)

where the resonance pole inSijab(θ) is situated atθR = σ − iΘ andΓ k̃
c̃

denotes the decay

width of the unstable particle with massMk̃
c̃
. In the casea = b these unstable states can

be identified with solitons in the semiclassical limit [6,45]. Whenσ becomes zero, (12)
shows that the unstable particles become stable, but are still not at the same footing as the
other asymptotically stable particles. They become virtual states characterized by poles on
the imaginary axis beyond the physical sheet.
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How many free parameters do we have in our model? Computing mass shifts from
renormalization, we only accumulate contributions from intermediate states having the
same colour as the two scattering solitons. Thus, making use of the well known fact that
the masses of the minimalsu(k)-affine Toda theory all renormalize with an overall factor
[34,35], i.e., for the solitons(a, i) we have thatδMi

a/M
i
a equals a constant for fixed colour

valuei and all possible values of the main quantum numbera, we acquire in principlè
different mass scalesm1, . . . ,m` in the HSG-model. In addition there are`−1 independent
parameters in the model in form of the possible phase shiftsσij =−σji for eachi, j such
thatKg

ij 6= 0,2. This means overall we have 2`−1 independent parameters in the quantum
theory. There is a precise correspondence to the free parameters which one obtains from
the classical point of view. In the latter case we have the 2` independent components ofΛ±
at our free disposal. This number is reduced by 1 as a result of the symmetryΛ+ → cΛ+
andΛ− → c−1Λ− which introduces an additional dependence as may be seen from the
explicit expressions for the classical mass ratios and the classical resonance shifts

mi

mj
= Mi

a

M
j
a

=
√
(αi ·Λ+)(αi ·Λ−)
(αj ·Λ−)(αj ·Λ+) , σij = ln

√
(αi ·Λ+)(αj ·Λ−)
(αi ·Λ−)(αj ·Λ+) . (13)

Here theαi are simple roots.
In comparison with other factorizable scattering matrices involving resonance shifts,

studied in the literature so far, the proposed HSG scattering matrices differ in two aspects.
First of all, they are not parity invariant and second they allow to associate a concrete
Lagrangian description. The latter fact can be used to support the picture outlined for the
full quantum field theory by a semiclassical analysis. In [45] the semiclassical mass for the
soliton (a, i) was found to be

Mi
a =

mi

πβ2 sin
πa

k
, (14)

whereβ is a coupling constant and themi are thè different mass scales.

3. TBA with parity violation and resonances

In this section we are going to determine the conformal field theory which governs the
UV regime of the quantum field theory associated with the S-matrix elements (4) and
(6). According to the defining relation (1) and the discussion of the previous section, we
expect to recover the WZNW-coset theory with effective central charge (2) in the extreme
ultraviolet limit. It is a well established fact that such high energy limits can be performed
by means of the TBA. Since up to now such an analysis has only been carried out for parity
invariant S-matrices, a few comments are due to implement parity violation. The starting
point in the derivation of the key equations are the Bethe ansatz equations, which are the
outcome of dragging one soliton, say of typeA= (a, i), along the world line. For the time
being we do not need the distinction between the two quantum numbers. On this trip the
formal wave-function ofA picks up the corresponding S-matrix element as a phase factor
when meeting another soliton. Due to the parity violation it matters, whether the soliton is



O.A. Castro-Alvaredo et al. / Nuclear Physics B 575 [FS] (2000) 535–560 541

moved clockwise or counter-clockwise along the world line, such that we end up with two
different sets of Bethe ansatz equations

eiLMA sinhθA
∏
B 6=A

SAB(θA − θB)= 1,

e−iLMA sinhθA
∏
B 6=A

SBA(θB − θA)= 1, (15)

with L denoting the length of the compactified space direction. These two sets of equations
are of course not entirely independent and may be obtained from each other by complex
conjugation with the help of relation (9). We may carry out the thermodynamic limit of
(15) in the usual fashion [2] and obtain the following sets of non-linear integral equations

ε+A (θ)+
∑
B

ΦAB ∗L+B (θ)= r MA coshθ (16)

ε−A (θ)+
∑
B

ΦBA ∗L−B (θ)= r MA coshθ. (17)

As usual we let the symbol ‘∗’ denote the rapidity convolution of two functions defined by

f ∗ g(θ) :=
∫

dθ ′

2π
f (θ − θ ′)g(θ ′).

Herer =m1T
−1 is the inverse temperature times the overall mass scalem1 of the lightest

particle and we also redefined the masses byMi
a →Mi

a/m1 keeping, however, the same
notation. As very common in these considerations we also introduced the so-called pseudo-
energiesε+A (θ)= ε−A (−θ) and the related functionsL±A(θ)= ln(1+ e−ε

±
A (θ)). The kernels

in the integrals carry the information of the dynamical interaction of the system and are
given by

ΦAB(θ)=ΦBA(−θ)=−i
d

dθ
lnSAB(θ). (18)

The statistical interaction is chosen to be of fermionic type. Notice that (17) may be
obtained from (16) simply by the parity transformationθ →−θ and the first equality in
(18). The main difference of these equations in comparison with the parity invariant case is
that we have lost the usual symmetry of the pseudo-energies as a function of the rapidities,
such that we have now in generalε+A (θ) 6= ε−A (θ). This symmetry may be recovered by
restoring parity.

The scaling function, which can also be interpreted as off-critical Casimir energy, may
be computed similar as in the usual way

c(r)= 3r

π2

∑
A

MA

∞∫
0

dθ coshθ
(
L−A(θ)+L+A(θ)

)
, (19)

once the equations (16) have been solved for theε±A (θ). Of special interest is the deep
UV limit, i.e., r → 0, of this function since then its value coincides with the effective
central chargeceff = c− 12(∆0+ ∆̄0) of the conformal model governing the high energy
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behaviour. Herec is the Virasoro central charge and∆0, ∆̄0 are the lowest conformal
dimensions related to the two chiral sectors of the model. Since the WZNW-coset is unitary,
we expect that∆0, ∆̄0= 0 andceff = c. This assumption will turn out to be consistent with
the analytical and numerical results.

3.1. Ultraviolet central charge for the HSG model

In this section we follow the usual argumentation of the TBA-analysis which leads to the
effective central charge, paying, however, attention to the parity violation. We will recover
indeed the value in (2) as the central charge of the HSG-models. First of all we take the
limits r, θ → 0 of (16) and (17). When we assume that the kernelsΦAB(θ) are strongly
peaked6 at θ = 0 and develop the characteristic plateaus one observes for the scaling
models, we can take out theL-functions from the integral in the equations (16), (17) and
obtain similar to the usual situation

ε±A (0)+
∑
B

NABL
±
B (0)= 0 with NAB = 1

2π

∞∫
−∞

dθ ΦAB(θ). (20)

Having the resonance parameterσ present in our theory we may also encounter a situation
in whichΦAB(θ) is peaked atθ =±σ . This means in order for (20) to be valid, we have
to assumeε±A (0)= ε±A (±σ) in the limit r→ 0 in addition to accommodate that situation.
For the last assumption we will not provide a rigorous analytical argument, but will justify
it instead for particular cases from the numerical results (see, e.g., Fig. 1). Note that in (20)
we have recovered the parity invariance.

For small values ofr we may approximate, in analogy to the parity invariant situation,
rMA coshθ by (r/2)MA expθ , such that taking the derivative of the relations (16) and (17)
thereafter yields

ε±A (θ)
dθ
+ 1

2π

∑
B

∞∫
−∞

dθ ′
ΦAB(±θ ∓ θ ′)
1+ exp(ε±B (θ ′))

dε±B (θ ′)
dθ ′ '

r

2
MA expθ. (21)

The scaling function acquires the form

c(r)' 3r

2π2

∑
A

MA

∞∫
0

dθ expθ
(
L−A(θ)+L+A(θ)

)
for r ' 0 (22)

in this approximation. Replacing in (22) the term(r/2)MA expθ by the l.h.s. of (21) a few
manipulations lead to

6 That this assumption holds for the case at hand is most easily seen by noting that the logarithmic derivative
of a basic building block(x)θ of the S-matrix reads

−i
d

dθ
ln(x)θ =−

sin( π
k
x)

coshθ − cos( π
k
x)
=−2

∞∑
n=1

sin
(π
k
x
)

e−n|θ |.

From this we can read off directly the decay properties.
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lim
r→0

c(r)' 3

2π2

∑
p=+,−

∑
A

ε
p
A(∞)∫

ε
p
A(0)

dεpA

[
ln
(
1+ exp(−εpA)

)+ ε
p

A

1+ exp(εpA)

]
. (23)

Upon the substitutionypA = 1/(1+ exp(εpA)) we obtain the well known expression for the
effective central charge

ceff = 6

π2

∑
A

L
(

1

1+ exp(ε±A (0))

)
. (24)

Here we used the integral representation for Roger’s dilogarithm function

L(x)= 1

2

x∫
0

dy

[
ln

y

y − 1
− ln

1− y
y

]
,

and the facts thatε+A (0)= ε−A (0), y+A (∞)= y−A (∞)= 0. This means we end up precisely
with the same situation as in the parity invariant case: Determining at first the phases of
the scattering matrices we have to solve the constant TBA-equation (20) and may compute
the effective central charge in terms of Roger’s dilogarithm thereafter. Notice that in the
ultraviolet limit we have recovered the parity invariance and (24) holds for all finite values
of the resonance parameter.

For the case at hand we read off from the integral representation of the scattering
matrices

N
ij
ab = δij δab −Kg

ij

(
Ksu(k))−1

ab
. (25)

With Nijab in the form (25) and the identifications

Qia =
k−1∏
b=1

[
1+ exp

(−εib(0))]K−1
ab

the constant TBA-equations are precisely the equations which occurred before in the
context of the restricted solid-on-solid models [36–40]. It was noted in there that (20) may
be solved elegantly in terms of Weyl-characters and the reported effective central charge
coincides indeed with the one for the HSG-models (2).

It should be noted that we understand theN -matrix here as defined in (20) and not as the
difference between the phases of the S-matrix. In the latter case we encounter contributions
from the non-trivial constant phase factorsη. Also in that case we may arrive at the same
answer by compensating them with a choice of a non-standard statistical interaction as
outlined in [43].

We would like to close this section with a comment which links our analysis to structures
which may be observed directly inside the conformal field theory. When one carries out a
saddle point analysis, see, e.g., [41,42], on a Virasoro character of the general form

χ(q)=
∞∑
Em=0

q
1
2 Em(1−N) Emt+ Em· EB

(q)1 · · · (q)(k−1)`
, (26)
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with (q)m = ∏m
k=1(1− qk), one recovers the set of coupled equations as (20) and the

corresponding effective central charge is expressible as a sum of Roger’s dilogarithms as
(24). Note that when we chooseg ≡A1 the HSG-model reduces to the minimal ATFT and
(26) reduces to the character formulae in [44]. Thus the equations (20) and (24) constitute
an interface between massive and massless theories, since they may be obtained on one
hand in the ultraviolet limit from a massive model and on the other hand from a limit inside
the conformal field theory. This means we can guess a new form of the coset character, by
substituting (25) into (26). However, since the specific form of the vectorEB does not enter
in this analysis (it distinguishes the different highest weight representations) more work
needs to be done in order to make this more than a mere conjecture. We leave this for
future investigations.

4. The SU(3)k-HSG model

We shall now focus our discussion onG= SU(3)k. First of all we need to establish how
many free parameters we have at our disposal in this case. According to the discussion in
Section 2 we can tune the resonance parameter and the mass ratio

σ := σ21=−σ12 and m1/m2 . (27)

It will also be useful to exploit a symmetry present in the TBA-equations related to
SU(3)k by noting that the parity transformed equations (17) turn into the equations (16)
when we exchange the masses of the different types of solitons. This means the system
remains invariant under the simultaneous transformations

θ→−θ and
m1

m2
→ m2

m1
. (28)

For the special casem1/m2= 1 we deduce therefore thatε(1)a (θ)= ε(2)a (−θ), meaning that
a parity transformation then amounts to an interchange of the colours. Furthermore, we see
from (17) and the defining relationσ = σ21=−σ12 that changing the sign of the rapidity
variable is equivalent toσ →−σ . Therefore, we can restrict ourselves to the choiceσ > 0
without loss of generality.

4.1. Staircase behaviour of the scaling function

We will now come to the evaluation of the scaling function (19) for finite and small
scale parameterr. To do this we have to solve first the TBA equations (16) for the pseudo-
energies, which up to now has not been achieved analytically for systems with a non-trivial
dynamical interaction due to the non-linear nature of the integral equations. Nonetheless,
numerically this problem can be controlled relatively well. In the UV regime forr � 1
one is in a better position and can set up approximate TBA equations involving formally
massless particles7 for which various approximation schemes have been developed which

7 The concept of massless scattering has been introduced originally in [26] as follows: The on-shell energy of a
right and left moving particle is given byE± =M/(2e±θ ) which is formally obtained from the on-shell energy



O.A. Castro-Alvaredo et al. / Nuclear Physics B 575 [FS] (2000) 535–560 545

depend on the general form of the L-functions. Since the latter is not known a priori,
one may justify ones assumptions in retrospect by referring to the numerics. In Section 5
we present numerical solutions for the equations (16) for various levelsk showing that
the L-functions develop at most two (three ifm1 andm2 are very different) plateaus in
the range lnr2 < θ < ln 2

r
and then fall off rapidly (see Fig. 1). This type of behaviour is

similar to the one known from minimal ATFT [2,57], and we can therefore adopt various
arguments presented in that context. The main difficulty we have to deal with here is to find
the appropriate “massless” TBA equations accommodating the dependence of the TBA
equations on the resonance shiftsσ .

We start by separating the kernel (18) into two parts

φab(θ)=Φiiab(θ)=
∫

dt
[
δab − 2 coshπt

k

(
2 coshπt

k
− I)−1

ab

]
e−itθ , (29)

ψab(θ)=Φijab(θ + σji)=
∫

dt
(
2 coshπt

k
− I)−1

ab
e−itθ , i 6= j. (30)

Here φab(θ) is just the TBA kernel of thesu(k)-minimal ATFT and in the remaining
kernelsψab(θ) we have removed the resonance shift. Note thatφ,ψ do not depend on the
colour valuesi, j and may therefore be dropped all together in the notation. The integral
representations for these kernels are obtained easily from the expressions (5) and (7). They
are generically valid for all values of the levelk. The convolution term in (16) in terms of
φ,ψ is then rewritten as∑̀

j=1

k−1∑
b=1

Φ
ij

ab ∗Ljb(θ)=
k−1∑
b=1

φab ∗Lib(θ)+
∑̀
j=1
j 6=i

k−1∑
b=1

ψab ∗Ljb(θ − σji). (31)

These equations illustrate that whenever we are in a regime in which the second term in
(31) is negligible we are left with̀ non-interacting copies of thesu(k)-minimal ATFT.

We will now specialize the discussion on thesu(3)k-case for which we can eliminate the
dependence onσ in the second convolution term by performing the shiftsθ → θ ± σ/2
in the TBA equations. In the UV limitr → 0 with σ � 1 the shifted functions can be
approximated by the solutions of the following sets of integral equations

ε±a (θ)+
k−1∑
b=1

φab ∗L±b (θ)+
k−1∑
b=1

ψab ∗L∓b (θ)= r ′M±a e±θ , (32)

ε̂±a (θ)+
k−1∑
b=1

φab ∗ L̂±b (θ)= r ′M∓a e±θ , (33)

where we have introduced the parameterr ′ = r eσ/2/2 familiar from the discussion
of massless scattering and the massesM

+/−
a = M(1)/(2)

a . The relationship between the
solutions of the massless system (32), (33) and those of the original TBA-equations is
given by

of a massive particleE =mcoshθ by the replacementθ→ θ ± σ/2 and taking the limitm→ 0, σ →∞ while
keeping the expressionM =meθ+σ/2 finite. It is these on-shell energies we will encounter in our analysis.
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ε
(1)/(2)
a (θ)= ε+/−(θ ∓ σ/2) for ln(r/2)�±θ� ln(r/2)+ σ, (34)

ε
(1)/(2)
a (θ)= ε̂−/+(θ ± σ/2) for ± θ �min

[
ln(2/r), ln(r/2)+ σ ], (35)

where we have assumedm1=m2. Similar equations may be written down for the generic
case. To derive (35) we have neglected here the convolution terms(ψab ∗ L(1)b )(θ + σ)
and (ψab ∗ L(2)b )(θ − σ) which appear in the TBA-equations forε(2)a (θ) and ε(1)a (θ),
respectively. This is justified by the following argument: For|θ | � ln(2/r) the free on-shell
energy term is dominant in the TBA equations, i.e.,εia(θ)≈ rMa

i coshθ and the functions
Lia(θ) are almost zero. The kernelsψab are centered in a region around the originθ = 0
outside of which they exponentially decrease, see footnote in Section 3.1 for this. This
means that the convolution terms in question can be neglected safely ifθ � ln(r/2)+ σ
andθ � ln(2/r)− σ , respectively. Note that the massless system provides a solution for
the whole range ofθ for non-vanishingL-function only if the ranges of validity in (34)
and (35) overlap, i.e., if ln(r/2)�min[ln(2/r), ln(r/2)+ σ ], which is always true in the
limit r→ 0 whenσ � 0. The solution is uniquely defined in the overlapping region. These
observations are confirmed by our numerical analysis below.

The resulting equations (33) are therefore decoupled and we can determineL̂+ andL̂−
individually. In contrast, the equations (32) forL±a are still coupled to each other due to the
presence of the resonance shift. Formally, the on-shell energies for massive particles have
been replaced by on-shell energies for massless particles in the sense of [26], such that if
we interpretr ′ as an independent new scale parameter the sets of equations (32) and (33)
could be identified as massless TBA systems in their own right.

Introducing then the scaling function associated with the system (32) as

co(r
′)= 3r ′

π2

k−1∑
a=1

∫
dθ
[
M+a eθL+a (θ)+M−a e−θL−a (θ)

]
(36)

and analogously the scaling function associated with (33) as

ĉo(r
′)= 3r ′

π2

k−1∑
a=1

∫
dθ
[
M+a eθ L̂+a (θ)+M−a e−θ L̂−a (θ)

]
(37)

we can express the scaling function (19) of the HSG model in the regimer → 0, σ � 1
approximately by

c(r, σ )= 3reσ/2

2π2

∑
i=1,2

k−1∑
a=1

Mi
a

∫
dθ
[
eθLia(θ − σ/2)+ e−θLia(θ + σ/2)

]
≈ co(r

′)+ ĉo(r
′). (38)

Thus, we have formally decomposed the massive SU(3)k-HSG model in the UV regime
into two massless TBA systems (32) and (33), reducing therefore the problem of
calculating the scaling function of the HSG model in the UV limitr→ 0 to the problem of
evaluating the scaling functions (36) and (37) for the scale parameterr ′. The latter depends
on the relative size of ln(2/r) and the resonance shiftσ/2. Keeping nowσ � 0 fixed, and
letting r vary from finite values to the deep UV regime, i.e.,r = 0, the scale parameterr ′
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governing the massless TBA systems will pass different regions. For the regime ln(2/r) <
σ/2 we see that the scaling functions (36) and (37) are evaluated atr ′ > 1, whereas for
ln(2/r) > σ/2 they are taken atr ′ < 1. Thus, when performing the UV limit of the HSG
model the massless TBA systems pass formally from the “infrared” to the “ultraviolet”
regime with respect to the parameterr ′. We emphasize that the scaling parameterr ′ has
only a formal meaning and that the physical relevant limit we consider is still the UV
limit r→ 0 of the HSG model. However, proceeding this way has the advantage that we
can treat the scaling function of the HSG model by the UV and IR central charges of the
systems (32) and (33) as functions ofr ′

c(r, σ )≈ co(r
′)+ ĉo(r

′)≈
{
cIR + ĉIR, 0� ln(2/r)� σ/2,
cUV + ĉUV, σ/2� ln(2/r).

(39)

Here we defined the quantitiescIR := limr ′→∞ co(r
′), cUV := limr ′→0 co(r

′) andĉIR, ĉUV

analogously in terms of̂co(r
′).

In the case ofcIR + ĉIR 6= cUV + ĉUV, we infer from (39) that the scaling function
develops at least two plateaus at different heights. A similar phenomenon was previously
observed for theories discussed in [23], where infinitely many plateaus occurred which
prompted to call them “staircase models”. As a difference, however, the TBA equations
related to these models do not break parity. In the next subsection we determine the central
charges in (39) by means of standard TBA central charge calculation, setting up the so-
called constant TBA equations.

4.2. Central charges from constant TBA equations

In this subsection we will perform the limitsr ′ → 0 and r ′ → ∞ for the massless
systems (32) and (33) referring to them formally as “UV-” and “IR-limit”, respectively,
keeping however in mind that both limits are still linked to the UV limit of the HSG model
in the scale parameterr as discussed in the preceding subsection. We commence with the
discussion of the “UV limit”r ′ → 0 for the subsystem (32). We then have three different
rapidity regions in which the pseudo-energies are approximately given by

ε±a (θ)≈

r ′Ma e±θ , for ±θ �− ln r ′,
−∑b φab ∗L±b (θ)−

∑
b ψab ∗L∓b (θ), for ln r ′ � θ �− ln r ′,

−∑b φab ∗L±b (θ), for ±θ � ln r ′.
(40)

We have only kept here the dominant terms up to exponentially small corrections. We
proceed analogously to the discussion as may be found in [2,57]. We see that in the
first region the particles become asymptotically free. For the other two regions the TBA
equations can be solved by assuming the L-functions to be constant. Exploiting once more
that the TBA kernels are centered at the origin and decay exponentially, we can similar
as in Section 3.1 take the L-functions outside of the integrals and end up with the sets of
equations

x±a =
k−1∏
b=1

(
1+ x±b

)N̂ab (1+ x∓b )N ′ab for ln r ′ � θ �− ln r ′, (41)
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x̂a =
k−1∏
b=1

(1+ x̂b)N̂ab for ± θ � ln r ′, (42)

for the constantsx±a = e−ε±a (0) andx̂a = e−ε±a (∓∞). The N-matrices can be read off directly
from the integral representations (29) and (30)

N̂ := 1

2π

∫
φ = 1− 2

(
Ksu(k))−1 and N ′ := 1

2π

∫
ψ = (Ksu(k))−1

. (43)

Since the set of equations (42) has already been stated in the context of minimal ATFT
and its solutions may be found in [57], we only need to investigate the equations (41).
These equations are simplified by the following observation. Sendingθ to−θ the constant
L-functions must obey the same constant TBA equation (41) but with the role ofL+a and
L−a interchanged. The difference in the massesm1,m2 has no effect as long asm1 ∼m2

since the on-shell energies are negligible in the central region lnr ′ � θ �− ln r ′. Thus,
we deducex+a = x−a =: xa and (41) reduces to

xa =
k−1∏
b=1

(1+ xb)Nab with N = 1− (Ksu(k))−1. (44)

Remarkably, also these set of equations may be found in the literature in the context of
the restricted solid-on-solid models [37]. Specializing some of the general Weyl-character
formulae in [37] to thesu(3)k-case a straightforward calculation leads to

xa =
sin π(a+1)

k+3 sin π(a+2)
k+3

sin πa
k+3 sin π(a+3)

k+3

− 1, x̂a =
sin2 π(a+1)

k+2

sin πa
k+2 sin π(a+2)

k+2

− 1. (45)

Having determined the solutions of the constant TBA equations (41) and (44) one can
proceed via the standard TBA calculations along the lines of [2,26,57] and compute the
central charges from (36), (37) and express them in terms of Roger’s dilogarithm function

cUV = lim
r ′→0

co(r
′)= 6

π2

k−1∑
a=1

[
2L
(

xa

1+ xa
)
−L

(
x̂a

1+ x̂a
)]
, (46)

ĉUV = lim
r ′→0

ĉo(r
′)= 6

π2

k−1∑
a=1

L
(

x̂a

1+ x̂a
)
. (47)

Using the non-trivial identities

6

π2

k−1∑
a=1

L
(

xa

1+ xa
)
= 3

k− 1

k+ 3
,

6

π2

k−1∑
a=1

L
(

x̂a

1+ x̂a
)
= 2

k− 1

k+ 2
(48)

found in [58] and [36], we finally end up with

cUV = (k − 1)(4k+ 6)

(k + 3)(k + 2)
and ĉUV = 2

k − 1

k + 2
. (49)

For the reasons mentioned aboveĉUV coincides with the effective central charge obtained
from su(k)minimal ATFT describing parafermions [10] in the conformal limit. Notice that
cUV corresponds to the coset(SU(3)k/U(1)2)/(SU(2)k/U(1)).
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The discussion of the infrared limit may be carried out completely analogous to the
one performed for the UV limit. The only difference is that in case of the system (32) the
constant TBA equations (41) drop out because in the central region the free energy terms
becomes dominant whenr ′ →∞. Thus in the infrared regime the central charges of both
systems coincide witĥcUV,

cIR = lim
r ′→∞

co(r
′)= ĉIR = lim

r ′→∞
ĉo(r

′)= 2
k − 1

k + 2
. (50)

In summary, collecting the results (49) and (50), we can express equation (39) explicitly in
terms of the levelk,

c
(
r,Mk̃

c̃

)≈


4
k− 1

k+ 2
for 1� 2/r�Mk̃

c̃
,

6
k− 1

k+ 3
for Mk̃

c̃
� 2/r.

(51)

We have replaced the limits in (39) by mass scales in order to exhibit the underlying

physical picture. HereMk̃
c̃

is the smallest mass of an unstable bound state which may

be formed in the process(a, i) + (b, j)→ (c̃, k̃) for Kg
ij 6= 0,2. We also used that the

Breit–Wigner formula (11) implies thatMk̃
c̃
∼ eσ/2 for large positiveσ .

First one should note that in the deep UV limit we obtain the same effective central
charge as in Section 3.1, albeit in a quite different manner. On the mathematical side
this implies some non-trivial identities for Rogers dilogarithm and on the physical (51)
exhibits a more detailed behaviour than the analysis in Section 3.1. In the first regime the
lower limit indicates the onset of the lightest stable soliton in the two copies of complex
sine-Gordon model. The unstable particles are on an energy scale much larger than the
temperature of the system. Thus, the dynamical interaction between solitons of different
colours is “frozen” and we end up with two copies of the SU(2)k/U(1) coset which do
not interact with each other. As soon as the parameterr reaches the energy scale of the

unstable solitons with massMk̃
c̃
, the solitons of different colours start to interact, being

now enabled to form bound states. This interaction breaks parity and forces the system to
approach the SU(3)k/U(1)2 coset model with central charge given by the formula in (2)
for G= SU(3).

The case whenσ tends to infinity is special and one needs to pay attention to the order
in which the limits are taken, we have

4
k − 1

k + 2
= lim
r→0

lim
σ→∞ c(r, σ ) 6= lim

σ→∞ lim
r→0

c(r, σ )= 6
k − 1

k + 3
. (52)

One might enforce an additional step in the scaling function by exploiting the fact that
the mass ratiom1/m2 is not fixed. So it may be chosen to be very large or very small.
This amounts to decouple the TBA systems for solitons with different colour by shifting
one system to the infrared with respect to the scale parameterr. The plateau then has an
approximate width of∼ ln |m1/m2| (see Fig. 2). However, as soon asr becomes small
enough the picture we discussed form1∼m2 is recovered.
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4.3. Restoring parity and eliminating the resonances

In this subsection we are going to investigate the special limitσ → 0 which is equivalent
to choosing the vector couplingsΛ± in (1) parallel or antiparallel. For the classical theory
it was pointed out in [7] that only then the equations of motion are parity invariant. Also
the TBA-equations become parity invariant in the absence of the resonance shifts, albeit
the S-matrix still violates it through the phase factorsη. Since in the UV regime a small
difference in the massesm1 andm2 does not effect the outcome of the analysis, we can
restrict ourselves to the special situationm1 =m2, in which case we obtain two identical
copies of the system

εa(θ)+
k−1∑
b=1

(φab +ψab) ∗Lb(θ)= rMa coshθ. (53)

Then we haveεa(θ) = ε(1)a (θ) = ε(2)a (θ), Ma =M(1)
a =M(2)

a and the scaling function is
given by the expression

c(r, σ = 0)= 6r

π2

k−1∑
a=1

Ma

∫
dθ La(θ)coshθ. (54)

The factor two in comparison with (19) takes the two copies fori = 1,2 into account. The
discussion of the high-energy limit follows the standard arguments similar to the one of the
preceding subsection and as may be found in [2,57]. Instead of shifting by the resonance
parameterσ , one now shifts the TBA equations by ln(r/2). The constant TBA equation
which determines the UV central charge then just coincides with (41). We therefore obtain

lim
r→0

lim
σ→0

c(r, σ )= 12

π2

k−1∑
a=1

L
(

xa

1+ xa
)
= 6

k− 1

k+ 3
. (55)

Thus, again we recover the coset central charge (2) forG = SU(3), but this time without
breaking parity in the TBA equations. This is in agreement with the results of Section 3.1,
which showed that we can obtain this limit for any finite value ofσ .

4.4. Universal TBA equations and Y-systems

Before we turn to the discussion of specific examples for definite values of the levelk,
we would like to comment that there exists an alternative formulation of the TBA equations
(16) in terms of a single integral kernel. This variant of the TBA equations is of particular
advantage when one wants to discuss properties of the model and keep the levelk generic.
By means of the convolution theorem and the Fourier transforms of the TBA kernelsφ

andψ , which can be read off directly from (29) and (30), one derives the set of integral
equations

εia(θ)+Ωk ∗Lja(θ − σji)=
k−1∑
b=1

Iab Ωk ∗
(
εib +Lib

)
(θ). (56)
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We recall thatI denotes the incidence matrix ofsu(k) and the kernelΩk is found to be

Ωk(θ)= k/2

cosh(kθ/2)
. (57)

The on-shell energies have dropped out because of the crucial relation [60]

k−1∑
b=1

IabM
i
b = 2(cosπ/k)Mi

a, (58)

which is a property of the mass spectrum inherited from affine Toda field theory. Even
though the explicit dependence on the scale parameter has been lost, it is recovered from
the asymptotic condition

εia(θ) −→
θ→±∞ rM

i
a e±θ . (59)

The integral kernel present in (56) has now a very simple form and thek dependence is
easily read off.

Closely related to the TBA equations in the form (56) are the following functional
relations also referred to as Y-systems. Using complex continuation (see, e.g., [27] for a
similar computation) and defining the quantityY ia(θ)= exp(−εia(θ)) the integral equations
are replaced by

Y ia(θ + iπ/k)Y ia(θ − iπ/k)= [1+ Y ja (θ − σji)] k−1∏
b=1

[
1+ Y ib(θ)−1]−Iab . (60)

The Y-functions are assumed to be well defined on the whole complex rapidity plane where
they give rise to entire functions. These systems are useful in many aspects, for instance
they may be exploited in order to establish periodicities in the Y-functions, which in turn
can be used to provide approximate analytical solutions of the TBA-equations. The scaling
function can be expanded in integer multiples of the period which is directly linked to the
dimension of the perturbing operator.

Noting that the asymptotic behaviour of the Y-functions is limθ→∞ Y ia(θ)∼ e−rMi
a coshθ ,

we recover forσ →∞ the Y-systems of thesu(k)-minimal ATFT derived originally in
[56]. In this case the Y-systems were shown to have a period related to the dimension of
the perturbing operator (see (84)). We found some explicit periods for generic values of
the resonance parameterσ as we discuss in the next section for some concrete examples.

5. Explicit examples

In this section we support our analytical discussion with some numerical results and in
particular justify various assumptions for which we have no rigorous analytical argument
so far. We numerically iterate the TBA-equations (16) and have to choose specific values
for the levelk for this purpose. As we pointed out in the introduction, quantum integrability
has only been established for the choicek > h. Since the perturbation is relevant also for
smaller values ofk and in addition the S-matrix makes perfect sense for these values ofk,
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it will be interesting to see whether the TBA-analysis in the case ofsu(3)k will exhibit any
qualitative differences fork 6 3 andk > 3. From our examples for the valuesk = 2,3,4
the answer to this question is that there is no apparent difference. For all cases we find the
staircase pattern of the scaling function predicted in the preceding section as the values of
σ andx sweep through the different regimes. Besides presenting numerical plots we also
discuss some peculiarities of the systems at hand. We provide the massless TBA equations
(32) with their UV and IR central charges and state the Y-systems together with their
periodicities. Finally, we also comment on the classical or weak coupling limitk→∞.

5.1. The SU(3)2-HSG model

This is the simplest model for thesu(3)k case, since it contains only the two self-
conjugate solitons(1,1) and (1,2). The formation of stable particles via fusing is not
possible and the only non-trivial S-matrix elements are those between particles of different
colour

S11
11= S22

11=−1,

S12
11(θ − σ)=−S21

11(θ + σ)= tanh
1

2

(
θ − i

π

2

)
. (61)

Here we have chosenη12 = −η21 = i. One easily convinces oneself that (61) satisfies
indeed (9) and (10). This scattering matrix may be related to various matrices which
occurred before in the literature. First of all when performing the limitσ → ∞ the
scattering involving different colours becomes free and the systems consists of two
free fermions leading to the central chargec = 1. Taking instead the limitσ → 0 the
expressions in (61) coincide precisely with a matrix which describes the scattering of
massless “Goldstone fermions (Goldstinos)” discussed in [26]. Apart from the factori,
the matrixS21

11(θ)|σ=0 was also proposed to describe the scattering of a massive particle
[63–65]. Having only one colour available one is not able to set up the usual crossing
and unitarity equations and in [63–65] the authors therefore resorted to the concept of
“anticrossing”. As our analysis shows this may be consistently overcome by breaking the
parity invariance. The TBA-analysis is summarized as follows

unstable particle formation:csu(3)2 =
6

5
= cUV + ĉUV = 7

10
+ 1

2
,

no unstable particle formation: 2csu(2)2 = 1= cIR + ĉIR = 1

2
+ 1

2
.

It is interesting to note that the flow from the tricritical Ising to the Ising model which was
investigated in [26], emerges as a subsystem in the HSG-model in the formcUV → cIR.
This suggests that we could alternatively also view the HSG-system as consisting out of a
massive and a massless fermion, where the former is described by (36), (32) and the latter
by (37), (33), respectively.

Our numerical investigations of the model match the analytical discussion and justifies
various assumptions in retrospect. Fig. 1 exhibits various plots of the L-functions in the
different regimes. We observe that for ln(2/r) < σ/2, σ 6= 0 the solutions are symmetric
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Fig. 1. Numerical solution forL(1)(θ) of thesu(3)2 related TBA-equations at different values of the
scale parameterr and fixed resonance shift and mass ratio.

in the rapidity variable, since the contribution of theψ kernels responsible for parity
violation is negligible. The solution displayed is just the free fermion L-function,Li(θ)=
ln(1+ e−rMi coshθ ). Approaching more and more the ultraviolet regime, we observe that
the solutionsLi cease to be symmetric signaling the violation of parity invariance. The
second plateau is then formed, which will extend beyondθ = 0 for the deep ultraviolet
(see Fig. 1). The staircase pattern of the scaling function is displayed in Fig. 2 for the
different cases discussed in the previous section. We observe always the value 6/5 in the
deep ultraviolet regime, but depending on the value of the resonance parameter and the
mass ratio it may be reached sooner or later. The plateau at 1 corresponds to the situation
when the unstable particles can not be formed yet and we only have two copies ofsu(3)2
which do not interact. Choosing the mass ratios in the two copies to be very different, we
can also “switch them on” individually as the plateau at 1/2 indicates.

The Y-systems (60) fork = 2 read

Y i1(θ + iπ/2)Y i1(θ − iπ/2)= 1+ Y j1 (θ − σji), i, j = 1,2, i 6= j. (62)

For σ = 0 they coincide with the ones derived in [26] for the “massless” subsystem.
Shifting the arguments in (62) appropriately, the periodicity

Y i1

(
θ + 5π i

2
+ σji

)
= Y j1 (θ) (63)
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Fig. 2. Numerical plots of the scaling function forsu(3)k, k = 2,3,4 as a function of the variable
log(r/2) at different values of the resonance shift and mass ratio.

is obtained after few manipulations. For a vanishing resonance parameter (63) coincides
with the one obtained in [2,26]. These periods may be exploited in a series expansion of
the scaling function in terms of the conformal dimension of the perturbing operator.

5.2. The SU(3)3-HSG model

This model consists of two pairs of solitons(1,1) = (2,1) and (1,2) = (2,2). When
the soliton(1, i) scatters with itself it may form(2, i) for i = 1,2 as a bound state. The
two-particle S-matrix elements read

Sii (θ)=
(
(2)θ −(1)θ
−(1)θ (2)θ

)
,
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Sij (θ − σij )=
(
ηij (−1)θ η2

ij (−2)θ
η2
ij (−2)θ ηij (−1)θ

)
. (64)

Since soliton and antisoliton of the same colour obey the same TBA equations we can
exploit charge conjugation symmetry to identifyεi(θ) := εi1(θ) = εi2(θ) leading to the
reduced set of equations

εi(θ)+ ϕ ∗Li(θ)− ϕ ∗Lj(θ − σji)= rMi coshθ,

ϕ(θ)=− 4
√

3coshθ

1+ 2 cosh2θ
. (65)

The corresponding scaling function therefore acquires a factor two,

c(r, σ )= 6r

π2

∑
i

Mi

∫
dθ coshθ Li(θ). (66)

This system exhibits remarkable symmetry properties. We consider first the situationσ = 0
with m1=m2 and note that the system becomes free in this case

M(1) =M(2) =:M⇒ ε(1)(θ)= ε(2)(θ)= rM coshθ, (67)

meaning that the theory falls apart into four free fermions whose central charges add up
to the expected coset central charge of 2. Also for unequal massesm1 6= m2 the system
develops towards the free fermion theory for high energies when the difference becomes
negligible. This is also seen numerically.

For σ 6= 0 the two copies of the minimalA2-ATFT or equivalently the scaling Potts
model start to interact. The outcome of the TBA-analysis in that case is summarized as

unstable particle formation:csu(3)3 = 2= cUV + ĉUV = 6

5
+ 4

5
,

no unstable particle formation: 2csu(2)3 =
8

5
= cIR + ĉIR = 4

5
+ 4

5
.

As discussed in the previous case fork = 2 the L-functions develop an additional plateau
after passing the point ln(2/r) = σ/2. This plateau lies at ln2 which is the free fermion
value signaling that the system contains a free fermion contribution in the UV limit as
soon as the interaction between the solitons of different colours becomes relevant. Fig. 2
exhibits the same behaviour as the previous case, we clearly observe the plateau at 8/5
corresponding to the two non-interacting copies of the minimalA2-ATFT. As soon as the
energy scale of the unstable particles is reached the scaling function approaches the correct
value of 2.

The Y-systems (60) fork = 3 read

Y i1,2(θ + iπ/3)Y i1,2(θ − iπ/3)= Y i1,2(θ)
1+ Y j1,2(θ + σij )

1+ Y i1,2(θ)
, i, j = 1,2, i 6= j. (68)

Once again we may derive a periodicity

Y i1,2(θ + 2π i + σji)= Y j1,2(θ) (69)

by making the suitable shifts in (68) and subsequent iteration.
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5.3. The SU(3)4-HSG model

This model involves 6 solitons, two of which are self-conjugate(2,1)= (2,1), (2,2)=
(2,2) and two conjugate pairs(1,1) = (3,1), (1,2) = (3,2). The corresponding two-
particle S-matrix elements are obtained from the general formulae (4) and (6)

Sii (θ)=
 (2)θ (3)θ (1)θ −(2)θ
(3)θ (1)θ (2)2θ (3)θ (1)θ
−(2)θ (3)θ (1)θ (2)θ

 (70)

for soliton–soliton scattering with the same colour values and

Sij (θ − σij )=
ηij (−1)θ η2

ij (−2)θ η3
ij (−3)θ

η2
ij (−2)θ −(−3)θ (−1)θ η2

ij (−2)θ
η3
ij (−3)θ η2

ij (−2)θ ηij (−1)θ

 (71)

for the scattering of solitons of different colours withη12= eiπ/4. In this case the numerics
becomes more involved but for the special casem1 = m2 one can reduce the set of six
coupled integral equations to only two by exploiting the symmetryL

(1)
a (θ) = L(2)a (−θ)

and using charge conjugation symmetry,Li1(θ)= Li3(θ). The numerical outcomes, shown
in Fig. 2 again match, with the analytic expectations (51) and yield for ln(2/r) > σ/2 the
coset central charge of 18/7. In summary we obtain

unstable particle formation:csu(3)4 =
18

7
= cUV + ĉUV = 11

7
+ 1,

no unstable particle formation: 2csu(2)4 = 2= cIR + ĉIR = 1+ 1,

which matches precisely the numerical outcome in Fig. 2, with the same physical
interpretation as already provided in the previous two subsections.

5.4. The semiclassical limitk→∞

As last example we carry out the limitk→∞, which is of special physical interest since
it may be identified with the weak coupling or equivalently the classical limit, as is seen
from the relation̄hβ2= 1/k+O(1/k2). To illustrate this equivalence we have temporarily
reintroduced Planck’s constant. It is clear from the TBA-equations that this limit may not
be taken in a straightforward manner. However, we can take it in two steps, first for the on-
shell energies and the kernels and finally for the sum over all particle contributions. The
on-shell energies are easily computed by noting that the mass spectrum becomes equally
spaced fork→∞

Mi
a =Mi

k−a =
mi

πβ2
sin

πa

k
≈ ami, a <

k

2
. (72)

For the TBA-kernels the limit may also be taken easily from their integral representations

φab(θ) −→
k→∞2πδ(θ)

(
δab − 2

(
K

su(k)
ab

)−1
)
,

ψab(θ) −→
k→∞2πδ(θ)

(
K

su(k)
ab

)−1
, (73)



O.A. Castro-Alvaredo et al. / Nuclear Physics B 575 [FS] (2000) 535–560 557

when employing the usual integral representation of the delta-function. Inserting these
quantities into the TBA-equations yields

εia(θ)≈ rami coshθ −
k−1∑
b=1

(
δab − 2

(
K

su(k)
ab

)−1
)
Lib(θ)−

k−1∑
b=1

(
K

su(k)
ab

)−1
L
j
b(θ − σ). (74)

We now have to solve these equations for the pseudo-energies. In principle we could
proceed in the same way as in the case for finitek by doing the appropriate shifts in
the rapidity. However, we will be content here to discuss the casesσ → 0 andσ →∞,
which as follows from our previous discussion correspond to the situation of restored parity
invariance and two non-interacting copies of the minimal ATFT, respectively. The related
constant TBA-equations (42) and (44) become

σ →∞: x̂a −→
k→∞

(a + 1)2

a(a + 2)
− 1,

σ → 0: xa −→
k→∞

(a + 1)(a + 2)

a(a + 3)
− 1. (75)

The other information we may exploit about the solutions of (74) is that for large rapidities
they tend asymptotically to the free solution, meaning that

σ → 0,∞: Lia(θ) −→
θ→±∞ ln

(
1+ e−rami coshθ ). (76)

We are left with the task to seek functions which interpolate between the properties (75)
and (76). Inspired by the analysis in [62] we take these functions to be

σ →∞: Lia(θ)= ln

[
sinh2( a+1

2 rmi coshθ)

sinh( a2rmi coshθ)sinh( a+2
2 rmi coshθ)

]
, (77)

σ → 0: Lia(θ)= ln

[
sinh( a+1

2 rmi coshθ)sinh( a+2
2 rmi coshθ)

sinh( a2rmi coshθ)sinh( a+3
2 rmi coshθ)

]
. (78)

The expression (77) coincides with the expressions discussed in the context of the breather
spectrum of the sine-Gordon model [62] and (78) is constructed in analogy. We are now
equipped to compute the scaling function in the limitk→∞

c(r, σ )= lim
k→∞

3r

π2

2∑
i=1

∫
dθ coshθ

k−1∑
a=1

Mi
aL

i
a(θ). (79)

Using (72), (77) and (78) the sum over the main quantum number may be computed
directly by expanding the logarithm. We obtain fork→∞

c(r)
∣∣
σ=∞ =

−6r

π2

2∑
i=1

∫
dθ mi coshθ ln

(
1− e−rmi coshθ ), (80)

c(r)
∣∣
σ=0=

−6r

π2

2∑
i=1

∫
dθmi coshθ

[
ln
(
1− e−rmi coshθ )+ ln

(
1− e−r2mi coshθ )]. (81)
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Here we have acquired an additional factor of 2, resulting from the identification of
particles and antiparticles which is needed when one linearizes the masses in (72). Taking
now the limitr→ 0 we obtain

no unstable particle formation: 2csu(2)∞ = 4, (82)

unstable particle formation:csu(3)∞ = 6. (83)

The results (80), (82) and (81), (83) allow a nice physical interpretation. We notice
that for the caseσ →∞ we obtain four times the scaling function of a free boson.
This means in the classical limit we obtain twice the contribution of the non-interacting
copies of SU(2)∞/U(1), whose particle content reduces to two free bosons each of them
contributing 1 to the effective central charge which is in agreement with (2). For the case
σ → 0 we obtain the same contribution, but in addition the one from the unstable particles,
which are two free bosons of mass 2mi . This is also in agreement with (2).

Finally it is interesting to observe that when taking the resonance poles to beθR =
σ − iπ/k the semiclassical limit taken in the Breit–Wigner formula (11) leads tom2

k̃
=

(mi+mj)2. On the other hand (81) seems to suggest thatmk̃ = 2mi , which implies that the
mass scales should be the same. However, since our analysis is mainly based on exploiting
the asymptotics we have to be cautious about this conclusion.

6. Conclusions

Our main conclusion is that the TBA-analysis indeed confirms the consistency of the
scattering matrix proposed in [6]. In the deep ultraviolet limit we recover theGk/U(1)`-
coset central charge for any value of the 2` − 1 free parameters entering the S-matrix,
including the choice when the resonance parameters vanish and parity invariance is
restored on the level of the TBA-equations. This is in contrast to the properties of the
S-matrix, which is still not parity invariant due to the occurrence of the phase factorsη,
which are required to close the bootstrap equations [6]. However, they do not contribute
to our TBA-analysis, which means that so far we can not make any definite statement
concerning the necessity of the parity breaking, since the same value for the central charge
is recovered irrespective of the value of theσ ’s. The underlying physical behaviour is,
however, quite different as our numerical analysis demonstrates. For vanishing resonance
parameter the deep ultraviolet coset central charge is reached straight away, whereas for
non-trivial resonance parameter one passes the different regions in the energy scale. Also
the choice of different mass scales leads to a theory with a different physical content, but
still possessing the same central charge. To settle this issue, it would therefore be highly
desirable to carry out the series expansion of the scaling function inr and determine the
dimension∆ of the perturbing operator. It will be useful for this to know the periodicities
of the Y-functions. We conjecture that they will be

Y ia
(
θ + iπ(1−∆)−1+ σji

)= Y jā (θ), (84)
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which is confirmed by oursu(N)-examples. For vanishing resonance parameter and the
choiceg = su(2), this behaviour coincides with the one obtained in [56]. This means the
form in (84) is of a very universal nature beyond the models discussed here.

We also observe from oursu(N)-example that the different regions, i.e.,k > h andk 6
h, for which quantum integrability was shown and for which not, respectively, do not show
up in our analysis.

It would be very interesting to extend the case-by-case analysis of Section 5 to other
algebras. The first challenge in these cases is to incorporate the different resonance
parameters.
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