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Abstract

We address the general question of how to reconstruct the field content of a quantum field
theory from a given scattering theory in the context of the form factor program. For the SU(3)2-
homogeneous sine-Gordon model we construct systematically alln-particle form factors for a huge
class of operators in terms of general determinant formulae. We investigate how different operators
are interrelated by the momentum space cluster property. Finally, we compute several two-point
correlation functions and carry out the ultraviolet limit in order to identify each operator with its
corresponding partner in the underlying conformal field theory. 2001 Elsevier Science B.V. All
rights reserved.

PACS: 11.10.Kk; 11.55.Ds; 05.70.Jk; 05.30.-d; 64.60.Fr; 11.30.Er

1. Introduction

The central concepts of relativistic quantum field theory, like Einstein causality and
Poincaré covariance, are captured in local field equations and commutation relations. As
a matter of fact local quantum physics (algebraic quantum field theory) [1] takes the
collection of all operators localized in a particular region, which generate a von Neumann
algebra, as its very starting point (for recent reviews see, e.g., [2]).

On the other hand, in the formulation of a quantum field theory one may alternatively
start from a particle picture and investigate the corresponding scattering theories. In
particular, for(1 + 1)-dimensional integrable quantum field theories this latter approach
has proved to be impressively successful. As its most powerful tool one exploits here the
bootstrap principle [3], which allows to write down exact scattering matrices. Ignoring
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subtleties of non-asymptotic states, it is essentially possible to obtain the latter picture
from the former by means of the LSZ-reduction formalism [4]. However, the question of
how to reconstruct at least part of the field content from the scattering theory is in general
still an outstanding issue. Recently a link between scattering theory and local interacting
fields in terms of polarization-free generators has been developed [5]. Unfortunately, they
involve subtle domain properties and are therefore objects which concretely can only be
handled with great difficulties.

In the context of(1+1)-dimensional integrable quantum field theories the identification
of the operators is based on the assumption, dating back to the initial papers [6], that each
solution to the form factor consistency equations [6–9] corresponds to a particular local
operator. Based on this numerous authors [6–15] have used various ways to identify and
constrain the specific nature of the operator, e.g., by looking at asymptotic behaviours,
performing perturbation theory, taking symmetries into account, formulating quantum
equations of motion, etc. Our analysis will make especially exploit the conjecture that
each local operator has a counterpart in the ultraviolet conformal field theory.

In the present manuscript we show for a concrete model, the SU(3)2-homogeneous
sine-Gordon model (HSG), that, by means of the form factor program, it is possible to
reconstruct the field content starting from its scattering matrix. Our analysis is based on
the assumption [12,13] that each solution to the form factor consistency equations [6–9]
corresponds to a particular local operator. We take furthermore into account that the
SU(3)2-HSG model, like numerous other(1 + 1)-dimensional integrable models, may be
viewed as a perturbed conformal field theory whose entire field content is well classified.
Assuming now a one-to-one correspondence between operators in the conformal and
in the perturbed theory, we can carry out an identification on this level, that is we
associate each solution of the form factor consistency equations a local operator which
is labeled according to the the ultra-violet conformal field theory. We therefore construct
systematically all possible solutions for then-particle form factors related to a huge class
of operators in terms of some general building blocks which consist out of determinants of
matrices whose entries are elementary symmetric polynomials depending on the rapidities.
We demonstrate how these general solutions are interrelated by the momentum space
cluster property. In particular we show that the cluster property serves also as a construction
principle, in the sense that from one solution to the consistency equations we may obtain
a huge class, almost all, of new solutions. Finally we compute the corresponding two-
point correlation functions and carry out the ultraviolet limit in order to identify the
corresponding conformal dimensions.

Our manuscript is organized as follows: In Section 2 we recall [16] the solutions for the
minimal form factors and the recursive equation which is central for the determination of
the form factors. We describe the general structure of then-particle form factors for a huge
class of operators. In Section 3 we provide a rigorous proof for all solutions. In Section 4
we investigate the cluster property. In Section 5 we compute several two-point correlation
functions and carry out the ultraviolet limit on the base of a sum rule and the explicit two-
point correlation function in order to identify the conformal dimensions of each operator.
We state our conclusions in Section 6. The Appendix A contains a collection of useful
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properties of elementary symmetric polynomials and some explicit formulae for the first
non-vanishing form factors.

2. The SU(3)2-HSG model form factors

The SU(3)2-HSG model contains only two self-conjugate solitons which we denote,
following the conventions of [16], by “+” and “−”. The two particle scattering matrix as
a function of the rapidityθ related to this model was found [17] to be

(1)S±± = −1 and S±∓(θ)= ± tanh
1

2

(
θ ± σ − i

π

2

)
.

Here σ is a real constant and corresponds to a resonance parameter. The system (1)
constitutes probably the simplest example of a massive quantum field theory involving two
particles of distinct type. Nonetheless, despite the simplicity of the scattering matrix we
expect to find a relatively involved operator content, since for finite resonance parameter
the SU(3)2-HSG model describes a WZNW-coset model with central chargec = 6/5
perturbed by an operator with conformal dimension∆= 3/5. Since this is true as long as
σ is finite, we shall be content in the following mostly by settingσ = 0. It is expected from
the classical analysis that for finite value ofσ we always have the same ultraviolet central
charge and therefore the same operator content. The TBA-analysis carried out in [18]
supports this analysis. Thus, a finite variation ofσ at the ultraviolet fixed point and away
from it is not very illuminating and we therefore only distinguish the behaviourσ → ∞
andσ finite. In the former case one trivially observes that the S-matrices S±∓ tend to one
and the theory decouples into two Ising models. The related form factors have to respect
this behaviour and all combinations involving different types of particles vanish, see [16].
One may see also directly that the form factor solutions behave this way by employing the
Riemann–Lebesgue theorem.

The underlying conformal field theory has recently [19] found an interesting application
in the context of the construction of quantum Hall states which carry a spin and fractional
charges.

Taking the scattering matrix as an input, it is in principle possible to compute
form factors, by solving certain consistency equations [6–9], and thereafter to evaluate
correlation functions. Form factors are tensor valued functions, representing matrix
elements of some local operatorO(�x) located at the origin between a multiparticle in-state
and the vacuum, which we denote by

(2)FO|µ1...µn
n (θ1, . . . , θn) := 〈0|O(0)∣∣Vµ1(θ1)Vµ2(θ2) · · ·Vµn(θn)

〉
in.

Here theVµ(θ) are some vertex operators representing a particle of speciesµ. We
commence now by recalling the basic ansatz for solutions of the form factors for the
SU(3)2-HSG model from [16]. We used the parameterization
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F
O|

l×±︷ ︸︸ ︷
µ1 . . .µl

m×∓︷ ︸︸ ︷
µl+1 . . .µn

n (θ1, . . . , θn)

(3)=HO|µ1...µn
n QO|µ1...µn

n (x1, . . . , xn)
∏
i<j

F̂ µiµj (θij ),

where

F̂ µiµj (θij ) := F
µiµj
min (θij )

/(
x
µi
i + x

µj
j

)δµiµj .
The rapidities enter through the variablexi = exp(θi) and the functionsF

µiµj
min (θij ) denote

the so-called minimal form factors. They were found to be

(4)F±±
min (θ)= −i sinh

θ

2
,

F±∓
min (θ)= 2

1
4 e

iπ(1∓1)±θ
4 −G

π exp

(
−

∞∫
0

dt

t

sin2((iπ − θ ∓ σ) t
2π

)
sinht cosht/2

)

(5)= e± θ
4 F̃±∓

min (θ).

HereG is the Catalan constant. For the overall constants we obtained

(6)HO|2s+τ,m = ism2s(2s−m−1+2τ )esmσ/2HO|τ,m, τ = 0,1.

Note that at this point an unknown constant, that isHO|τ,m, enters into the procedure. This
quantity is not constrained by the form factor consistency equations and has to be obtained
from elsewhere. The polynomialsQ have to satisfy the recursive equations

(7)QO|l+2,m(−x, x, . . . , xn)=D
l,m
ϑ (x, x1, . . . , xn)Q

O|l,m(x1, . . . , xn),

(8)D
l,m
ϑ (x, x1, . . . , xn)= 1

2
(−ix)l+1σ+

l

m∑
k=0

x−k(1− (−1)l+k+ϑ
)
σ̂−
k .

In particular,

(9)D
2s+τ,2t+τ ′
ζ (x, x1, . . . , xn)= (−i)2s+τ+1σ+

2s+τ
t∑

p=0

x2s−2p+τ+1−ζ σ̂−
2p+ζ .

Hereϑ is related to the factor of local commutativityω = (−1)ϑ = ±1. We introduced
also the functionζ which is 0 or 1 for the sumϑ + τ being odd or even, respectively.
We shall use various notations for elementary symmetric polynomials (see Appendix A for
some essential properties). We employ the symbolσk when the polynomials depend on the
variablesxi , the symbol̄σk when they depend on the inverse variablesx−1

i , the symbol̂σk
when they depend on the variablesxie

−σ+iπ/2 andσ̃k when we set the first two variables to
x1 = −x, x2 = x. The number of variables the polynomials depend upon is defined always
in an unambiguous way through the l.h.s. of our equations, where we assume the firstl

variables to be associated withµ = + and the lastm variables withµ = −. In case no
superscript is attached to the symbol the polynomials depend on allm+ l variables, in case
of a “+” they depend on the firstl variables and in case of a “−” on the lastm variables.
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Solving recursive equations of the type (7) in complete generality is still an entirely open
problem. Ideally one would like to reach a situation similar to the one in the bootstrap
construction procedure of the scattering matrices, where one can state general building
blocks, e.g., particular combinations of hyperbolic functions whenever backscattering is
absent [20], infinite products of gamma functions when backscattering occurs or elliptic
functions when infinite resonances are present. At least for all operators in the model we
consider here this goal has been achieved. It will turn out that all solutions to the recursive
equations (7) may be constructed from some general building blocks consisting out of
determinants of matrices whose entries are elementary symmetric polynomials in some
particular set of variables. Let us therefore define the (t + s)×(t + s)-matrix

(10)
(
Aµ,ν
l,m (s, t)

)
ij

:=
{
σ+

2(j−i)+µ for 1 � i � t,

σ̂−
2(j−i)+2t+ν for t < i � s + t .

More explicitly, matrixA reads

(11)Aµ,ν
l,m =




σ+
µ σ+

µ+2 σ+
µ+4 σ+

µ+6 · · · 0

0 σ+
µ σ+

µ+2 σ+
µ+4 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · σ+
2s+µ

σ̂−
ν σ̂−

ν+2 σ̂−
ν+4 σ̂−

ν+6 · · · 0

0 σ̂−
ν σ̂−

ν+2 σ̂−
ν+4 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · σ̂−
2t+ν



.

The superscriptsµ,ν may take the values 0 and 1 and the subscriptsl,m characterize the
number of different variables related to the particle species “+”, “ −”, respectively. The
different combinations of the integersµ,ν, l,m will correspond to different kind of local
operatorsO.

In addition, the form factors will involve a function depending on two further indicesµ̄

andν̄

(12)g
µ̄,ν̄
l,m := (σl)

l−m+µ̄
2 (σm)

ν̄−m
2 .

Here theµ̄, ν̄ are integers whose range, unlike the one forµ,ν, is in principle not restricted.
However, it will turn out that due to the existence of certain constraining relations, to be
specified in detail below, it is sufficient to characterize a particular operator by the four
integersµ,ν, l,m only. Then, as we shall demonstrate, allQ-polynomials acquire the
general form

(13)QO|l,m =Q
µ,ν
l,m =Q

µ,ν

2s+τ,2t+τ ′ = isν(−1)s(τ+t+1)g
µ̄,ν̄

2s+τ,2t+τ ′ detAµ,ν

2s+τ,2t+τ ′ .

We used here already a parameterization forl,m which will turn out to be most convenient.
The subscripts ing andA are only needed in formal considerations, but in most cases the
number of particles of species “+” and “−” are unambiguously defined through the l.h.s.
of our equations. This is in the same spirit in which we refer to the number of variables in
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the elementary symmetric polynomials. We will therefore drop them in these cases, which
leads to simpler, but still precise, notations. To illustrate this with examples, we consider
for instance the solutions to the recursive equations (7) related to the trace of the energy
momentum tensorΘ, the order operatorΣ and the disorder operatorµ which were already
stated in [16]

(14)QΘ|2s+2,2t+2 = is(2t+3)e−(t+1)σσ1σ̄1g
0,2 detA1,1,

(15)QΣ |2s,2t+1 = is(2t+3)g−1,1 detA0,1,

(16)Qµ|2s,2t = i2s(t+1)g−1,1 detA0,0.

HereA is always taken to be a (t + s)× (t + s)-matrix. Notice that in comparison with
(13) the factor of proportionality in (15) and (16) is only a constant, whereas in (14)
also the termσ1σ̄1 appears. Terms of this type may always be added since they satisfy
the consistency equations trivially. This is also the reason why in comparison with [16]
we can safely drop inQΣ |2s,2t+1 the factor(σ1)

1/2(σ−
1 )

−1/2. Additional reasons for this
modification will be provided below. ForΘ we were forced [16] to introduce the factor
σ1σ̄1 in order to recover the solution of the thermally perturbed Ising model for 2s+2 = 0.
Note that forΘ the values = −1 formally makes sense.

3. Solution procedure

We shall now recall the principle steps of the general solution procedure for the form
factor consistency equations [6–9]. For any local operatorO one may anticipate the pole
structure of the form factors and extract it explicitly in form of an ansatz of the type (3).
This might turn out to be a relatively involved matter due to the occurrence of higher order
poles in some integrable theories, e.g., [14], but nonetheless it is possible. Thereafter, the
task of finding solutions may be reduced to the evaluation of the minimal form factors and
to solving a (or two if bound states may be formed in the model) recursive equation of the
type (7). The first task can be carried out relatively easily, especially if the related scattering
matrix is given as a particular integral representation [6]. Then an integral representation of
the type (5) can be deduced immediately. The second task is rather more complicated and
the heart of the whole problem. Having a seed for the recursive equation, that is the lowest
non-vanishing form factor,1 one can in general compute from them several form factors
which involve more particles. However, the equations become relatively involved after
several steps. Aiming at the solution for alln-particle form factors, it is therefore highly
desirable to unravel a more generic structure which enables one to formulate rigorous
proofs. Several examples [8,11,21] have shown that often the general solution may be
cast into the form of determinants whose entries are elementary symmetric polynomials.
Presuming such a structure which, at present, may be obtained by extrapolating from lower
particle solutions to higher ones or by some inspired guess, one can rigorously formulate

1 For the case at hand this is provided for some operators by the well known solutions of the Ising model. In
general this is also a difficult hurdle to take as, for instance, one might need to know vacuum expectation values.
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proofs as we now demonstrate for the SU(3)2-HSG-model, for which some solutions were
merely stated in [16].

We have two universal structures2 at our disposal. We could either exploit the integral
representation for the determinantA, as presented in [16], or exploit simple properties of
determinants. Here we shall pursue the latter possibility. For this purpose it is convenient
to define the operatorCx

i,j (R
x
i,j ) which acts on thej th column (row) of an (n× n)-matrix

A by addingx times theith column (row) to it

(17)Cx
i,jA : Akj �→ Akj + xAki, 1 � i, j, k � n,

(18)Rx
i,jA : Ajk �→Ajk + xAik, 1 � i, j, k � n.

Naturally, the determinant ofA is left invariant under the actions ofCx
i,j andRx

i,j on A,
such that we can use them to bringA into a suitable form for our purposes. Furthermore,
it is convenient to define the ordered products, i.e., operators related to the lowest entry act
first,

(19)Cxa,b :=
b∏

p=a
Cx
p,p+1 and Rx

a,b :=
b∏

p=a
Rx
p,p−1.

It will be our strategy to use these operators in such a way that we produce as many zeros
as possible in one column or row of a matrix of interest to us. In order to satisfy (7) we have
to set now the first variables inA to x1 = −x, x2 = x, which we denote as̃A thereafter and
relate the matrices̃Aµ,ν

l+2,m andAµ,ν
l,m . Taking relation (A.4) for the elementary symmetric

polynomials into account, we can bring̃Aµ,ν
l+2,m into the form(

R−x2

t+2,s+t+1C
x2

1,s+t−1Ã
µ,ν
l+2,m

)
ij

(20)=



σ+

2(j−i)+µ, 1 � i � t,

σ̂−
2(j−i)+2t+ν, t < i � s + t,∑j

p=1x
2(j−p)σ̂−

2(p−s−1)+ν, i = s + t + 1.

It is now crucial to note that since the number of variables has been reduced by two,
several elementary polynomials may vanish. As a consequence, for 2s + 2 + µ > l and
2t + 2+ ν >m, the last column takes on the simple form(

R−x2

t+2,s+t+1C
x2

1,s+t−1Ã
µ,ν
l+2,m

)
i(s+t+1)

(21)=
{0, 1� i � s + t,∑t

p=0x
2(t−p)σ̂−

2p+ν, i = s + t + 1.

Therefore, developing the determinant ofÃµ,ν
l+2,m with respect to the last column, we are

able to relate the determinants ofÃµ,ν
l+2,m andAµ,ν

l,m as

2 There exist also different types of universal expressions like for instance the integral representations presented
in [9]. However, these type of expressions are sometimes only of a very formal nature since to evaluate them
concretely for highern-particle form factors requires still a considerable amount of computational effort.
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(22)detÃµ,ν
l+2,m =

(
t∑

p=0

x2(t−p)σ̂−
2p+ν

)
detAµ,ν

l,m .

We are left with the task to specify the behaviour of the functiong with respect to the
“reduction” of the first two variables

(23)g̃
µ̄,ν̄
l+2,m = il−m+µ̄+2xl−m+µ̄+2σ+

l g
µ̄,ν̄
l,m .

Assembling the two factors (22) and (23), we obtain, in terms of the parameterization (13)

(24)

Q̃
µ̄,ν̄,µ,ν

2s+2+τ,2t+τ ′ = (−i)2s+τ+1σ+
2s+τ

(
t∑

p=0

x2(s−p+1)+τ−τ ′+µ̄σ̂−
2p+ν

)
Q
µ̄,ν̄,µ,ν

2s+τ,2t+τ ′.

We are now in the position to compare our general construction (24) with the recursive
equation for theQ-polynomials of the SU(3)2-HSG model (9). We read off directly the
following restrictions

(25)ν = ζ and ζ = τ ′ − µ̄− 1.

A further constraint results from relativistic invariance, which implies that the overall
power in all variablesxi of the form factors has to be zero for a spinless operator.
Introducing the short hand notation [FO

n ] for the total power, we have to evaluate

(26)
[
Q
µ̄,ν̄,µ,ν

2s+τ,2t+τ ′
] = [

g
µ̄,ν̄

2s+τ,2t+τ ′
]+ [

detAµ,ν

2s+τ,2t+τ ′
]
.

Combining (25) and (26) with the explicit expressions[
detAµ,ν

2s+τ,2t+τ ′
] = s(2t + ν)+µt,[

g
µ̄,ν̄
l,m

] = l(l −m+ µ̄)/2+m(ν̄ −m)/2,[
Q
µ̄,ν̄,µ,ν

2s+τ,2t+τ ′
] = l(l − 1)/2−m(m− 1)/2,

we find the additional constraints

(27)µ= 1+ τ − ν̄ and τν = τ ′(ν̄ − 1).

Collecting now everything we conclude that different solutions to the form factor
consistency equations can be characterized by a set of four distinct integers. Assuming
that each solution corresponds to a local operator, there might be degeneracies of course,
we can label the operators byµ,ν, τ, τ ′, i.e.,O →Oµ,ν

τ,τ ′ , such that we can also writeQµ,ν
m,l

instead ofQµ̄,ν̄,µ,ν
m,l . Then eachQ-polynomial takes on the general form

QO|2s+τ,2t+τ ′ =Q
Oµ,ν

τ,τ ′ |2s+τ,2t+τ ′

(28)=Q
µ,ν

2s+τ,2t+τ ′ ∼ g
τ ′−1−ν,τ+1−µ
2s+τ,2t+τ ′ detAµ,ν

2s+τ,2t+τ ,

and the integersµ,ν, τ, τ ′ are restricted by

(29)τν + τ ′µ= ττ ′, 2+µ> τ, 2+ ν > τ ′.
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Table 1
Operator content of the SU(3)2-HSG model

µ ν τ τ ′ [
F
µν
ττ ′

]
+

[
F
µν
ττ ′

]
− ∆

0 0 0 0 0 0 1/10
0 0 1 0 0 0 1/10
0 0 0 1 0 0 1/10
0 1 0 1 −1/2 0 1/10
0 1 1 1 −1/2 0 1/10
0 1 0 2 −1/2 0 1/10
1 0 1 1 0 −1/2 1/10
1 0 2 0 0 −1/2 1/10
1 0 1 0 0 −1/2 1/10
1 1 2 2 −1/2 −1/2 1/10
1 1 0 0 −1/2 −1 *
1 0 0 0 0 −1/2 *

We combined here (25) and (27) to get the first relation in (29). The inequalities result from
the requirement in the proof which we needed to have the form (21). We find 12 admissible
solutions to (29), i.e., potentially 12 different local operators, whose quantum numbers are
presented in Table 1.

Comparing with our previous results, we have according to this notationF
O0,0

0,0|2s,2t =
Fµ|2s,2t , F

O0,1
0,1|2s,2t+1 = FΣ |2s,2t+1 and F

O1,1
2,2|2s,2t+1 ∼ FΘ|2s+2,2t+2. The last two

solutions are only formal in the sense that they solve the constraining equations (29), but
the corresponding explicit expressions turn out to be zero.

In summary, by taking the determinant of the matrix (11) as the ansatz for the general
building block of the form factors, we constructed systematically generic formulae for the
n-particle form factors possibly related to 12 different operators.

4. Momentum space cluster properties

Cluster properties in space, i.e., the observation that far separated operators do not
interact, are quite familiar in quantum field theories [23] for a long time. In 1+ 1
dimensions a similar property has also been noted in momentum space. For the purely
bosonic case this behaviour can be explained perturbatively by means of Weinberg’s power
counting theorem, see, e.g., [6,22].3 This property has been analysed explicitly for several

3 There exists also a heuristic argument which provides some form of intuitive picture of this behaviour [15]
by appealing to the ultraviolet conformal field theory. However, the argument is based on various assumptions,
which need further clarification. For instance, it remains to be proven rigorously that the particle creation operator
Vµ(θ) tends to a conformal Zamolodchikov operator forθ → ∞ and that the local field factorizes equally into
two chiral fields in that situation. The restriction in there that limθ→∞ Sij (θ)= 1, for i being a particle which
has been shifted andj one which has not, excludes a huge class of interesting models, in particular the one at
hand.
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specific models [8,12,21,24]. It states that whenever the first, sayκ , rapidities of ann-
particle form factor are shifted to infinity, then-particle form factor factorizes into aκ and
an (n− κ)-particle form factor which are possibly related to different types of operators

(30)T λ
1,κF

O
n (θ1, . . . , θn)∼ FO′

κ (θ1, . . . , θκ)F
O′′
n−κ (θκ+1, . . . , θn).

For convenience we have introduced here the operator

(31)T λ
a,b := lim

λ→∞

b∏
p=a

T λ
p

which will allow for concise notations. It is composed of the translation operatorT λ
a which

acts on a function ofn variables as

(32)T λ
a f (θ1, . . . , θa, . . . , θn) �→ f (θ1, . . . , θa + λ, . . . , θn).

Whilst Watson’s equations and the residue equations, see, e.g., [6–8,16], are operator
independent features of form factors, the cluster property captures part of the operator
nature of the theory. The cluster property (30) does not only constrain the solution, but
eventually also serves as a construction principle in the sense that when givenFO

n we
may employ (30) and construct form factors related toO′ andO′′. Hence, (30) constitutes
a closed mathematical structure, which relates various solutions and whose abstract nature
still needs to be unraveled.

We shall now systematically investigate the cluster property (30) for the SU(3)2-HSG
model. Choosing w.l.g. the upper signs for the particle types in Eq. (3), we have four
different options to shift the rapidities

(33)T ±λ
1,κ�lF

O|l×+,m×−
n = T ∓λ

κ+1<l,nF
O|l×+,m×−
n ,

(34)T ±λ
1,κ>lF

O|l×+,m×−
n = T ∓λ

κ+1�l,nF
O|l×+,m×−
n ,

which a priori might all lead to different factorizations on the r.h.s. of Eq. (30). The equality
signs in Eqs. (33) and (34) are a simple consequence of the relativistic invariance of form
factors, i.e., we may shift all rapidities by the same amount, forO being a scalar operator.

Considering now the ansatz (3) we may first carry out part of the analysis for the terms
which are operator independent. Noting that

(35)T ±λ
1,1 F

++
min (θ)= T ±λ

1,1 F
−−
min (θ)∼ e

(λ±θ)
2 , T ±λ

1,1 F
+−
min (θ)∼

{O(1),
e
(θ−λ)

2 ,

we obtain for the choice of the upper signs for the particle types in the ansatz (3)

T ±λ
1,κ�l

∏
i<j

F̂ µiµj (θij )∼
∏

1�i<j�κ

F̂++(θij )
∏

κ<i<j�l+m
F̂µiµj (θij )

×



σκ(x1, . . . , xκ)

κ−l
2 e

λκ(1−l)
2

σl−κ(xκ+1, . . . , xl)
κ
2

,

σκ (x1, . . . , xκ)
m−l+κ

2 e
λκ(l−m−1)

2

σn−κ (xκ+1, . . . , xn)
κ
2

,
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T ±λ
n+1−κ<m,n

∏
i<j

F̂ µiµj (θij )∼
∏

1�i<j�n−κ
F̂ µiµj (θij )

∏
n−κ<i<j�n

F̂−−(θij )

×




σn−κ (x1, . . . , xn−κ )
κ
2 e

λκ(m−l−1)
2

σκ(xn+1−κ , . . . , xn)
l−m+κ

2

,

σm−κ (xl+1, . . . , xn−κ)
κ
2 e

λκ(1−m)
2

σκ(xn+1−κ , . . . , xn)
κ−m

2
.

The remaining cases can be obtained from the equalities (33) and (34). Turning now to the
behaviour of the functiong as defined in (12) under these operations, we observe with help
of the asymptotic behaviour of the elementary symmetric polynomials (A.5) and (A.6)

(36)T ±λ
1,κ�lg

µ̄,ν̄
l,m = [

e±λκσκ (x1, . . . , xκ)σl−κ(xκ+1, . . . , xl)
] l−m+µ̄

2 (σm)
ν̄−m

2 ,

(37)

T ±λ
n+1−κ<m,ng

µ̄,ν̄
l,m = (σl)

l−m+µ̄
2

× [
e±λκσκ (xn+1−κ , . . . , xn)σm−κ (xl+1, . . . , xn−κ)

] ν̄−m
2 .

In a similar fashion we compute the behaviour of the determinants

(38)T λ
1,2κ+ξ�l detAµ,ν

l,m = eλt(2κ+ξ)(σ2κ+ξ )t
(
(−1)t σ̂−

ν

)κ+ξ(1−µ) detA1−µ,ν
l−2κ−ξ,m,

(39)T −λ
1,2κ+ξ�l detAµ,ν

l,m = (
σ̂−

2t+ν
)κ+ξ

detAµ,ν
l−2κ−ξ,m,

(40)T λ
n+1−2κ−ξ<m,n detAµ,ν

l,m = eλs(2κ+ξ)(σ+
µ

)κ+ξ(1−ν)(
σ̂2κ+ξ

)s detAµ,1−ν
l,m−2κ−ξ ,

(41)T −λ
n+1−2κ−ξ<m,n detAµ,ν

l,m = (
(−1)sσ+

2s+µ
)κ+ξ detAµ,ν

l,m−2κ−ξ .

We have to distinguish here between the odd and even case, which is the reason for the
introduction of the integerξ taking on the values 0 or 1.

Collecting now all the factors, we extract first the leading order behaviour inλ

T ±λ
1,κ�lF

µ,ν

2s+τ,2t+τ ′ ∼ e−λκ(±ν+τ ′ (1∓1)
2 ),

(42)T ±λ
n+1−κ<m,nF

µ,ν

2s+τ,2t+τ ′ ∼ e−λκ(±µ+τ (1∓1)
2 ).

Notice that, if we require that all possible actions ofT ±λ
a,b should lead to finite expressions

on the r.h.s. of (30), we have to impose two further restrictions, namely,τ ′ � ν andτ � µ.
These restrictions would also exclude the last two solutions from Table 1. We observe
further thatF 1,1

2,2 tends to zero under all possible shifts. Seeking now solutions for the set
µ,ν, τ, τ ′ of (42) which at least under some operations leads to finite results and in all
remaining cases tends to zero, we end up precisely with the first 9 solutions in Table 1.

Concentrating now in more detail on these latter cases which behave likeO(1), we find
from the previous equations the following cluster properties

(43)T λ
1,2κ+ξ�lF

µ,0
2s+τ,2t+τ ′ ∼ F

0,0
2κ+ξ,0F

µ+ξ(1−2µ),0
2s+τ−2κ−ξ,2t+τ ′,

(44)T −λ
1,2κ+ξ�lF

µ,ν
2s+τ,2t+ν ∼ F

0,0
2κ+ξ,0F

µ,ν
2s+τ−2κ−ξ,2t+ν,

(45)T λ
n+1−2κ−ξ<m,nF

0,ν
2s+τ,2t+τ ′ ∼ F

0,ν+ξ(1−2ν)
2s+τ,2t+τ ′−2κ−ξF

0,0
0,2κ+ξ ,
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Fig. 1. Interrelation of various operators via clustering. In this figure we use the abbreviations
T1 ≡ T λ

1,2κ+1�l
, T2 ≡ T −λ

1,2κ+1�l
, T3 ≡ T λ

n−2κ<m,n, T4 ≡ T −λ
n−2κ<m,n. We also drop the 2s and

2t in the subscripts of theO’s. TheTi on the links operate in both directions.

(46)T −λ
n+1−2κ−ξ<m,nF

µ,ν

2s+µ,2t+τ ′ ∼ F
µ,ν

2s+µ,2t+τ ′−2κ−ξF
0,0
0,2κ+ξ .

We may now use (43)–(46) as a means of constructing new solutions, i.e., we can start with
one solution and use (43)–(46) in order to obtain new ones. Fig. 1 demonstrates that when
knowing just one of the first nine operators in Table 1 it is possible to (re)-construct all the
others in this fashion.

4.1. The energy–momentum tensor

As we observed from our previous discussion the solutionF
1,1
2,2 is rather special. In

fact this solution is part of the expression which in [16] was identified as the trace of the
energy–momentum tensor

(47)QΘ|2s+2,2t+2 = is(2t+3)e−(t+1)σσ1σ̄1F
1,1
2s+2,2t+2.
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The pre-factorσ1σ̄1 will, however, alter the cluster property. The leading order behaviour
reads now

(48)T ±λ
1,κ�2sF

Θ|2s,2t ∼ T ±λ
n+1−κ<2t,nF

Θ|2s,2t ∼ eλ(1−κ/2).

We observe that still in most cases the shifted expressions tend to zero, unlessκ = 1 for
which it tends to infinity as a consequence of the introduction of theσ1σ̄1. There is now also
the interesting caseκ = 2, for which theλ-dependence drops out completely. Considering
this case in more detail we find

(49)T ±λ
1,2 F

Θ|2s,2t ∼ FΘ|2,0FΘ|2s−2,2t



σ1(x2s+1, . . . , x2s+2t )

σ1(x3, . . . , x2s+2t )
,

σ̄1(x2s+1, . . . , x2s+2t )

σ̄1(x3, . . . , x2s+2t )
,

(50)T ±λ
n+1−κ,nF

Θ|2s,2t ∼ FΘ|2s,2t−2FΘ|0,2




σ1(x1, . . . , x2s)

σ1(x1, . . . , x2s+2t−2)
,

σ̄1(x1, . . . , x2s)

σ̄1(x1, . . . , x2s+2t−2)
.

Note that unlesss = 1 in (49) ort = 1 in (50) the form factors do not “purely” factorize
into known form factors, but in all cases a parity breaking factor emerges. We now turn to
the casesκ = 2s or κ = 2t for which we derive

(51)T ±λ
1,2sF

Θ|2s,2t ∼ T ±λ
n+1−2t,nF

Θ|2s,2t ∼ eλ(2−t−s).

We observe that once again in most cases these expressions tend to zero. However, we
also encounter several situations in which theλ-dependence drops out altogether. It may
happen whenevert = 2, s = 0 or s = 2, t = 0, which simply expresses the relativistic
invariance of the form factor. The other interesting situation occurs fort = 1, s = 1.
Choosing temporarily (in general we assumem− = m+) HΘ|0,2

2 = 2πm2−, m = m− =
m+e2G/π , we derive in this case

(52)T λ
1,2F

Θ|2,2
4 = F

Θ|2,0
2 F

Θ|0,2
2

2πm2 .

In general when shifting the first 2s or last 2t rapidities we find the following factorization

(53)T ±λ
1,2sF

Θ|2s,2t ∼ T ±λ
n+1−2t,nF

Θ|2s,2t ∼ FΘ|2s,0FΘ|0,2t .

This equation holds true when keeping in mind that the r.h.s. of this equation vanishes once
it involves a form factor with more than two particles. Note that only in these two cases the
form factors factorize “purely” into two form factors without the additional parity breaking
factors as in (49) and (50).

5. Identifying the operator content

Having solved Watson’s and the residue equations one has still little information about
the precise nature of the operator corresponding to a particular solution. There exist,
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Table 2
Conformal dimensions forO∆(Λ,λ) in the SU(3)2/U(1)

2-coset model

λ\Λ λ1 λ2 λ1 + λ2 2λ1 2λ2

Λ 1/10 1/10 1/10 0 0
Λ− α1 1/10 ∗ 1/10 1/2 ∗
Λ− α2 ∗ 1/10 1/10 ∗ 1/2
Λ− α1 − α2 1/10 1/10 3/5 1/2 1/2
Λ− 2α1 ∗ ∗ ∗ 0 ∗
Λ− 2α2 ∗ ∗ ∗ ∗ 0
Λ− 2α1 − α2 ∗ ∗ 1/10 1/2 ∗
Λ− α1 − 2α2 ∗ ∗ 1/10 ∗ 1/2
Λ− 2α1 − 2α2 ∗ ∗ 1/10 0 0

however, various non-perturbative (in the standard coupling constant sense) arguments
which provide this additional information and which we now wish to exploit for the
model at hand. Basically all these arguments rely on the assumption that the superselection
sectors of the underlying conformal field theory remain separated after a mass scale has
been introduced. We will therefore first have a brief look at the operator content of the
Gk/U(1)r -WZNW coset models and attempt thereafter to match them with the solutions
of the form factor consistency equations. For these theories the different conformal
dimensions in one model can be parameterized by two quantities [26]: a highest dominant
weightΛ of level smaller or equal tok and their corresponding lower weightsλ obtained
in the usual way by subtracting multiples of simple rootsαi fromΛ until the lowest weight
is reached

(54)∆(Λ,λ)= (Λ · (Λ+ 2ρ))

2(k+ h)
− (λ · λ)

2k
.

Hereh is the Coxeter number ofG andρ the Weyl vector, i.e., the sum over all fundamental
weights. Denoting the highest root ofG by ψ , the conformal dimension related to the
adjoint representation∆(ψ,0) is of special interest since it corresponds to the one of the
perturbing operator which leads to the massive HSG-models. Taking the length ofψ to
be 2 and recalling the well known fact that the height ofψ , that is ht(ψ), is the Coxeter
number minus one, such that(ψ · ρ)= ht (ψ)= h− 1, it follows thatO∆(ψ,0) is a unique
operator with conformal dimension∆(ψ,0)= h/(k + h). Note that uniqueness demands
in addition that we do not take the multiplicities of theλ-states into account. For SU(3)2
the expression (54) is easily computed and since we could not find the explicit values in
the literature we report them for reference in Table 2.

Turning now to the massive theory, a crude constraint which gives a first glimpse at
possible solutions to the form factor consistency equations is provided by the bound [14]

(55)
[
FO|µ1...µn
n (θ1, . . . , θn)

]
i
�∆O.

We introduced here limθi→∞ f (θ1, . . . , θn) =: const exp([f (θ1, . . . , θn)]iθi) as abbrevia-
tion and denote the conformal dimension of the operatorO in the ultraviolet conformal
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limit by ∆O . We use the notation[ ]± when we take the limit in the variablexi related to
the particle speciesµi = “±”, respectively. For the different solutions we constructed, we
report the asymptotic behaviour in Table 1. When we are in a position in which we already
anticipate the conformal dimensions the bound (55) will severely restrict the possible in-
clusion of factors likeσ1, σ̄1, σ

−
1 , σ

+
1 , which as we mentioned above may always be added

since they trivially satisfy the consistency equations.
More concrete and definite values for∆O are obtainable when we exploit the knowledge

about the underlying conformal field theory more deeply. Considering an operator which in
the conformal limit corresponds to a primary field we can of course compute the conformal
dimension by appealing to the ultraviolet limit of the two-point correlation function

(56)
〈
Oi (r)Oj (0)

〉= ∑
k

Cijkr
2∆k−2∆i−2∆j 〈Ok(0)〉 + · · · .

The three-point couplingsCijk are independent ofr. In particular when assuming that 0
is the smallest conformal dimension occurring in the model (which is the case for unitary
models), we have

(57)lim
r→0

〈
O(r)O(0)

〉 ∼ r−4∆O
for r �

(
C∆O∆O0

C
∆O∆O∆O′′ 〈O′′ 〉

)1/2∆O′′

.

Here O′′ is the operator with the second smallest dimension for which the vacuum
expectation value is non-vanishing. Using a Lorentz transformation to shift theO(r) to
the origin and expanding the correlation function in terms of form factors in the usual
fashion

〈
O(r)O′(0)

〉= ∞∑
n=1

∑
µ1...µn

∞∫
−∞

· · ·
∞∫

−∞

dθ1 · · ·dθn
n!(2π)n exp

(
−r

n∑
i=1

mµi coshθi

)

(58)× FO|µ1...µn
n (θ1, . . . , θn)

(
FO′|µ1...µn
n (θ1, . . . , θn)

)∗
,

we can compute the l.h.s. of (57) and extract∆O thereafter. The disadvantage to proceed
in this way is many-fold. First we need to compute the multidimensional integrals in (58)
for each value ofr, which means to produce a proper curve requires a lot of computational
(at present computer) time. Second we need already a relatively good guess for∆O. Third
for very smallr thenth term within the sum is proportional to (log(r))n such that we have
to include more and more terms in that region and fourth we need the precise values of
the lowest non-vanishing form factors, i.e., in general vacuum expectation values or one
particle form factors to compute the r.h.s. of (58). However, the lowest non-vanishing form
factor can be of an arbitrary particle number and one may still extract the value of∆O.

A short remark is also due concerning solutions related to different sets ofµ’s. The sum
over the particle types simplifies considerably when taking into account that form factors
corresponding to two sets, which differ only by a permutation, lead to the same contribution
in the sum. This follows simply by using one of Watson’s equations [6–9], which states
that when two particles are interchanged we will pick up the related two particle scattering
matrix as a factor. Noting that the scattering matrix is a phase, the expression remains
unchanged.
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5.1. ∆-sum rules

Most of the disadvantages, which emerge when using (57) to compute the conformal
dimensions, can be circumvented by formulating sum rules in which ther-dependence
has been eliminated. Such type of rule has for instance been formulated by Smirnov [21]
already more than a decade ago. However, the rule stated there is slightly cumbersome
in its evaluation and we will therefore resort to one found more recently by Delfino,
Simonetti and Cardy [15]. In close analogy to the spirit and derivation of the c-theorem
[25] these authors derived an expression for the difference between the ultraviolet and
infrared conformal dimension of a primary fieldO

(59)∆O
uv −∆O

ir = − 1

2〈O〉
∞∫

0

r
〈
Θ(r)O(0)

〉
dr.

Using the expansion of the correlation function in terms of form factors (58) we may carry
out ther-integration in (59) and obtain

∆O
uv −∆O

ir = − 1

2〈O〉
∞∑
n=1

∑
µ1...µn

∞∫
−∞

· · ·
∞∫

−∞

dθ1 · · ·dθn
n!(2π)n(∑n

i=1mµi coshθi
)2

(60)× FΘ|µ1...µn
n (θ1, . . . , θn)

(
FO|µ1...µn
n (θ1, . . . , θn)

)∗
.

Notice also that unlike in the evaluation of the c-theorem, which deals with a monotonically
increasing series, due to the fact that it only involves absolute values of form factors, the
series (59) can in principle be alternating. Before the concrete evaluation of the expression
(60) for the various solutions we constructed for the SU(3)2-HSG model, we should
pause for a while and appreciate the advantages of this formula in comparison with (57).
First of all, since ther-dependence has been integrated out we only have to evaluate
the multidimensional integrals once. Second the evaluation of (60) does not involve any
anticipation of the value of∆O . Third one is very often in the comfortable position that
despite the fact that the vacuum expectation value occurs explicitly in the sum rule, its
explicit form is not needed. Once it is non-vanishing, the next lowest non-vanishing form
factor may be normalized such that〈O〉 cancels from the whole expression. For a singular
vacuum expectation value the value of the remaining integral guarantees that the sum rule
maintains its form as for instance discussed in [27]. Finally and most important fourth, the
difficulty to identify the suitable region inr which is governed by the(logr)n behaviour
of thenth term in the sum in (58) and the upper bound in (56) has completely disappeared.

There are however little drawbacks for theories with internal symmetries and for the
case when the lowest non-vanishing form factor of the operator we are interested in is
not the vacuum expectation value. The first problem arises due to the fact that the sum
rule is only applicable for primary fieldsO whose two-point correlation function with the
energy–momentum tensor is non-vanishing. Since in our model then-particle form factors
related to the energy–momentum tensor are only non-vanishing for even particle numbers,
we may only use it for the operatorsO0,0

0,0, O0,1
0,2, O1,0

2,0 andO1,1
2,2, where the latter operator

is plagued be the second problem.
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We will now compute the sum rule for the operatorsO0,0
0,0,O0,1

0,2, O1,0
2,0 up to the 6-particle

contribution. We commence with the two particle contribution which is always evaluated
effortlessly. Noting that

(61)FΘ
2 (θ)= −2πim2 sinh(θ/2)

and the fact that∆O
ir is zero in a purely massive model, the two particle contribution

acquires a particular simple form

(62)
(
∆O)(2) = i

4π〈O〉
∞∫

−∞
dθ

tanhθ

coshθ

(
F
O|++
2 (2θ)

)∗
.

Using now the explicit expressions for the two-particle form factors (A.8), we immediately
find

(63)
(
∆
O0,0

0,0

)(2) =
(
∆
O0,1

0,2

)(2) =
(
∆
O1,0

2,0

)(2) = 1/8.

We recall, see also [16], that in the limitσ → ∞ we obtain two copies of the thermally
perturbed Ising model. This means that in the sum over the particle types in (60) there will
be no contributions from terms involving different types of particles. We only obtain two
equal contributions, namely 1/16 fromF

O|++
2 andFO|−−

2 , such that the operatorO0,0
0,0

plays the role of the disorder operator, as we expect.
To distinguish the operatorsO0,0

0,0, O0,1
0,2, O1,0

2,0 from each other we have to proceed to
higher particle contributions. At present there exist no analytical arguments for this and we
therefore resort to a brute force numerical computation.

Denoting by(∆O)(n) the contribution up to thenth particle form factor, our numerical
Monte Carlo integration4 yields

(64)
(
∆
O0,0

0,0

)(4) = 0.0987,
(
∆
O0,0

0,0

)(6) = 0.1004,

(65)
(
∆
O0,1

0,2

)(4) = 0.0880,
(
∆
O0,1

0,2

)(6) = 0.0895,

(66)
(
∆
O1,0

2,0

)(4) = 0.0880,
(
∆
O1,0

2,0

)(6) = 0.0895.

We shall be content with the precision reached at this point, but we will have a look at the
overall sign of the next contribution. From the explicit expressions of the 8-particle form
factors we see that forO0,0

0,0 the next contribution will reduce the value for∆. For the other
two operators we have several contributions with different signs, such that the overall value
is not clear a priori. In this light, we conclude that the operatorsO0,0

0,0,O0,1
0,2,O1,0

2,0 all possess
conformal dimension 1/10 in the ultraviolet limit. Unfortunately, the values for the latter
two operators do not allow such a clear cut deduction as for the first one. Nonetheless, we
base our statement on the knowledge of the operator content of the conformal field theory
and confirm them also by elaborating directly on (57) and (58).

4 We employed here the widely used numerical recipe routine VEGAS [28]. Typical standard deviations we
achieve correspond to the order of the last digit we quote.
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5.2. ∆ from correlation functions

First of all we do not presume anything about the conformal dimension of the operator
O and multiply its two-point correlation function (58) byrp with p being some arbitrary
power. Once this combination behaves as a constant in the vicinity ofr = 0 we take this
value as the first non-vanishing three-point coupling divided by the vacuum expectation
value ofO andp/4 as its conformal dimension. This means even without knowing the
vacuum expectation value we have a rational to fixp, but we can not determine the first
term in (56). Fig. 2(a) exhibits this analysis for the operatorO0,1

0,2 up to the 8-particle
contribution and we conclude from there that its conformal dimension is 1/10. For the
other operators the figures look qualitatively the same.

The results of the same type of analysis for the energy momentum tensor is depicted
in Fig. 2(b), from which we deduce the conformal dimension 3/5. Recalling that the
energy-momentum tensor is proportional [29] to the dimension of the perturbing field this
is precisely what we expected to find.

Furthermore, we observe that the relevant interval forr differs by two orders of
magnitude, which by taking the upper bound for the validity of (57) into account should
amount to

C 1
10

1
100C 3

5
3
5

1
10

/(
C 3

5
3
50C 1

10
1
10

1
10

) ∼O(10−2).

Since to our knowledge these quantities have not been computed from the conformal side,
this inequality can not be double checked at this stage.

In Fig. 3 we also exhibit the individualn-particle contributions. Excluding the two
particle contribution, these data also confirm the proportionality of thenth term to
(log(r))n.

We have carried out similar analysis for the other solutions we have constructed and
report our findings in Table 1. We observe that the combination of the vacuum expectation
value times the three-point coupling for these operators differ, which is the prerequisite for
unraveling the degeneracy.

6. Conclusions

With regard to the main conceptual question addressed in this paper, we draw the overall
conclusion that solutions of the form factor consistency equations can be identified with
operators in the underlying ultraviolet conformal field theory. In this sense one can give
meaning to the operator content of the integrable massive model. The quantity on which
the identification is based is the conformal dimension of the operator. Naturally this implies
that once the conformal field theory is degenerate in this quantity, as it is the case for the
model we investigated, the identification can not be carried out in a one-to-one fashion and
therefore the procedure has to be refined. In principle this would be possible by including
the knowledge of the three-point coupling of the conformal field theory and the vacuum
expectation value into the analysis. The former quantities are in principle accessible by
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Fig. 2. Rescaled correlation functionG0,1
0,2(R) :=

〈
O0,1

0,2(R)O
0,1
0,2(0)

〉
part (a) and(GΘ)

(8)(R) :=
〈Θ(R)Θ(0)〉 part (b) summed up to the eight particle contribution as a function ofR = rm.
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Fig. 3. Rescaled individualn-particle contributiong(n)(R) to the correlation function.

working out explicitly the conformal fusion structure, whereas the computation of the
latter still remains an open challenge. In fact what one would like to achieve ultimately
is the identification of the conformal fusion structure within the massive models.

It would be desirable to put further constraints on the solutions by means of other
arguments, that is exploiting the symmetries of the model, formulating quantum equations
of motion, possibly performing perturbation theory etc.

Technically we have confirmed that the sum rule (59) is clearly superior to the direct
analysis of the correlation function. It would therefore be highly desirable to develop
arguments which also apply for theories with internal symmetries and possibly to resolve
the mentioned degeneracies in the conformal dimensions.

It remains also an open question, whether the general solution procedure presented in
this manuscript can be generalized to the degree that the type of determinants presented
will serve as generic building blocks of form factors.

The specific conclusions for the SU(3)2-homogeneous sine-Gordon model are as
follows: we have provided a rigorous proof for the solutions of the form factor consistency
equations which were previously stated in [16]. In addition we found a huge number of
new solutions. By means of the sum rule and a direct analysis of the correlation functions
we identified the conformal dimension of these operators in the underlying conformal field
theory. Considering the total number of operators present in the conformal field theory
(see Table 2) one still expects to find additional solutions, in particular the identification
of the fields possessing conformal dimension 1/2 is outstanding. Nonetheless, concerning
the physical picture presented for this model one can surely claim that it rests now on quite
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firm ground. After the central charge of the conformal field theory had been reproduced
by means of the thermodynamic Bethe ansatz [18] and the c-theorem in the context of the
form factor program [16], we have now also identified the dimension of various operators.
In particular the dimension of the perturbing operator was identified to be 3/5.
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Appendix A

A.1. Elementary symmetric polynomials

In this appendix we assemble several properties of elementary symmetric polynomials
to which we wish to appeal from time to time. Most of them may be found either in [30]
or can be derived effortlessly. The elementary symmetric polynomials are defined as

(A.1)σk(x1, . . . , xn)=
∑

l1<···<lk
xl1 · · ·xlk .

They are generated by

(A.2)
n∏

k=1

(x + xk)=
n∑

k=0

xn−kσk(x1, . . . , xn),

and as a consequence may also be represented in terms of an integral representation

(A.3)σk(x1, . . . , xn)= 1

2πi

∮
|z|=;

dz

zn−k+1

n∏
k=1

(z+ xk),

which is convenient for various applications. Here; is an arbitrary positive real number.
With the help of (A.3) we easily derive the identity

(A.4)σk(−x, x, x1, . . . , xn)= σk(x1, . . . , xn)− x2σk−2(x1, . . . , xn),

which will be central for us. We will also require the asymptotic behaviours

(A.5)T λ
1,ησk(x1, . . . , xn)∼

{
eηλση(x1, . . . , xη)σk−η(xη+1, . . . , xn) for η < k,

ekλσk(x1, . . . , xη) for η� k,

and
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(A.6)T −λ
1,η σk(x1, . . . , xn)∼




σk(xη+1, . . . , xn)

for η� n− k,

σk+η−n(x1, . . . , xη)σn−η(xη+1, . . . , xn)

eλ(k+η−n)
for η > n− k

which may be obtained from (A.3) as well.

A.2. Explicit form factor formulae

Having constructed the general solutions in terms of the parameterization (3), it is simply
a matter of collecting all the factors to get explicit formulae. For the concrete computation
of the correlation function, it is convenient to have some of the evaluated expressions at
hand in form of hyperbolic functions.

A.2.1. One particle form factors

(A.7)F
O0,0

1,0|+
1 = F

O0,0
0,1|−

1 = F
O0,1

0,1|−
1 = F

O1,0
1,0|+

1 =H 1,0 =H 0,1.

A.2.2. Two particle form factors

(A.8)F
O|±±
2 = i〈O〉 tanh

θ

2
, for O =O0,0

0,0,O
0,1
0,2,O

1,0
2,0,

(A.9)F
O0,1

1,1|+−
2 =H 1,1eθ21/2F+−

min (θ), F
O1,0

1,1|+−
2 =H 1,1F+−

min (θ).

A.2.3. Three particle form factors

(A.10)F
O|±±±
3 = H 0,1∏

i<j F
µiµj
min (θij )∏

1�i<j�3 cosh(θij /2)
for O0,0

1,0,O
0,0
0,1,O

0,1
0,1,O

1,0
1,0.

A.2.4. Four particle form factors

(A.11)F
Θ|++−−
4 = −πm2

(
2+∑

i<j cosh(θij )
)

2 cosh(θ12/2)cosh(θ34/2)

∏
i<j

F̃
µiµj
min (θij ),

(A.12)F
O0,0

0,0|++−−
4 = −〈

O0,0
0,0

〉
cosh(θ13/2+ θ24/2)

2 cosh(θ12/2)cosh(θ34/2)

∏
i<j

F̃
µiµj
min (θij ).

A.2.5. Five particle form factors

(A.13)F
O|±±±±±
5 = H 0,1∏

i<j F
µiµj
min (θij )∏

1�i<j�5 cosh(θij /2)
for O0,0

1,0,O
0,0
0,1,O

1,0
1,0,O

0,1
0,1.

A.2.6. Six particle form factors

(A.14)F
Θ|++++−−
6 = πm2

(
3+∑

i<j cosh(θij )
)

4
∏

1�i<j�4 cosh(θij /2)

∏
i<j

F̃
µiµj
min (θij ),
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(A.15)F
O0,0

0,0|++++−−
6 =

〈
O0,0

0,0

〉(
(σ−

2 )
2 + σ+

4 + σ+
2 σ

−
2 /(σ

+
2 + σ−

2 )
)

16 cosh(θ56/2)
∏

1�i<j�4 cosh(θij /2)

∏
i<j

F
µiµj
min (θij ).

A.2.7. Seven particle form factors

(A.16)F
O|±±±±±±±
7 = H 0,1∏

i<j F
µiµj
min (θij )∏

1�i<j�7 cosh(θij /2)
for O0,0

1,0,O
0,0
0,1,O

1,0
1,0,O

0,1
0,1.

A.2.8. Eight particle form factors

(A.17)F
Θ|++−−−−−−
8 = −πm2

(
4+∑

i<j cosh(θij )
)
cosh(θ12/2)

8
∏

3�i<j�8 cosh(θij /2)

∏
i<j

F̃
µiµj
min (θij ),

F
Θ|++++−−−−
8

(A.18)

= πm2(σ−
4 )

1/2(σ−
1 σ

+
3 + σ+

1 σ
−
3 )

(
4+∑

i<j cosh(θij )
)

27(σ+
4 )

3/2
∏

1�i<j�4 cosh(θij /2)
∏

5�i<j�8 cosh(θij /2)

∏
i<j

F
µiµj
min (θij ),

(A.19)F
Θ|++++++−−
8 = −πm2

(
4+∑

i<j cosh(θij )
)
cosh(θ78/2)

8
∏

1�i<j�6 cosh(θij /2)

∏
i<j

F̃
µiµj
min (θij ).
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