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Abstract
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1. Introduction

More than fifty years ago, Heisenberg [ 1] pointed out the importance of studying ana-
lytic continuations of scattering amplitudes into the complex momentum plane. The first
concrete investigations in this direction were carried out by Jost [2] and Bargmann [ 3],
initially for non-relativistic scattering processes. The original ideas turned out to be very
fruitful and lead to interesting results on-shell, i.e. for the S-matrix [4], as well as
off-shell, that is for the two-particle form factors, see for instance Ref. [5].

Once one restricts ones attention to 1 -+ l-dimensional integrable theories, the n-
particle scattering matrix factories into two-particle S-matrices and the approach, now
usually referred to as the bootstrap program, reveals its full strength. On-shell, it leads
to the exact determination of the scattering matrix [6,7] (for reviews see also Refs. [9-
121). The results obtained in this way agree with the S-matrix obtained from the
extrapolation of semi-classical expressions for the sine-Gordon model [8]. The first
off-shell considerations were carried out about two decades ago by one of the authors
(M.K.) et al. [13,14], who introduced the concept of a generalized form factor and
formulated several consistency equations which are expected to be satisfied by these
objects. Thereafter this approach was mainly developed further and studied in the context
of several explicit models by Smirnov et al. [15-23]. Recently this program has seen
some revival in relation to models which arise as perturbations of certain conformal
field theories [24], particularly in the context of affine Toda theories [25] and closely
related models [26-48].

An entirely different method, the Bethe ansatz [49], was initially formulated in order
to solve the eigenvalue problem for certain integrable Hamiltonians. The approach has
found applications in the context of numerous models and has led to a detailed study
of various mass spectra and S-matrices (for reviews and an extensive list of references
see for instance Ref. [50]). The original techniques have been refined into several
directions, of which in particular the so-called “off-shell” Bethe ansatz, which was
originally formulated by one of the authors (H.B.) [51,52], will be exploited for our
purposes. This version of the Bethe ansatz paves the way to extend the approach to
the off-shell physics and opens up the intriguing possibility to merge the two methods
that is the form factor approach and the Bethe ansatz. The basis for this opportunity
lies in the observation [53-55] that the “off-shell” Bethe ansatz captures the vectorial
structure of Watson’s equations (see Section 2.2 properties (i) and (ii)). These are
matrix difference equations giving rise to a matrix Riemann-Hilbert problem which is
solved by an “off-shell” Bethe ansatz. Furthermore, there exist interesting speculations in
order to make contact with general concepts of algebraic quantum field theory [60,61].

Conceptionally. the on- and off-shell approaches are very similar. For the on-shell
situation one has certain constraints resulting from general physical and in particular
analytic properties (referred to as “maximal analyticity assumption”), which lead to a
sct of conditions which turned out to be so restrictive that they allow one to construct the
exact scattering matrix almost uniquely. This approach is adopted in order to determine
the key off-shell quantities, i.e. the form factors. In the present manuscript we provide a
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detailed derivation of the consistency equations solely based on the maximal analyticity
assumption and the validity of the LSZ formalism [57] (see also Ref. [58]). Form
factors are vector-valued functions, representing matrix elements of some local operator
O(x) at the origin between an in-state and the vacuum, which we denote by (see
Eq. (3.2) for more details)

Fg (((P/ “|‘17j)2 + ia)(lgkjgn)) = <0|O(0)|P1 s ,Pn>i:1”_,,” . (I])

Once all the n-particle form factors are known, one is in principle in a position to
compute all correlation functions. In particular the two-point function for a hermitian
operator O in real Euclidean space reads

46 R ”
(O(x) O(0)) Z/ 1'](477)" |F 0(01,... )‘exp(—er,coshH,-).

i=1

(1.2)

Here r denotes the radial distance r = \/x} 4+ x3 and 6 is the rapidity related to the
momentum via p; = m; sinh 8; (see Section 3.2 for more details). The explicit evaluation
of all integrals and sums remains an open challenge for almost all theories, except the
[sing model.® Important progress towards a solution of this problem has recently been
achieved in [59].

A commonly used procedure which will yield expressions which satisfy all of the
consistency requirements is constituted out of the following steps: First of all one has to
have solved the on-shell system, that is one requires expressions for the S-matrix. In the
next step one usually makes an ansatz for the form factors of a type already introduced
in [13], in which one extracts explicitly the expected singularity structure. The nature of
the ansatz guarantees by construction that the generalized Watson’s equations ( properties
(i) and (ii)) are satisfied once the scattering matrix is diagonal. For generically non-
diagonal scattering matrices one may invoke also the techniques of the “off-shell” Bethe
ansatz [53-55] in order to capture the vectorial structure of the form factors. The ansatz
only involves the rapidity differences, apart from a possible pre-factor, which takes the
spin of the local field O into account, and has therefore the desired behavior under
Lorentz transformations (see property (v) in Section 3.2). General solutions for the
so-called minimal form factors (the function which satisfies the functional (4.10)) are
always fairly easy to find. Once the scattering matrix is non-diagonal one has also to
encode the vectorial structure at this stage. What is then left is to determine a general
function which takes the complete singularity structure into account. For this purpose
one may now invoke properties (iii) and (iv) (Eqgs. (3.12) and (3.13) for the bosonic
case). which lead to a set of recursive equations. In principle these equations may now

¢ Of course one may also adopt a very practical point of view and resort to the well-known fact that the
series expansion of correlation functions in terms of form factors (1.2) converges very rapidly. Consequently
correlations functions may be approximated very often quite well by simply including the two-particle form
factor into the expansion. From that point of view the form factor program is completed. since the calculation
of the two-particle form factors is well understood.
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be solved step by step, once the first non-vanishing form factor for a particular operator
is properly fixed. However, only after a few steps the expressions become usually
algebraically very complex and reveal very little insight. Therefore, it is highly desirable
to search for structures of a more general nature, that is in particular to seek for closed
expressions for all n-particle form factors. Only such expressions may ultimately shed
more light on the analytic expressions for the correlation functions (1.2). Alternatively,
one may try to construct directly a representation for the creation operators of the
particles in the in-state in (1.1) [62-65]. Representing the local operator O in the same
space, one may in principle also compute the form factors.

In the present manuscript we provide a general expression (see Theorem 4.1) of
a different kind, which solves all the consistency requirements. It is very generic by
construction and, roughly speaking, captures the vectorial nature of the form factors by
means of “off-shell” Bethe ansatz states and the pole structure by particular contour
integrals. We exemplify this general expression for the form factors of the sine-Gordon
model involving an odd number of states, which was hitherto unknown. For the even
case similar expressions may be found in [ 17,18]. We present a detailed analysis of the
three-particle form factor.

Once solutions for the set of consistency equations are found, it is highly desirable
to verify the solutions with some alternative method. Several different methods have
been developed in recent years. Assuming that the theory under consideration results
from the perturbation of some conformal ficld theory, one may carry out the following
consistency checks. For instance one may take the operator in the form factor to be the
trace of the energy momentum tensor and exploit the so-called c-theorem [66] in order
to obtain a first indication about the result. This check is not extremely restrictive what
the higher n-particle form factors concerns. since the expected value for ¢ is usually
already saturated after the two-particle contribution. Alternatively one may also compare
with the perturbation theory around the conformal field theory, which is possible for
all operators of the model. The latter approach has turned out to be very fruitful [27].
A further consistency check consist out of the comparison between the exact result
obtained from the form factors with the predictions of the renormalization group (that
is asymptotic freedom, ete. [67,35]). In the present manuscript we present a check of
our solutions against conventional perturbation theory in standard quantum field theory.

The manuscript is organized as follows. In Section 2 we review the properties of the
general scattering matrix and in particular the sine-Gordon S-matrix. In Section 3 we
motivate the general properties of the generalized form factors, for simplicity initially
only for the bosonic case, which we thereafter extend to the general situation involving
also fermions. In Section 4 we briefly explain the “off-shell” Bethe ansatz and state
Theorem 4.1, the main result of the manuscript. We present a general formula’ (based
on the “off-shell” Bethe ansatz) for form factors with an odd number of solitons or anti-
solitons. Furthermore, we provide an explicit analysis of several two- and three-particle

7 Our formula is similar to an analogous one of Smirnov | 18] for even number of particles. This should be
a starting point for a comparison of both formulae.
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form factors and carry out various consistency checks relating different form factors to
each other. In Section 5 we compare our solution for a three-particle form factor against
perturbative perturbation theory. Our conclusions are stated in Section 6. In Appendix A
we provide the proofs of the properties of the generalized form factors. In Appendix B
we proof Theorem 4.1 and Appendix C serves as a depot for several useful formulae
employed in the working.

2. The S-matrix
2.1. General properties

In this section we briefly review some of the well-known facts on the general prop-
erties of the scattering matrices. The Fock space is spanned by the in- or out-states of
the particles

|p]“”’p”/1{i1| fout _ m/ouh(P ). |n/an(p”) !()>, (21)

Ly,
where the a'’s are creation operators. The p’s denote the momenta and the a’s the
internal quantum numbers of the particles, such as the particle type, etc. We choose the

normalization

(PP e =Owa 202w S(p ~ p) =84adm (0 —0) . (2.2)

a’\

where the rapidity € is related to the momentum by p = msinhé and w = /m* + p?.

In an integrable quantum field theory in 1+ 1 dimensions there exists an infinite sct of
conservation laws. Therefore in a scattering process the sets of incoming and outgoing
momenta are cqual,

P, Pt = {]71""*!7;!’}'
The n-particle S-matrix is defined by

\ out

i AN _ (H)Iu @y
ip"""p”,):i]..rv,, - ‘P]"' p"r(( S 31 (l,,([’l""’pl’)

OU[

|[7N\ e PGt (U(”)S(”, )“,]’ @y, (]71s ce ~I7n)-

i

The statistics of the particles has been taken into account by the diagonal matrix o™, It
is a product of all two-particle matrices o with entries —1 if both particles are fermions
and +1 otherwise (sec Ref. [68]). As a consequence of integrability, i.e. the existence
of an infinite number of conserved guantities, the n-particle S-matrix factorizes into
n(n - 1)/2 two-particle ones

U(""S(”)(pl- N = H(TSQ}(/JHPJ)

where the product on the right-hand side has to be taken in a specific order (see e.g.
Ref. [7]). For this reason it 1s sufficient to investigate the properties of the two-particle
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Fig. 1. The analyticity domains in the complex planes of («) the Mandelstam variable s;; = (p; + 17,)3 and
(h) the rapidity difference variable @ = |#; — #:|. The physical regimes in the s- and r-channels are denoted
by I and II. respectively. The crossing transition from the s- to the t-channel is indicated by the arrow. As
explained in the main text, the interchange of in and out means transition from [ to III for the s-channel,
and [1 to 1V for the t-channel. The dots denote the possible positions of poles corresponding to one particle
intermediate states.

scattering matrix. As is usual in integrable quantum field theories in 1 + 1 dimensions
it is most convenient to regard the two-particle S-matrix as a function of the rapidity
differences 6 = |#; — 6;| rather than as a function of the Mandelstam variables s;; =
(p; + p;)* In order to establish the analytic properties of the two-particle S-matrix one
may employ the relations s;; = m?4-m? +2m;m; cosh 6;;, t;; = (pi—p;)* = 2m} +-2m} 5.
Considering the scattering matrix as a function in the complex s;;-plane, there will be
two branch cuts present, the s-channel one for s;; > (m,-+m_,-)2 and the 7-channel one for
s;; < (m; —m;)*. In Fig. 1 the physical s-channel and r-channel regions in the complex
(a) s- and (b) O-planes are labeled by I and II. respectively. The crossing transition is
depicted by an arrow. This and the transitions corresponding to the exchange of in- and
oul-going waves are given by

I—1I: 8ij + (€ tij — i€ <30 i — 8 N
I II: Si; + i€ Sij i€ &> 8 — -8,
Il < VI: iy — i€« tj;j + i€ <> i — 0 — im + 0.

(It will be important in the following to notice that the f-channel cut (II-IV) is not
present for form factors as a function defined in the complex s;;-plane.)

Let V be a finite-dimensional vector space, whose basis vectors label all types of
particles of the model. Then one considers the S-matrix as an intertwining operator
acting on the tensor product of two of these spaces

S(0) ViV, V&V,

The unitarity of the S-matrix reads

SO (85 () 557 (0) = 8unabprg or Su(—6) Sn(6) = | (2.3)
a' B

since by analytic continuation from positive to negative variable one has Sk({)) =
S21(—8). The crossing relations are
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8 B, . ad s
Son(8) = SP(im — 0) = Sg (i - 0) , (2.4)

where the bar refers to the anti-particles. The Yang-Baxter equation which follows from
the higher conservation laws is

(oS$) 120|012 (8) 13(]6013]) (08) 23(|023])
= (08)23(102]) (08) 3(|013]) (78)12(1612]) . (2.5)

where 6;; = 6, — #;. When there are no transitions of the sort that two bosons change
into two fermions, the signs given by the statistics cancel.

As usual we use here and in the following the notation for a vector with components
e and a matrix with clements Aff};j;’fg acting on these vector

l‘I'”” eVin= Vl @, 8 Vn s Al - V]...n - VI N (26)

where all vector spaces V, are isomorphic to V and whose basis vectors label all kinds
ol particles. An S-matrix as §;; acts non-trivial only on the factors V; & V; and in
addition exchanges these factors. If we want to express the fact that a particle belongs
to a multiplet of a specific type of particles, we also write v“ € Vo, 0" €V, ete., and
consider V = €D, V., as the direct sum of all these spaces. Usually these spaces V, are
the representation spaces of a symmetry group or quantum group of the model.

The physical S-matrix in the formulas above is given for positive values of the
rapidity parameter @. For later convenience we will also consider an auxiliary matrix §
regarded as a function depending on the individual rapidities of both particles #,, #, or
O =0 — 6,

(a8)12(|67 — 82|y for 8) > 6>

2.7
(SU‘);]](W] — 1) for & < 6> ( )

S12(61.02) = S12(6) — ) = {
with o taking into account the statistics of the particles. Up to these statistical factors, S
is obviously the analytic extension of the physical S-matrix S from positive to negative
values of f#, due to the unitarity (2.3).

It appears convenient to introduce a graphical representation for several of the ampli-
tudes, which will allow us to develop a more direct graphical intuition for the derivation
of several relations. The auxiliary matrix $ may be depicted as

/

9./’ 9,

Here and in the following we associate a rapidity variable 8; € C to cach space V,
which is graphically represented by a line labeled by €; or simply by i. In terms of the
components of the S-matrix we have

o Y

N e
. NP4
$2(01.6:) = 0 N\
ap Ve ] 2
a \,B.

$12(01,6>) =
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In terms of the auxiliary S-matrix the Yang-Baxter equation has the general form
$12(812) $13(613) $23(623) = $23(623) S13(613) S12(612)

which graphically simply reads

AN
= >< (2.8)
I / 2 3

Unitarity and crossing may be written and depicted as
N

. ) N =
$31(001)S12(612) =1 §

N
12 12
C' 8,8, — (6, —im) C'L

S]g(gl - 92) = C22 Sil(gz +l77' - 9|}C§z

A\

X - XA

| 2 2 12

H
i

where C'" and C,; are charge conjugation operators with components C*# = C,5 = ap.
We have introduced the graphical rule, that a line changing the “time direction” also
interchanges particles and antiparticles and changes the rapidity as ¢ — 6 + im, as
follows:

-

™
(:(,B = 5(!B = ¢ ( l_() - i7T, Cn/j - 5(1[3 =6
a B N

a B
|6 + inr. (2.9)
J

Similar crossing relations will be used below to investigate the properties of form factors.

2.2. Bound states

Let the two particles labeled by | and 2 of mass m; and ma, respectively form a
bound state labeled by (12) of mass m2,. If the mass of the bound state is

M2y = \/nﬁ -+ m% + 2mma cosh f):é:) (Re 0;52) =0, 0<Im ng) < 77)

the corresponding eigenvalue of the S-matrix S,(#) will have a pole at § = ();;2)

that

such

~ R(' ~ 123
S(8) ~ —=— forg — o, (2.10)
6 — 0% .
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giving rise to a residue R,. The eigenvalues are given by the diagonalization of the
S-matrix

$12(0) =Y ¢l S.(0) ¢, (2.11)

where the projections onto the eigenspaces are given by the intertwiners (Clebsch-
Gordan coefficients) ¢f, with

Z e et L el =0

Formula (2.10) may also be written as

Res Si2(6) = ¢f1) Ruzye)y” (2.12)
H-(l b

where a matrix product with respect to the space of bound states V2, is assumed.

Remark: In general an eigenvalue of § may have several poles corresponding to bound
states of different masses. On the other hand, several eigenvalues may have poles at
the same point, which means that there are several types of bound states (12) of the
particles 1 and 2 with the same mass. The space of the bound states V2, is then a
direct sum of spaces belonging to these types of particles.

The corresponding fields are related by a normal-product relation like

Wi (x) = N[V () e, .

The bound state S-matrix which describes the scattering of a bound state with another
particle is given by [68]

St12)3(0¢1213) = \/mwféz)sm(gn)323(923)903%;;;,/\/ Rz ’0 pog (2.13)
where the rapidity 812, 1s fixed by p; — p2 = p(12,. Here and below we use the phase
convention that \/R, = ix/—R, if R, < 0.

In integrable quantum field theories there exist different types of bound state spectra
which may be characterized by the absence or presence of solitons or kinks. Of course,
in quantum field theory the bootstrap picture means that all particles are to be considered
on the same footing. The names ‘solitons’, ‘kinks’ and ‘breathers’ are motivated by the
classical non-linear equations associated with the quantum model. These equations may
possess soliton or kink solutions, i.e localized non-singular solutions with a localized
energy density. Special solutions consisting of a soliton and an antisoliton are called
“breathers’ because of their oscillatory behavior. In the quantum case we call a particle a
soliton if it is a bound state of itself’ and another particle. Similarly (and more gencral),
we call a particle a kink if it is a bound state of a particle with the same mass and
another particle. The mass spectra of integrable quantum field theortes characterized by
the absence or presence of solitons are given as follows:

(1) There are particles labeled by a with mass |7,69]
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sin Zwa
My = M| —=—

——, a=12,...<2/n
Sin S v

This means that two particles of mass m, and my;, form a bound state of mass
Me=q-p. The corresponding poles of the two-particle S-matrix element and the
rapidities in the bound state formula (2.13) are given by

¢ = lgl/(a L), B=6 ¢ igub, By =0, i—gva.

The chiral SU(N)-Gross-Neveu model [72], the Z(N) invariant Ising mod-
els [73] or the SU(N)-affine Toda field theories are examples for the above
spectrum with ¥ = 2/N. In general the mass spectrum is more involved, for in-
stance for affine Toda field theories (with real coupling constant) related to simply
laced algebras the masses constitute the entries of the Perron-Frobenius eigenvec-
tor of the Cartan matrix [70,71] and for theories related to non-simply laced
algebras they do not even renormalize uniformly [74].

(i) If there exist kinks (solitons) of mass M labeled by A then there are three types
of bound states:
(a) Particles (breathers) labeled by « are kink-antikink bound states with

m, = 2M sin —7251/(1. a=1,2,...< /v (2.14)

Here the corresponding poles of the kink-antikink S-matrix and the rapidities
in the bound state formula (2.13) are given by

Oyp = im(l —av), 4 =00+ 3645, O = 0.~ 364

(b) The kink B may be considered as a bound state of a particle ¢ and a kink A
such that the pole of the (a-A)-5-matrix and the rapidities in the bound state
formula (2.13) are

08 =" (lhav).  B,=0p+ 2 (1 —av).  04=0s — imav.

(c¢) In addition, as in (i), two particles of mass m, and m; form a bound state of
mass M= +p, however, here a < 1/v.
Examples for the latter case are the sine-Gordon (SU(2)-affine Toda theory) alias the
massive Thirring model with v = 8%/(87 — %) = /(7 + 2g) and the O(2N)-Gross—
Neveu model with » = I /{ N —1). Also in this case the mass spectrum is in general more
complicated, for example all affine Toda ficld theorics with purely imaginary coupling
fall into this category |75].
The bound state formulae above may be depicted as follows: For 81, =8, -, = Hfzm
with Im 81> > 0 we introduce

(H}l 2) 2 k I
1 2

T (12 2 Ve s /
v Ruo ¢§2 ' = ) ((T‘P)F}Z)\/ Ragy = T
(12)
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(12)

1 Jz
1/+/R 12)(400)(' RS N s G"gz)/vk(lz): kr
(12)

2l

Then we have the relations

e e 1
e lf 2

where formally we have put R, /R, = I even if R, = 0 in case that e does not correspond
to a bound state. The sum in the last formula is over all eigenspaces V, C V; @ V5 of the
S-matrix. If we would sum only over those e = (12) which correspond to bound states,
we would get the projector onto the subspace of bound states in ¥ © V5. Moreover
formula (2.12) is depicted as

3]

- 21 1

Res. \< = (12)
ne=0” /N N

o2

The bound state formula (2.13) may be depicted as

/

('2)>< (12)/¥\3

It implies relations of two-particle S-matrices [69] called ‘pentagon equations’ (also
referred to as bootstrap equations) like

S(”H vV R“’) 4012 \V Rz §0|'v 911S7}

2.3. The sine-Gordon model S-matrix

The sine-Gordon model alias the massive Thirring model is defined by the Lagrangians

£59 = 1(8,)° + =5 (cos B — 1),

B2

L™ = (iyd — My — SgCiy ),
respectively.

The Fermi field ¢ correspond to the soliton and antisoliton and the Bose field ¢ to

the lowest ‘breather’ which is the Jowest soliton-antisoliton bound state. The precise
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relation between the related coupling constants was found by Coleman [76] within the
framework of perturbation theory

_ B 7
8T -8 w2’

’

where the parameter » is introduced for later convenience. The two-particle S-matrix is

S(0,v) = a , (2.15)
S.\'/J

SI)I)

where the soliton-soliton amplitude «(#) and the soliton-antisoliton forward and back-
ward amplitudes () and ¢(8)

are given by [8]

ne) = —.Ma(ﬂ). c(8) =~ Smh%a(()).
sinh(im — @) /v ' sinh(imr — 8) /v
a(f) = exp /‘ﬁﬂ______hlmhl%(l plli Sinh[ﬁ‘- e
/ f sinh sp1cosh 51 i

These amplitudes fulfill “crossing”

alim—0) = by, clim—6) =c(8) (2.17)
and unitarity

a(—-0)a(f) =1, b(—)Db(O) +c(—8)e(h) = 1. (2.18)
The intertwiners ¢, of Section 2.1 are given by the non-vanishing components

do=elk=1.  eE=1/V2, ei=x1/V2 (2.19)
and the corresponding S-matrix eigenvalues are

So=8=a. Sy=b+tec. (2.20)

The amplitudes Sy = S5 have no poles corresponding to bound states. The amplitudes
S4(#) have poles at 8 = imr(1 — kv) for even/odd k < 1/v corresponding to the kth
breather as soliton-antisoliton bound states.
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As examples of soliton-breather and breather-breather amplitudes those for the lowest
breather are [ 7]

sinh @ + isini7(1 + v) dt cosh Lvt 0
Sp(8) = = 1 = —exp ———=4— sinhr—,

sinh@ — isinz7(1 + v) . T " cosh ! 5t r

2 0
| 7 h(l -

inh® + isin ]t €08 — V) ¢ ‘
Spp(0) = oD TINATE pr/ Aty ONG = Gon e L (2.21)

sinh @ — isin7y t cosh 5t i

i}
The S-matrix element Sy, has been discussed before in [77]. The pole of S, (8) at
& =i (1 4+ »)/2 belongs to the soliton as a soliton-breather bound state and the pole
of Spp(8) at @ = imrv to the second breather by as a breather—breather bound state. The
intertwiners ¢, of Section 2.1 are given by the non-vanishing components

o=@ =en =1 (2.22)

The formulae involving higher breather may be found in [7], e.g.

Tt _coshluisiohivke g _
S (0) = (-t exp [ —2 7 sinht— (2.23)
t cosh zzsinh sv¢ T
0 - -
for k < [
X
dt cosh Lytsinh Lvkrcoshi(1l —elyr 0
Spn (8) = / — = RO 2 — sinh 1 — (2.24)
t cosh 5t sinh vt T
and
T dt _cosh lyesinh ! (2kp — Dykr £ sinh L(1 — »)r
S[J(/)A(e)"“' > /(_2 2 2( ] N ] 2( S]nhff-
cosh 5¢sinh spt i
(2.25)

3. Properties of generalized form factors

We investigate the properties of generalized form factors, in particular for integrable
quantum field theories in 1+ 1 dimensions. Some formulae, originally proposed in [ 13],
are recalled and the physical arguments on how to derive them are provided in Ap-
pendix A. All arguments are solely based on the validity LSZ reduction formalism [57]
(see also Ref. [58]) and the additional assumption of “maximal analyticity” which
means, roughly speaking, that the S-matrix and the form factors are analytic functions
everywhere except at those points where they posses singularities due to physical in-
termediate states. In other words the entire pole structure is of physical origin and
in the following we investigate it employing the arguments of [ 13.14,69] (sce also
Refs. [17,18.28]).
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3.1. Form factors in momentum space and rapidity space

For simplicity we first consider the case of bosonic charged particles. The extension to
the general situation will be provided below. The corresponding Fock space is spanned
by the in- or out-states of particles and anti-particles given by (2.1) and (2.2). In
addition to the notation of vectors and matrices of (2.6) we denote co-vectors by

Ul € V:__,, (3])

with components vy = Ug...q,-
Let now O(x) be a local scalar operator, the generalized form factors are defined as
the co-vector-valued functions given by

(01O [prseevspa >i(?1..,m = et Ff((s,‘, + if)(lgiqgn)) . (3.2)

where a = {ay,....@,} and where s;; = (p; + p;)° is one of the Mandelstam variables,
as in the previous section. There may also be anti-particles in the state. As is well
known, these functions are boundary values of analytic functions as indicated by the
e-prescription. We assume that the domain of analyticity is much larger than could be
proven by means of general principles. Similar as for the scattering matrix we assume in
addition at this point “maximal analyticity” meaning that there should be no redundant
poles, but all singularities should be of physical origin as particle states, eic. Since the
x-dependence of the form factors is trivial, in the sense that we may always carry out
a translation as in Eq. (3.2), we consider in the following the operator always at the
origin, i.e. O = O(0).

Under the assumption that F is an analytic function, an interchange in Eq. (3.2) of
the in and out states leads to the replacement of s+ ie by s —ie. This means in particular
that

{0 | (@) “71 [ >2\1nm = Ff ((‘S'ij - ff)('\<1<_,<;1))» (3.3)

The crossing property for the connected part of the matrix element yields

out

vin conn. O . - .
v AP P O Pt a0 = Fo (sij +ie 1 — i€, sy + f€)
(3.4)

where | <i<j<m I<r<m<s<n m<k<l<nandt,=(p —ps)?is
another Mandelstam variable. See Appendix A for a proper derivation of this claim.

The most basic properties of the form factors are usually referred to as Watson’s
equations [78], which have been already known in the fifties. It is instructive at this
point to discuss them first for the case n = 2. Using the completeness of the out-states
we have

Fovas (512 i€) = (0[O pr.pa )i, = Y _(0]Ofout)(out| pr.p2) . (3.5)

out
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o
>
C )
T T

Fig. 2. A singular contribution to the n-particle form factor diagram corresponding to a sub-channel. The
dashed lines belong to off-shell lines.

For 4m® < 15 < ‘lowest inelastic threshold’, only the two-particle S-matrix contributes,

(512~ i€) Suial (512) (3.6)

(D § . o
['(Y‘{yw(‘slz +1€) = F ; 4

[24 (k?
and analogously starting with ,,{p; [ O| p2 }a, in (3.5) we obtain
Fiw (112 = i€) = FSo (113 +ie) (3.7)

where the fact has been used that the one-particle S-matrix is always trivial. In integrable
theories there are no inelastic transitions, therefore Eq. (3.6) holds for all s > 4m2. The
generalized Watson’s equations for 1 < m < n read (see Ref. [13])

Fi (8ij + i€, t,g — i€, sy + i€) = ‘81:{“ s Iﬁ?(‘\,‘j — 1€, 1,y ~ I€, 8 — i€)
P
!!'” .(Ym -, ..
XSy 1 e (S12). (3.8)

For a diagonal S-matrix these equations have been discussed before in [79].

The generalized form factors also contain singularities [ 13,14,9] which are determined
by the one-particle states in all sub-channels (ais...,a)) C(ag,. .., a,) (see Fig. 2).
Poles occur if the square of the total momentum in the sub-channel equals the one-
particle mass squared. In particular there are poles, i for instance particle | is the
anti-particle of particle 2 and particle 1 is crossed to the out-state together with p; —
pi. which means (py + py — p;)? — m3. Alternatively, if particle 3 is a bound state of
particle 1 and 2, in which case (py ~ p)? — m3. The residues of the form factors at
these poles are related (o form factors with fewer legs, as indicated in Fig. 2. We will
discuss these facts later in detail.

Similarly as for the S-matrix we may also write the form factors (3.4) as co-vector-
valued analytic functions of the rapidity differences 0 =6, — 8;

e . . . e .
Fo (sij i€ty — i€, sy + i€) = Fo U181, i — 16,

Oul) s
FY (ij — i€ty + i€, sy — i€) = F (=105 i + 16, ~10u]) .
The domains of analyticity and the physical regimes in the complex planes of the Man-

delstam variables and the rapidity difference variables are depicted in Fig. 1. However,
now the branch cut between region II and 1V is absent (cf. Egs. (3.7) and (3.8)).



550 H. Babujian et al./Nuclear Physics B 538 [FS] (1999) 535-586

(a) (h)

Fig. 3. The physical regimes in the complex planes of the rapidity variables (a) ¢; and (b) #; for 6; > 6; > f;
(k=1.....n). Again the crossing transitions (see Appendix B) are indicated by the arrows.

3.2. The auxiliary form factor function

Furthermore, it is convenient to introduce a new co-vector-valued auxiliary function

©(#) which is considered as an analytic function of the individual rapidities of the

pz;rliclcs, instead of analytic functions of all rapidity difterences (see also Ref. [17]).
It coincides with the generalized form factor for a particular order of the rapidities

fE B0, = F(10,1) = (0| O pr.....py)a, for 6 >...>86,. (3.9

For all other arrangements of the rapidities the functions f(8) are given by analytic
continuation. The domains of analyticity, the physical regimgs and the transitions to the
crossed regions in the complex planes of 8; and 6; for 6; > 8; are depicted in Fig. 3.

Now we formulate the main properties of generalized form factors in terms of the
under the assumptions of “maximal analyticity”.

auxiliary functions f°

Properties: The co-vector-valued auxiliary function £ (8) is meromorphic in all vari-
ables #;,....6, and

(i) fulfills the symmetry property under the permutation of both, the variables 6;, 6,
and the spaces i, j at the same time

SO G800 = [ (0,0, 50— 0)) (3.10)

for all possible arrangements of the 6’s,
(i1) fulfills the periodicity property under the cyclic permutation of the rapidity vari-
ables and spaces

i Io ”(6), H'_’! et (}I's ) = fg nl ((}3, ] Ons 01 2771) s (’%] ])
(1it) and has poles determined by one-particle states in each sub-channel (see Fig. 2).

In particular the function f€(#) has a pole at 8, = iz such that

Res f1 (01,0, =2Cr 10, (65,0, (1 - Sz,,...Sg}) . (3.12)

- a=im

where C; is the charge conjugation matrix with matrix elements Cpor = Sap.
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(iv) If there are also bound states in the model the function fé’(ﬁ) has additional

poles. If for instance the particles 1 and 2 form a bound state (12), there is a pole
at f); = 9,(;2) such that

Regﬂ fg'_'”(91,02, e ,0,,) <p};'2) = ff)JZ)..,n(g(‘z)’ N ,0,,) \lziR(]g) N

f12=6'1

(3.13)

where the quantities ¢!%,,, R(12, and the values of 8;, @, 12 and 0(§2’ were
4q P12 ) 12) 12
discussed in Section 2.2.

The properties (i)—-{iv) may be depicted as

| e ) L)
(1) L /o= )
/\
et 7 I —
(i) Y e ' Lo \D
e
e . . e - \
o (" N (| )
(iii) 5 HRSIs_ ! J= A f WJ - ~— /,
TTTT AT AT

( ! © ’ 4 fO ‘ )

N i

. 1
(iv) —= Res - =\ Y
V2i o= . T

Both properties (i1) and (1ii) are consequences of the general crossing formulae

U 1O prycopniy
n
= Z T<p] 'pl >/ flofn SZ/ s Si“l,i + C” flt:?),n(al Admo )
P

n
= Z iprlpi) f?,,;,,,,, Sin - Sit + IS (B —im ) C' L (3004)

=2

variable ; arc missing. In terms of the components, {{ pi | p;); means 8,4, 47 6(6; —

f;) and 5'" means Ou, &, - These are cquations for distributions where on the right-hand
side the second terms are understood as boundary values of analytic functions with
m_ = — €. The crossing formulae may be depicted as
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//’ ~ \‘ n \ I"’ .f(:) : I /""—ﬁ‘
AR EEDY L ( + 0 )
T = ~ \\v/',TTT._T/

3]
%3
o

where we have again used the graphical rule (2.9), which states that a line changing the

“time direction” also interchanges particles and anti-particles and changes 6 — 6 + i7r.

Taking the analytic part of the crossing relation one obtains property (ii) and considering

in addition the part with point like support one gets property (iii). The proofs of the

properties (i)-(iv) and Eq. (3.14) are provided in Appendix A.

(v) Naturally, since we are dealing with relativistic quantum field theories we finally
have

OO fu Gy u) = e rC (0., 0,) (3.15)

if’ the local operator transforms under Lorentz transformations as O — e£"(©
where s is the “spin” of O.

3.3. The general bosonic and fermionic case

For the general case where the states involve also fermions and where O (x) is a local
bosonic or fermionic operator with arbitrary spin we write the matrix elements of O(0)

01O prspuli = > Bp) - 0 ulppt' . pl GO (s, + e,
!
(3.16)

where the /" are matrices in spinor space. For the invariant form factor functions G©,

the Watson’s equations look quite analogously to those in the bosonic case. However,
sometimes it is more convenient to consider the full matrix elements and then we
must take into account sign factors due to the fermions. Analogously to Eq. (3.9) we
introduce the co-vector-valued auxiliary function f© which determines the form factors
for a specific order of the rapidities. For the general case the three main properties of
the co-vector-valued function f© may be written as
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l(?jj,_,n(gl, e ,0,‘,9j, e ,0,,)

(i) =f,‘?,.j,m,,(a,,.,.,0,,6;,...,0,,)3,-.,-

(i) =[5 (02, .0,.0) - 2im) oo (3.17)
2i o .

(111) ~ mclz f},.n(03’~<~.~0n)(1 ‘52"--~323)

The bound state formula (iv) is in general true for the invariant part of the form factors.
For the case of fermions, spinors have to be taken into account (see the examples
below). In the formulae (3.17) the statistics of the operator O is taken into account
by oo1 = ~1 if both O and particle | are fermionic and ooy = | otherwise. The
statistics of the particles is taken into account by S which means that $12 = ~ S8y, if both
particles are fermions and S, = Si2 otherwise. Again, both properties (ii) and (1i1)
are consequences of the crossing formulae, which, for the general case of bosons or
fermions, reads

f<pl IO “72“--’]7”)%2[?‘_”

=00 Z Kpiips) fzol 2S5 S+ CFG (O w6y

J=2
n B
=S " ipilp 195 0SS+ 00— i) CT (318)
j=2

replacing Eq. (3.14). The proof of these relations are also given in Appendix A.

The appearance of $ is natural in the context of factorizing S-matrices. See for example
the general Yang-Baxter relation (2.5) which is essential if transitions as fermion -
anti-fermion — boson + anti-boson are possible.

4. Solution for the sine-Gordon alias massive Thirring model

We will now provide a constructive and systematic way of how to solve the properties
(i)~(v) for the co-vector-valued function f once the scattering matrix is given. To
capture the vectorial structure of the form factors we will employ the techniques of the
“off-shell” Bethe ansatz [51,52] which we now explain briefly,

4.1. The general formula

As usual in the context of algebraic Bethe ansatz we define the monodromy matrix

T1.n0(8,60) = S10(8, — o) S (6 — 6y) S (0, — 6p) = ‘ ’

IERE

(4.1)
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as a matrix acting in the tensor product of the “quantum space”™ V| , =V, & ... &V,

and the “auxiliary space” V; (all V; = C* = soliton-antisoliton space). The Yang-Baxter
algebra relations yield

Tl...n‘u (Qs Hu)T] .../ul)(Qs 9/)) Su/)( yu ()lw) = Suh(()n - H/)) TI ..n.l)(Q’ 0!)) TIA JL(!(Q* 011 ).
(4.2)

which in turn implies the basic algebraic properties of the sub-matrices A, B, C, D with
respect to the auxiliary space defined by

| o |

Lo [ Aa(88) B (8.0 [ T IR

@0 = (2G50 b o) = -
(4.3)

A Bethe ansatz co-vector in V| is defined by
(/'II,,,H(Q~ My, oo, Uy ) = !)1.. HCI. .n(ff~ Hy) ... CL.,H(Qv “m) \
'3
o i

( 1z Y : : (4.4)

\ ! J
l{)| r o ()n [)l ()” Uy,

where {2y, is the “pseudo-vacuum™ co-vector consisting only of particles of highest
weight. When the monodromy matrix involves only the scattering matrix of soliton
antisolitons it is given as

O =T 5] (4.5)

consisting only of solitons and fulfilling

‘()],.IIBIN./I(Q‘ “) = ()~

n
2y . A, (8) = Ha(ﬁr — ) ,,
i=] (4.6)

"
DDy 80 = []bo —won .

=1
Here the eigenvalues of the matrices A and D, i.e. & and b are related to the amplitudes
of the scattering matrix (refer (2.16) via ¢ = —a and b= —b.
In the conventional Bethe ansatz [50], one is usually concerned with the computation
of the eigenvalues of the transfer matrix

Tioa(B. 1)y =4, ,(8,u)+ Dy, (0,u) (4.7)

on a Bethe wave vector. Applying the transfer matrix to the co-vector (4.4) one obtains
in general an equation of the form
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Proa(Buy ity Ty (Bou) = ACuluy, o |8) (G, ty)

m

7 i \
- E ApCy, oo |8y (Bl oty (4.8)
i=1

where A(ulity, ... |8) and A, (ity, ... uy]@) are some complex-valued tunctions. The co-
vectors 1//,’ __”(Q]m ooy, My Mgy, oL Hy) are not proportional to the Bethe ansatz
vectors ¢y, (8,1, ... u,). Hence in general, that is for an arbitrary set of the spec-
tral parameter, the Bethe ansatz vector is not an eigenvector of the transfer matrix.
To achieve this one usually imposes the validity of the Bethe ansatz equations, i.c.
(g, ooowy|@y =0 (= 1,....m) such that the so-called “unwanted terms™ vanish
and one obtains a genuine eigenvalue equation for the transfer matrix with eigenvalue
Aluluy, ... |@). In analogy to the one particle situation onc may refer to such Bethe
vectors as being “on-shell™ in contrast o the generic situation (4.8) which is referred
to as “off-shell” {51.52]. In order to construct solutions to the properties (1)-(v) we
shall employ the Bethe vector (4.4) in its “off-shell” version,
Let us now consider the auxiliary form factor function given by

1000, 0, = (0[O pr,.opyi . for 6> >0, (4.9)

where the indices a refer Lo solitons and antisolitons.

Theorem 4.1. The co-vector-valued function ‘f',‘/‘)_”(Q) fulfills the conditions (1), (ii)
and (iii) of Section 3 (sec Eqgs. (3.10)-(3.12)) if it is represented by the following
generalized Bethe ansatz [55]:

. PH(Q) = /V’L’Q / d”] o / d”'”g(g’u) ‘{)Lull(jl,,,n(ga “l) e C] ..H(Qs Uy ) (4.10)

€y Cu
with a normalization constant N& and the scalar function

n il

2(8,u) = H F(8;) H H(ﬁ(gi — ;) H 7(u; — ;) (jtsi(zZu,'vZa/) ’

1< j<n =1 j=1 t<i<j<m

(4.11)

where § = s/¢ and s is the “spin” (cf. Eq. (3.15)) and g = n — 2m is the charge of the
operator O. The number § is assumed to fulfill exp(27i§) = (—1)". The function F(8)
(see (4.14)) is a soliton-soliton form factor fulfilling Watson’s equations

F(8)=~F(—0)a(f)=FQmi—#) (4.12)

with the soliton-soliton scattering amplitude a(8) (see 2.16). The scalar functions ¢ ()
and 7(u) are defined as

| l

P(u) = Fao Flutim T(1) = YRR

(4.13)
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o h+im(2v — 1)

o Oy +im(2v — 1) o b6+ im(2v— 1)

e 0y +im
e 0, +im o 0+ i

o b6 +im(v-—-1)
o On+im(v—1) o b +im(v—1) @91
() O

fo) 9| — i
o Oy —im . o Or—im / .01_1.7”/
.0,, — Ty .03 — iy

e Oy — 2mi
e 8, —2mi o 0 — 2mi

Fig. 4. The integration contour Cy (for the repulsive case » > 1). The bullets belong to poles of the integrand
resulting from «(6; — 1;)¢(#; — u;) and the small open circles belong to poles originating from (8 — u;)
and c(#; —u;).

The integration contour Cy consists of several pieces (see Fig. 4):
a) A line from —oo to oo avoiding all poles such that Imf#; — 7 — € < Imu; <
Im@; — .
(b) Clock-wise oriented circles around all poles (of the ¢ (8, — u;)) at u; = 6.
In addition we assume the number of particles involved, i.e. n, to be odd.

This theorem is proven in Appendix B.

Remarks:
e The minus sign in Eq. (4.12) is due to the fermionic statistics of the solitons.
o A solution of the Watson equations (4.12) is

F(8) = —isinh 0 frineg), (4.14)
where the ‘minimal’ soliton-soliton form factor function is given as

dr sinh 4 s(I—wv)t 1 —coshe(l —8/(im))
't sinh 1 Vru)sh—t 2sinht ’

fmm(g) = CXp
0

The corresponding functions ¢ (1) and 7(u) are (see Appendix C)

¢ (u) =const.

/drsmh (1 —w)t (cosht(i —u/(im)) — 1)
'

- exp
sinh u smh vt sinh t

0
7(u) =const. sinhusinhu/v.
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e Using Watson’s equations (4.12) for F(u), crossing (2.17) and unitarity (2.18)
for the sine-Gordon amplitudes one derives the following identities for the scalar
functions & (u) and 7(u)

b (im 1) = — (i) = L 27D
d(u)y=¢(im —u) = b(u)(ﬁ(“ i) = o

b(u) a(2mi — u)
alu) b(2mi — u)

d(u—2miy, (4.15)

T(u)=7(—u) = T(u — 2y, (4.16)
where b(u) is the soliton-antisoliton scattering amplitude related to a(u) by
crossing b(u) = al(ir — u).

e The number of C-operators m depends on the charge ¢ = n — 2m of the operator
O, e.g. m= (n— 1)/2 for the soliton field  (x) with charge ¢ = 1.

e The integrals in Eq. (4.11) converge if %(1 +1/1ygF25+2/v+1>0.

e Note that other sine-Gordon form factors can be calculated from the general
formula (4.10) using the bound state formula (3.13).

We shall now apply the general formula (4.10) to an explicit example and exploit the

fact that the properties (i)-(iv) relate several different form factors to each other. This

will permit us to carry out various consistency checks.

4.2. The two-particle form factors

We repeat some well-known results (see for example Refs. [13,69]). According to
Eq. (3.17), the auxiliary function for the two-particle form factor ff?ﬁ(él,ﬂz) has to
satisty

F950(01.02) = [, (62,60) S (012) = [ (02,00 - 2mi) oo
a/ﬁ/
These matrix equations may be solved easily by diagonalization of the S-matrix. If there
are only bosons involved we have to solve the scalar “Watson equations”

1200y = £2(—0) 5.(6) = fO(2mi - 6) , (4.17)

where S,(#) are the eigenvalues of the S-matrix given by Eq. (2.11). In [13] it was
shown that the general solution of these equations is of the form

72(0) = NK.(8) fM™(8), (4.18)

where N? is a normalization factor, f™r(@) is the minimal solution of Watson’s equa-
tions without any poles or zeroes in the physical strip 0 < Im 8 < 7 and K, (@) is an
even periodic function with period 27ri. If the S-matrix eigenvalue is given by

Se(8) = exp / dt f(t) sinht0/imr (4.19)

0
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the minimal solution of Watson’s equations is given as

20

. ' ]
faM(0) =exp / dr f(1)

0

~coshr(l — 6/im)

> sinh 7 . (4.20)
If there are also fermions involved, Watson’s equations (4.17) hold for the invariant
form factors (cf. (3.16)). For the full matrix elements the representation (4.18) holds
with additional factors exp(+6;/2) on the right-hand side for all fermions.

The poles of f©(#) in the physical strip are determined by the one-particle states in
the channel corresponding to the S-matrix eigenvalue. In [ [3} the minimality assumption
was made, meaning that there are only these poles and no zeroes in 0 < Imé < 7. This
implies that

L
1
- H sinh 1(6 — 6;) sinh 1(6 + 6;)

K.(8) (Re =0, 0 <Imb < 7).

For several examples this assumption was checked against perturbation theory.

Examples.

We present two-particle form factors for several local operators and several particle
states of the sine-Gordon quantum field theory. Some of them were already calcu-
lated in [13] (see also Ref. [17]). Up to normalizations the problem is solved by
Eqs. (4.18)-(4.20) since the sine-Gordon S-matrix (2.15) is diagonal except of the
soliton-anti-sector where the eigenvalues are given by Egs. (2.16) and (2.20).

4.2.1. The two-breather form factor
The simplest sine-Gordon form factor is that for a scalar operator ¢2(x) = N'¢*(x)
connecting the two-particle lowest breather state to the vacuum

.f;{’,;(ﬁlzk) = {0 [ pr.p2)iy = N/({)/; Kup(612) fin™(612) .

According to (4.19) and (4.20) the minimal form factor function combined with (2.21)

reads

C()Sh(% —~v)t | —cosht(l — x)
cosh 11 2 sinh7

~min b ﬂ
/ ;

1
wh (i7rx) = —isinh —2-0 exp 2

The “minimality assumption” implies that the ‘pole function’

Kpp(68) = — ] ; : ] ;
sinh 5(9 - {7rv) sinh (0 + imv)

only possesses the pole corresponding to the second breather b; as a bound state of
two lowest breathers &. The normalization constant can be calculated by means of the
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Fig. 5. The wave-function renormalization constants Z¢ and Z% as a function of the coupling
v=B2/8m— B2 =1/(1+2¢/m).
asymptotic behavior [ 13]. Weinberg's power counting implies that in the limit of infinite
momentum transfer the form factor tends to its free value

/ 2 i / L2 free __ e 2

(018 [prop2diy — (011 [propadyy =2Z% as (p1+p2)° — .
Here Z¢ is the wave-function renormalization constant of the fundamental sine-Gordon
field which has been calculated in [ 13]

g
'2*1/

E(v). (4.21)

Z%=(14+wv)—
S1

nfv

We introduce the function
mY

1 t
— [ ——dt
7 ) sint

0

=exp {—% (iL (™) +il (™ + 1) = xIn (e + 1) -+ %)} . (4.22)

E(x)y=exp| —

where L(x) = 302, (x"/n*) + SInxIn(1 — x) denotes the Rogers dilogarithm [80].
Notice that this wave-function renormalization constant satisfies (compare Fig. 5) 0 <
Z% < 1, which is a general consequence of positivity [56] (see also, e.g. Ref. [58],
p. 204). For the free boson case, that is 8 = 0, » = (), we have Z¢ = 1. For the frec
soliton case, 1.e. g =0, v = 1, where the breather decays into soliton-antisoliton pairs,
we have Z% = 0. Using the asymptotic formula the normalization has been calculated
in [13]

2 s o
N;{',, =-2(1+ V)EL’COI >

In addition we may now employ this result and compute a further renormalization
constant by means of the bound state formula (3.13). With (p;j” =1 (see Eq. (2.22))

we calculate the wave-function renormalization constant Z¢" via

2 ~1/2 2 . "
Res £, (6) (2iRes Sin(6) )~ = i = (0| p1 + pa )i = V7%,
= 0 -

=8,

where the fusing angle is 6y = imv. The wave-function renormalization constant turns
out to be



560 H. Babujian et al. /Nuclear Physics B 538 [FS] (1999) 535-586

2% = (%) S5 B - ), (4.23)
CcOs EV

Again we have 0 < Z¢ < | and now Z%' vanishes at » = 0 and » = 1/2. which is to
be expected since at these values (compare for instance with the mass formula (2.14))
the second breather decays into the two lowest breathers or a soliton-antisoliton pair,
respectively.

4.2.2. The breather—soliton form factor

We now choose O(x) to be the Fermi field ¢ (x) of the massive Thirring model
which annihilates the soliton.

We assume the breather-soliton form factor related to this field

F061.6:) = {04 [ prop2 )i

to acquire the following form:
Fi(61,62) = N}, (1 + N y* coth gan)um) Kp(812) f13"(012) (4.24)

which consists of a scalar and a pseudoscalar coupling part. For our conventions con-
cerning spinors and the y-matrices see Section 5. Upon employing (4.19) and (4.20),
the minimal form factor function reads together with Eq. (2.21)

£ iy = sin Tx o 7 dr Jcosh vt 1 = coshz(1 — x)
" (imx) = sin —x exp [ — 2——= .
Ty L 2 P t ~ coshlt 2sinht

0 :

Extracting explicitly the expected pole structure the “pole function™ reads

[

Kpo(6) = — : .
s (6) sinh £ (8 — i) sinh (6 + im L52)

Once more we may use the bound state formula (3.13) in order to compute the nor-
malization constants, with gpf“ =1 and fy = i%(v + 1) (see Eq. (2.22)) to obtain

]/’2 .
Reg fl.(61.6) (Zi(Res S/,.\-(f)lz)) = =0 |p+p2) " =ulpi + p2) .

t12=0, 2=
This determines the normalization constant to be
2 N
" cos” Sy E(v)

Nu‘_ P T
b E(%(l_y)>\/sm3v

and the ratio of pseudo-scalar and scalar coupling to be

N;/' = —tangv tan g(l +v).

Note that formula (4.24) may alternatively also be written as
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i

)')’(PI +p2)—m

X (l + 9 coth %Bu)u(pz) fin(6))

N N¢ sin TIr(] +p) 6)"%""1'75 . e%,‘»ﬂ-,,-y(
TUh o2 Iy sinh 5(612 + 6p)  sinh (81> — )

£.06,,6,) =N coszg(l —

bs

y u(p2) fRn(6)2)
sinh 361,

4.2.3. Soliton-antisoliton form factors
Having an in-state, which involves a soliton and an antisoliton, we have several options
for the operator O(x) such that the two-particle form factor is non-vanishing.
(a) Let O(x) = j*(x) = Ny (x) the electromagnetic current [ 13]

Fls (61.62) = (0] j* | prp2 ) = 0(p2) y#u(pr) f-(612).

The function f_(#) fulfills Watsons equations with the negative C-and P-parity
S-matrix eigenvalue
cosh (8 + im) /v

S_(#) =~ %
(6) cosh 1(6 — im) /v a(t)

(see Eqgs. (2.16)-(2.20)). Taking the singularity structure into account we ob-
tain [ 13], with the help of (4.19), (4.20) and (2.16)

cosh 1 (i — 6) )

f-(0) =

cosh & (i — ) /v
and

X0
ﬂ sinh%(l —v)t 1 —cosht(l —x)
t sinh Svtcosh §t 2sinht

FPGimx) = exp
0
(b) Let O(x) = ¢(x) the fundamental sine-Gordon field which correspond to the
lowest breather [ 13]

I
sinh 012
The function f_(#) is the same as in a). Since Coleman’s correspondence [76]
relates the field ¢ and the current j* by

Fo01.62) = (01 1p1.p2 )= N2 5(82)u(6)) f-(B12).

2
3, = f—gj“ : (4.25)

the normalization constant turns out to be [13]

¢ _ 2

s§ EM :
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We may now carry out a consistency check and compute once more the wave-
function renormalization constant now starting, however, from a different form
factor. For this purpose we use once again the bound state formula (3.13) with
¢ =~ = 1/v/2 (see Eq. (2.19)) and calculate

1,2 .
b _ N I
}‘{_es I "(0) \/7(71Rcs5 ((i)) = [ =0]¢p pip=vZ?,
where the fusing angle is #y = iw (| — v). This computation leads to the value for
wave-function renormalization constant of the previous subsection (4.21) which
has been obtained in [ 13] by slightly different arguments.

Let O(x) = N> (x)

20000 = (0167 propa ) = N E(01)u(By) f(012)

The function f, (6) tulfills Watsons equations with the positive C-and P-parity
':*ﬁr‘% a(#) (see Egs. (2.16)-(2.20)). With
(4.19) and (4.20) we obtain [ 13} together with the explicit expression for the

integral representation of this amplitude of the scattering matrix (2.16)

S-matrix cigenvalue 8. (6) = -

sinh £ (i — 6)
s — min P
f ‘ sinh —;—([77' — ) /l’ t ( )

. . Lo b . .
We still have to fix the normalization constant N, which may be achieved
by employing the bound state formula (3.13). Taking ¢§° = @' = 1/v2 (see
Eq. (2.19)) we calculate the wave-function renormalization constant to be

172 L
Res 14 (6) V2 (2iRess (8)) "= £ = (0]¢*|p)fh = V2O .

U=t =t

where 6y = im(1 — 2v). The wave-function renormalization constant Z% was
calculated in the previous subsection (4.23), such that we obtain the normalization
constant

o (I+wv)m
8 M sin? Ty '

4.3. Three-particle form factors

We shall now analyse the general expression proposed in Theorem 4.1 for an explicit
example. First we recall the three-breather form factor which was already calculated
in [ 13] and apply a consistency checks using (iii). Furthermore we calculate the threc
soliton form factor using the general formula (4.10) and apply some consistency checks
using (iii) and (iv).
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4.3.1. The three-breather form factor
We choose the operator O(x) to be the fundamental sine-Gordon field ¢(x) which
corresponds to the lowest breather and consider the form factor

Fip(01.62.63) = (01 | pr.pa.ps )iy
The minimality assumption suggests the proposal [13]
f,,;,,,(91 02.63) = N&, Koo (61.62.65) F57(8)5) I (013) fim(023)

with the “pole function”

l
K (8 sHZso,): Kup 0_)K;;() K,(Hh)
PR T Cosh %Hucosh%()]; cosh 3653 wh(612) K (013) K (023

The “two-breather pole function” Kj,(8) and the minimal form factor f“""(H) were
alrcady provided above. We use property (iii), i.e. the recursion relation (3.12), and
calculate

Res Fonp (012,013, 003) = 20V Z% (1~ Sp(623))

which determines the normalization constant [ 13]

377
b T 2 . T 47 e
Niws = 37TV (1+v) cotzvcos 5V (Z‘/’)

4.3.2. The three-(anti)-soliton form factor
We now choose O(x) be the Fermi field ¢/* (x) of the massive Thirring model which
annihilates the soliton. We consider the form factor

|7\(Hl 02, 63) '<O|‘//i|l’l P2 p3 1171

Here & refers to the first or second component of the spinor, respectively. Non-vanishing
matrix elements contain two solitons and one antisoliton. Taking in the general for-
mula (4.10) for n =3 and m = 1 we obtain

1
fl’,z; (8) = N.l{ll H F(8:) / d”H‘ﬁ((}f —u) e 2 =220/ 213 Cr3 (6. u) .

iz j<3 =1

(4.26)
Here the function F(#), which fulfills Watsons equations
F(0)=—-F(—0)Ya(0)=FQ2mi—6),

is closely related to the minimal form factor that was computed above,

F(#) = —isinh - Hf'“'”(H
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The scalar function ¢ (u) reads
]
FOOF(u+im)

We now use property (iii), i.e. the recursion relation (3.12) and calculate

P(u) =

Res /%, (8) =2iCia 1 (1 — $23(623)),

=i

which determines the normalization constant
1 ’ . /PM‘ N N
N = i (T 0))2, (4.27)
: dqr

Note that this follows also from the general recursion relation (B.7). The form factor is
now fixed with all its constants. However, we also expect the bound state formula (3.13)
to hold and we may employ it now as a consistency check. We calculate with ¢'* given
by Eq. (2.19) and the fusing angle given by 8y = im(1 — »)
{ ~1/2 i
Res fly,(61.62.00) ¢ (20Res S_(8)) " = f1i (012,64 -
=ty T :

=t

The result of this computation coincides with the form factor proposed in (4.24). Having
convinced ourselves of the mutual consistency of several solutions we shall now carry
out an additional check and compare the results with conventional perturbation theory.

5. Perturbation theory: Massive Thirring model

In order to check the three-particle form factor of the fundamental Fermi field corre-
sponding to the soliton in perturbation theory we calculate the four-point vertex function.
We start with the Lagrangian

£Nr]'|‘]\1 — (/;([_y{? . M)(/ . lig(l/;,yl‘—‘/»‘j )l )
The Fermi field ¢ (x) annihilates a soliton and creates an antisoliton with the following
normalization:

0[P (x) | pha = Base ™ P ulp), (01 (x) | P = Sas P F(p). (5.1)

We use the following conventions for the y-matrices

0 ()1) : ~1 0
O _ I 5 000
y‘<1(J’ y”(w 0/ 7‘77"<0 1) (

and for the spinors

o012 [ e ti2 "sinh @
=VM o) : =VMi . ith p* =M .
u(p)=v < o2 ) v(p)=vMi ( el ) Wit pr = ( cosh 9)

N
[N

(5.3)

We also employ the formulae
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. Ry ky ’
N S =

Fig. 6. The Feynman rules for the massive Thirring model.

{,y;/u’ ,yz.'} — 2(2‘“1; . l,}ﬂu,’ )”l — 26/“")/5 (E;u‘ = e = )

¥ ) 1T rorp L O ) _ 7]
’}’#')’ Yu :(), etle = g#’ g o . gl gl , y ')/’U' = ettt Yp-

The Lagrangian implies the Feynman rules of Fig. 6.
The three-particle matrix element of the Fermi field up to order g turns out to be

(O1g(0) propapaiig = ~
pl/ 72 \]73
{
g?’(P] +p2t+p3) - M

= —i

X (w“lt(m) B(pr)yun(pa) — ¥“u(psy) i(p ‘W#u(pz)) +0(g%)

1 u(pa)cosh 18 + u(ps) cosh 163
= —ig sinh -2—923 = &

+0(gh).
cosh 36, cosh 363 cosh 1653 (&”

Note that for the soliton-soliton scattering amplitude this implies
1 2
a(#) =t — ig tanh 50 + 0(g")

in agreement with Eq. (2.16).
To calculate the exact form factor up to this order we start from the general for-
mula (4.26)

Id\ll\ (61.60,,0:) = / dul(6,u)

Co

with the integrand

§y8

1g.m=n" [ Feop [0 — oy et () (!2C(Q,u‘)>
| .

T3 i=

Using the residue theorem the integral may be written as

0 —ir 2 & 3 th—im(r—1)

' |
/ dul(8.u)=2mi {Rcs - —(Rﬁcs +Res+Res - Res )} 1(8,u)

]

_4_ E

/ du <1(Q, u) + 16, u+ iﬂ,)) ,
Ca
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where the integration contour Cp is a line from —oo to oc avoiding all poles such that
Imé; +m(v —2) <Imu < Im6; (forv> 1, v=1/(1+2g/7) =~ 1). The integral on
the right-hand side is of higher order in g and the residues give

. ¢ FAmwg . 1wt cosh $012 + u® (p3) cosh 16
F500,,600,00) = N! i:g sinh 65 (p2) k. 12 1u (p3) cosh 3613
i VM 2 cosh £6)> cosh 38,3 cosh 163

~0(g")

which is consistent with the result of the Feynman graph calculation because of (4.27)
and fM™"(0) = 1 + O(g). Hence we obtain mutual consistency between the solutions of

RRY

the form factor equations and conventional perturbation theory.

6. Conclusions

We have outlined in detail the so-called “form factor program”. Using only the
“maximal analyticity assumption” and the validity of the LSZ formalism we have derived
gcneral properties of form factors. The properties are expressed in terms of the equations
(iy-(v). We provide a solution for these equations in a closed form, which captures
the vectorial structure by means of the “off-shell” Bethe ansatz and the singularity
structure in term of certain contour integrals. The validity of this solution has been
checked by constructing various explicit two and three-particle form factors. We have
compared our solution for the three-particle form factor of the fundamental Fermi field
with the expressions obtained from perturbation theory in the massive Thirring model.
We find complete agreement between these two approaches and we take this as a further
indication for the validity of the “form factor program™ formalism.

The vectorial nature of the form factors we present, is encapsulated in the “off-shell”
Bethe ansatz and the singularities are encoded in certain contour integrals. We assume
that this structure is of a universal nature and will allow to construct further solutions
of other integrable theories. It will be highly interesting to work out such solutions
explicitly. This task and the detailed study of the correlation functions obtained from
these solutions is left to future investigations.

We have applied the general formula (4.10) to an explicit example and exploit the
fact that the properties (i)-(iv) relate several different form factors to each other. This
permits us (o carry out various consistency checks. We have for instance the following

refations

oo V) g (V) VRS N S " $ V)l
S by ~fi.\\‘ o f‘ljn Jopp =77 «//J - f/) fx,i‘/z - f/)/l
L (i) l(lii) J,(i\r) lin) T(iii) Gvi T L (V) (ivll
ufr - fs — i $ V) p (V) b G v gt
1 1\ 1 fon & fhy = £ FpANREE 54

@2 ]

Ju

f.\‘\’

Several of these form factor relations and consistency checks have been presented in

this paper. The proof of further relations will be published elsewhere.
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Appendix A. Derivation of properties of generalized form factors

In this appendix we derive the formulae for form factors of Section 3. We use LSZ
techniques [57] (see e.g. Ref. [58]) and assume in addition “maximal analyticity”
which means that all singularities originate from physical intermediate states. For sim-
plicity we consider only particles with the same mass m. Generalizations to the case of
particles with different masses are obvious.

A.l. Properties of generalized form factors for the pure bosonic case

As usual we write the in-field as

o " dp . - -
Mx) = / 27T]2w (al?(P) e 4 a?f(p) e”"‘) ) (A1)
It fulfills the Klein-Gordon equation (8° + m?) ¢(x) = 0 and when acting on states of
the form (2.1) it creates anti-particles and annihilates particles. The commutation rules
of the creation and annihilation operators are

in

[ag(p') . a)(p)]=0, (A2)
L@ (p') . " (P = 8w 2027w 8(p' ~ p) = 8un 47 5(6' — 6) . (A.3)

o

Corresponding formulae hold also for the out-field.
For the matrix elements of a local scalar operator @ = O(0) we have the LSZ-
reduction formulae [57)

out /

in  _out 4
. Vlvlv" \\ A -

PO Pl =Ml T o]t

I3
si [ T [O0, (] e

=" Oad (p) I pre

a’
s e T [0 o] ip g e,
| :
(A4)

where 7T is the time-ordering operator and the source term j(x) = (3% + m?) dp(x)
is given by the interpolating field ¢(x). If p; (p|) corresponds to an anti-particle (a
particle) j has to be replaced by j. On further reductions and combined with the
assumption of maximal analyticity the LSZ-formulae imply the crossing formula (3.4)
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for the connected part of the matrix element. We call a contribution to a matrix element

WO pyy

(1) disconnected with respect to py, if its support as a distribution with respect to p,
is point like and

(i1) connected with respect to py if it is a boundary value of an analytic function of
the Mandelstam variables s, ;.

With this notation the first terms in Eqs. (A.4) are disconnected and the second ones

are connected with respect to py or pi, respectively.

I we interchange in Eqs. (A.4) “in” and “out’ the time ordering is replaced by anti-
time ordering. Comparing Eq. (3.3) with (3.2) this means that s + i€ is replaced by
s — ie. Combined with the completeness of the in- and out-states we obtain the general
Watson’s cquations (3.8). However, from integrability follows a stronger formula. To
show this, we consider the branch point )2 = (my 4 m»)? separately. For simplicity we

assume my = fia.
Lemma A.l. Let the S-matrix factorize as denoted in (3.7), and let s;2 be in a neigh-
borhood of 4m* or (0 and all other s;; away from 4m*, then

’ t
¥y ()

f“(f}(.\‘]g + i€, Sij -+ i€) = F(S)(.\‘]z — le. sij - i€) Smm (s12) for s;p= am?* , (A5)

FO (512 + i€ s;; +i€) = FO (512~ i€.s;; + i€)  for s;3~0 (A.6)
with @ = (@, aa....,ay) and @' = (&), ab, ... @) and 2 <i < j < n. Corresponding

. ~ . 2
formulae hold for all other branch points s;; = 4m”.

Proof. By means of formula (3.4) we may cross all particles except 1 and 2 to the
left-hand side. Using again LSZ we have for the full matrix element

m“(/’}- P | O |[71‘]72 >in - oul("p}" e Pn ‘ aou(T(pl) O [72)
+i/(13x sl | T O] ipaye (A7)
Y p O prpa ) = pa @™ (p1) O pa)

\

—i / d*x pa, | T i{@j‘i (x) [paye ™, (A.8)

where we have omitted the indices o and T* means anti-time ordering. The term

out

Cpas e @ (p)) O pad

is disconnected as in Eq. (A.4), whereas

out 4
A

Pas Pl " (p)Olp2)
in general contains also connected contributions. However, for factorizing S-matrices
this term is given by

aut 7

(pay.oo Py iai""’(pl) ?q],....q,,,}i“ i"(q,,,,...,q; [Ofpa2),
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which is disconnected with respect to py. Therefore, if we take the connected parts of
Egs. (A7) and (A.8) we obtain as in Egs. (3.2) and (3.3)

M O P pa ) = Fg(-\‘xz +€, (trg) (1 <rgaas<n s (Sk+ 1€) (2ckaigm ) s
(A9)

M P O P P2 Yoo, = Pf(xm i€, (1ro) (1<r2es<nys (Sk 4+ 1€) Geketgm ),
(A.10)

which implies the first claim. Moreover. crossing in Egs. (A.7) and {A.8) in addition

also particle 2 to the left-hand side, by the same arguments we confirm the second

claim, since |py "= !p; ot

As a consequence of this lemma and the Bose statistics of the particles we have
property (i) (cf. Eq. (3.10))
FO 0,05 =[O 0.8, S0, 6)). (A.11)

Iterating this formula we find that for 6, < ... < @, the auxiliary function f9(6) yields
the matrix element for an out-state

F9 By 0) = F5 (B 6)) SEE(0) = (010 [ pra ).
(A.12)

We obtain property (ii) (sec Eq. (3.11)) by comparing the analytic parts of the
crossing relations of the following lemma.

Lemma A.2. In terms of the auxiliary functions crossing for the full matrix elements

reads
T<[71 ‘O“’l’ R >12n”
(pylpa ) 0 G,....60,) .
At lél' %‘f}“‘”( o ! fory >26,>...>4,
_ +C . l.../v(()] +imo....,0)
= / o
Spvlpn S, fs 6>, ....0,_ ‘
VAl én/nfg_””..nl( 2 'n 1) . for 6y > ... > 6, >0
‘#lfl_',”(()g,. N ,9,,.()| - ITT_)C
(A.13)
where m.. =7 — €.

Together with property (1) this femma implies the general crossing formulae (3.14) for
arbitrary ordering of the rapiditics.

Proof. The disconnected contributions in Eq. (A.13) follow directly from the LSZ
formulac (A.4). Morcover the LSZ formulae imply that crossing of particle 1 means
Py — —py. In terms of the Mandelstam variables s or the rapidity differences (see also
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()
T
2 3 4 7

Fig. A.l. A graph contributing to a pole of a form factor. The dashed lines denotes an off-shell line with the
propagator i/ (py + p3y — p1)> — m* .

Fig. 3 for the analytic properties) this means s,; + i€ — #; — i€ or 8; — im — 6,;.
However, since there is no branch cut separating region II and IV (see (A.6)), this
is equivalent to considering §,; + i€ — f,; + i€ or 6,; — im + 6,;. Hence, because of
61; = 16) — 8;| we have the equivalences

9|j — [T ()]j <0, — 60 +ir for 6 > Hj,

O — im+ 6,0, — 0 —imr for 6 <0

which imply the claim.

The form factors have poles determined by one-particle states in any subchannel
(a....,a;) C (ay,...,a,), if the square of the total momentum of all particles in
the subchannel equals the one-particle mass squared. We follow the arguments of [13]
and in particular of |69] (see also Refs. [17,28]). A particular type of poles is always
present, even if there are no bound states. These poles are often referred to as kinematic
poles. If for instance in (A.13) particle 1 is the anti-particle of 2, then one-particle
intermediate states with the quantum numbers of all other particles j (2 < j < n) yield
contributions to a pole at py & py, since then (p2 + p; - p1)* = m; in Eq. (A.13) (see
Fig. A.1). The residue of this pole is given by property (iii) of Eq. (3.12). This can

be seen as follows. By (i) we have for 8 =@, and 6, # 6;, (j=3,...,n)
¢ 1
-0 ) -
foo (O +im_,.. )= mcwg(gz,..-,gn),
2 9-—1’77)"‘———-—]——C (0 6,)
Joa mbe vl “'N91+f6—93 128(02,.... 0y

for some function g(#,,...,6,). Employing now the well-known identity 1/(a =+
i€) = (P/a) F imd(a), with P denoting the principal value, the general crossing rela-
tions (3.14) imply for the full matrix element for 6, ~ #, and 8, # 6;, (j=3,...,n))

. P '
PO pae o pa)y iy p2) £, + (0——92 + imd(6, 92,)) Cihg
-

=i (pr I p2)a f5 ) Son e S

P
+ (El_v-é; - l7T6(01 - 02)) Cl2g.

Comparing the delta-function parts we obtain
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g0, ....0,) =2i fC (6s....0,) (1 - Sg,,...Sz_—,)

which yields (iii).

If there are also bound states there are additional poles [13] and we have also
property (iv). The latter is obvious from Fig. 2 and Eq. (2.10) up to a normalization.
The normalization follows from the following argument developed in [13]. Let us
consider a model with a bound state of type ¢ of two particles of type a and & such that
the attractive region is connected analytically (by a coupling constant) to a repulsive
region, where the bound state decays. For simplicity we consider first the two-particle
form factor

far(Bap) = (0] O0) | pas po )ity (B0 > 6p) (A.14)
such that the (scalar hermitian) operator O connects the bound state ¢ with the vacuum

20 = (0] O0) | pe)e = VZO # 0. (A.15)
Then in the attractive region of the coupling the two-point Wightman function reads

(0]Ox)O(v) |0} = Z94. (x = y,m?) + contributions from other masses
(A.16)

or the time-ordered two-point function in momentum space fulfills

i
(0] OK)O(0)|0) = 2 e at kP mm?, (A.17)
k> —m2 + ie
where Z9 is a wave-function renormalization function. In the repulsive region the
contribution from the two-particle intermediate states ab is given by

dp, dph 1

/() O . ), | in s X O . ()\)ah
477_0)(’ 477'(1)[7.. I (’() I.DI [7/ {ub <pll Pt | ()) I /

(o|0(x)<9(.,\-*>\0>=/

=
1 ) ab
= / do 1S(0) 1970V (x — v, 50) + ..., (A.18)

where summation over the multiplets « and b is assumed with sq = m2 + m} +

2mampcosh @ and A, (x, m?) = (277)“"] d’ke™ @ (ko)2mS(k> — m?). In the repulsive
region the functions £ (#) and fc’ (¢#) have poles in the unphysical sheet at +6¢,
(Im 6, < 0), respectively. If we move to the attractive region these poles will cross
the integration path and by analytic continuation we get

{0]O(x)O(y)]0) = 74 jz( / a0 £9.(0) 1O (8) A, (x — v, 50

-0
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] . b
=1 (f}is,‘i (,B_CEJ 1500 £ (0) A (x — yom?) +
(A.19)

Both residues give the same contribution, because

Res £5(0) 17 (0) = Res 17,-9) 5.0(6) 17 (0)

_ O bu ¢ poab
- flm - uh)‘p( Rt gDulzf (Guh)

Res f“,,(H)fO“b = Res ;g,,, 0) Spa(—0) 1O (—8)

. ba
ful) - ul )¢ (I)R( (plmfo (0(1/7) ’

where property (i) Eq. (3.10) and the residue formulae for the S-matrix (2.10)
and (2.11) have been used. Using this and comparing Egs. (A.16) and (A.19) we
obtain

el ¢ | oL | I . Npreldd
7%= 28 1780 = (Res - Res ) 50 £ (0)

g=0'

] 1 . yath
R 7] b Res ¢ O 9
( CS fub( )(P( \/““) ( m f)=f{%,, ¢thf ( )

which agrees with (iv). The general case may be proven similarly.
A.2. Properties of form factors for the general case
We now consider the case in which the particles are taken to be fermions and the

operators may be of fermionic or bosonic nature. Again we use LSZ techniques [57)
and “maximal analyticity”. The two component fermionic in-field is

. od . . in .
W(x) = / °7rl7)w <(1:f(/7) u(pye " +a; Ypyo(p) e > (A.20)
J 2mic

and [uliills the Dirac equation (iyd — m) ¢ (x) = 0. The anti-commutation relations are
{a™(p") . " (p)) =0,
La(p'y. ”” (P)}=8aa2w2m8(p" —p) =8,udw8(0 —6). (A21)
Corresponding formulae hold for the out-field. We use the conventions for the y-matrices

and the spinors of (5.2) and (5.3).
The LSZ-reduction formulas for fermions read

1n
).

()Ul /

PO py )

1t / out \in
=00q P |a (py Q)"

.tr]

.\

A+ i / dix N pl|T O (0] ] .. U u(pyy et (A.22)
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=000 M OdN (P P
Civon [ T[000] Ip b et a3
where 7(x) = (x) (i)/;; +m) and oo, = — 1 if O is fermionic and o, = 1 otherwise,

Obviously oo, = (—1)" if n is the total number of fermions in the states. A similar
formula holds if we interchange particles and anti-particles. The invariant form factors
G O(s,«j + ie) defined by Eq. (3.13) are again boundary values of analytic functions.
Again, if we interchange in and out time ordering is replaced by anti-time ordering,
which means again that s;; - fe is replaced by s;; - ie. The crossing relation for the
connected part of the matrix element reads

out / vin conn

@ (r,,‘<plﬂ Lo !/7111 | O|]7,,,‘.],‘ - Pu /’(r,,,.]..&,,

ni

=(-1" 1_[0@m Z Epy) o i pu) Ly W pyr) o o0(pr) pfl“ .. .p,.’:“
=1

X G o (Sij + i€ 1y — i€, sy + i€). (A.24)

Watson’s equations for the invariant form factor functions G acquire the same form as
those for £ for the bosonic case (3.8). Also Lemma A.l holds for the invariant form
factors G.

Analogously to the bosonic case it is convenient to introduce the vector-valued aux-
iliary function f¢ (@) which is considered as an analytic function of the rapidities of
the particles. Its_components coincide again with the physical matrix elements for a
particular order of the rapidities,

OB 0, = (010 [ pr...opy)i . for 6 >...>0, (A.25)

In the other sectors the function f(f(_Q) is again given by analytic continuation. Again,
as a consequence of Lemma A.l and the Fermi statistics of the particles we have now
the property (i) in the form (cf. Eq. (3.17))

O 80y = O (8,0, ) (—S),(8, - 6)). (A.26)

R R AR .

The LSZ tformulac {A.22) and (A.23) imply the general crossing tormulae (3.18).
Note that some signs in these formulae depend on the choice of the relative phases of
the «- and the v-spinors taken in Eq. (5.3). The crossing formulae again, as for the
bosonic case, implies the properties (it) and (iii) as given by (3.17), where we have
used the fact that o) = 3, ... 023, 1f particle | has the same statistics as particle 2.

Appendix B. Proof of Theorem 4.1

In the proot of Theorem 4.1 we follow Ref. [55] (see also Ref. [53]).
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Proof that Eq. (4.10) fulfills (i)

Property (i) (cf. Eg. (3.17)) follows directly from the Yang-Baxter equations, the
definitions of the soliton-soliton S-matrix (2.15) and the pseudo-ground state (2 and
Watson’s equations for F(6)

=F(0;) 2 i Si(0)C 5 (...6,6;...)
= —F(H_,‘,) 61(0,‘_,‘) £ ij C,/( .. 9,,01' .. )

The minus sign is due to the Fermi statistics of the solitons (cf. (3.1))

Proof that Eq. (4.10) fulfills (ii)
Using (i) the property (ii) (cf. Eq. (3.17)) may be rewritten as a difference equation

I (0) = f7,(8) Q1 0(8) . (B.1)

where §' = (4, . .. 0, = 60,—27i) and Q(8) is the trace of the monodromy matrix (4.1)
over the auxiliary space for the specific value of the spectral parameter 6y = 6,

01 () =teTE (8), with T¢ () =T, ,(6.6,) (B.2)

1.

since S,0(0) = Py is the permutation operator. This may be depicted as

In the following we will suppress the indices 1...n. The Yang-Baxter relations (4.2)
imply the well-known commutation rules for the matrices A, C, D defined in Eq. (4.3):

C(,1)C(B,0)=C(8,0)C(8,u),

a(f —u c(6 —u)

. _ ) ) et

C0,1)A8.0) = 70— S A, )C(8,u) = 55— AB,1)C(8.6),
_alu—#6) ) _c(u—8)

C(Qu)D(8.8) = 3 i D(8.0)C (8 1) bu gy 2(&WC(E.0). (B3)

In addition there are commutation rules where also the matrices A2, C2, D? defined by

AC(8) BQ(Q))
c8) DY8)

7¢(8) = (

are involved [14]

9/ - n 1) ! N
@Oy =1 so(gyc(g,uy — S 4cq 1y c2(0)

0. u)A%(8) =
C(8 . u)A%(6) b(0, — 1) b(8, —u)
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_91'7 -0
a—(”—————)-DQ(Q,)C(Q,u) M

— / Q
b(u —67) b(u—a,g)D(Q‘")C (8). (B4)

C(8',u)D?(0) =
To analyze the right-hand side of Eq. (B.1) we proceed as follows: We apply the trace
of T2(8) to the co-vector f(8’) as given by Eq. (4.10) and the Bethe ansatz (4.4).
In the contribution from A2(8)

uj

QC@O w)...C(8 uy) AC(E) = - ty,
&

—a— 11

6| ()n——l \ 01:

because of charge conservation only the amplitudes a(#), — u;) appear in the S-matrices
S(8, — u;) which are constituents of the C-operators. Therefore we may shift all u;-
integration contours Cy to Cy without changing the values of the integrals, because the
functions a(@, — u;)¢(8, — u;) are holomorphic inside Cyr — Cy.

We now proceed as usual in the algebraic Bethe ansatz and push the A2(4) and
DY(8) through all the C-operators using the commutation rules (B.4) and obtain

CO'm)...C0 un) A%0) =] ]

j=1
4wy, (B.5)
a(u; — 6y)
b(u; —8})

a(8;, —u;)

—AQ 9) T -
b8y —uy * DG CG )

n

C(O' ) ...C(8 un) D?(8) =[]
=l
+-uwp . (B.6)

DG C(B.u1)...C(8 un)

The “wanted terms” written explicitly originate from the first term in the commutations
rules (B.4); all other contributions yield the so-called “unwanted terms”. If we insert
these equations into the representation (4.10) of f(8') we find that the desired con-
tribution from A¢ already gives the result we are looking for. The wanted contribution
from D? applied to (2 gives zero. The unwanted contributions cancel after integration
over the u;. All these three facts can be seen as follows. We have

n
0A%0) =[Jae:. -6y 0.  2D%8) =0,
=1
which follow from Eq. (4.6).

The relations (4.15) for ¢(u) and (4.12) for F(€) imply that the wanted term from
AY yields f(@). The commutation relations (B.3) and (B.4) imply that the unwanted
terms are proportional to a product of C-operators, where exactly one C(6,u;) is
replaced by CY(8). Because of the commutativity of the C’s it is sufficient to consider
only the unwanted terms for j = m which are denoted by uw’y(u) and uw}}(u). They
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come from the second term in (B.4) when A?(8) is commuted with C (8, u,,). Then
the resulting A(8,u,,) pushed through the other C’s and taking only the first terms
n (B.3) into account and correspondingly for DQ(Q; iy, ) we arrive at

(‘(Hn - ”/n) a(“m ”/) ’ ' )

o = ” A0 u,) C(8, . .CY0),
o'y (1) b, ”m) Ll b~ 11,) (0", 1,) C(8, 1)) (¢)
" ol — aluj —ty) , / oy
uwp (1) = — b I I b(u, - DO, u, )y C(8',uy)...C*(6).

Using again (4.6) and the relations (4.15) and (4.16) for ¢(u) and 7(u) we obtain
g(0' 1) Quwhy(u) = —g(8'.u') Quwli i’y

where also c(u) /b(1) = —c(—u)/b(--u) has been used and ¢’ = (uy,... .1}, = u, +
27ri). Therefore after integration of the A-unwanted term along Cy and the D-unwanted
term along Cy both cancel.

Proof that Eq. (4.10) fulfills (iii)
We will prove that Eq. (4.10) fulfills (iii) (see Eq. (3.17)) in the form of
RL\ fl ”(9],.., o .) = =00y, 2!(/],7 f - I(Hﬂ, ..... ,,A.‘1)(12m”,_,] Sg,,...S,, ..|,,)

ty,=1

which is equivalent to Eq. (3.17) due to (i). We consider the n-particle form factor
function given by Eq. (4.10)

m

f] ,,(8) = H / d”i gn(Qs ﬂ) '()l..JIC] ..JJ(QJ’] ) s Cl,.,n(Qs ”m,)

=g,

with the scalar function

NO R
n ~
g,(0,u)= W gu-2(6,1)
n—1 n
<F 0y =6, [] (Fo1 = 60 Foi - 0,) ) [T 66~ )
1=2 Coi=

=1

x H (¢(91 - Up) ¢(6u — ) T(uj ~ l‘:zr)) (,:R(Zu,,,—(}.‘ ) ,
=1

where 8 = 6, ..., O,y and @t = uy, ..., Uy 1. We calculate the residue of this function
at &, = 6, + im. It consists of three terms,

Res fO (8) =R, + Ry + Rs.

=0, +im

This is because each of the m integration contours will be “pinched” at three points:
(]) H; :0,, :9] — 7T
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(2) uj =0, +im=40,
(3) uj =6, —imr=46; — 2iw.
Due to symmetry it is sufficient to determine the contribution from the u,,-integration
and multiply the result by m.

The contribution of (1) is given by u,,-integration along the small circle around u,, =
8, (see Fig. 4). The S-matrix S(é, —u,,) yields the permutation operator S(0) = P and
S(6, — u,) the annihilation-creation operator S(im) = K

y Y
< \ 5 "}

Soi(0) = 8us gy = O~ B S (i) = CapCV=8,5855= 0~ B
o [a4

Therefore we have for u,, =8, =6, — in

i)
21 ,Cr (8w ... Cyy(6,6,) =
5 Uy = 6, \\lf‘y_l_:
()l ‘/ 02 0!/—1 \ 011
m—1
= H (I)(H} - I{j)('l(ﬁ,, - ”j)) Ciyth 1Co - (Q- uy) ...
=1

L Cae (Q Hp 1) SZH S

where Cy, is the charge conjugation matrix with C.p = 845. We have used the fact that
because of charge conservation the amplitude b(-) only contributes to the S-matrices
S(6) — ;) and a(-) to the S-matrices S(#, ~ u;).

We combine this with the scalar function g, and after having performed the remaining

1,-integrations we obtain

R(l_!.,),-, = Cln fgo,, 1 (é) SZN ce e S”Am
(@)
X —"—  Res (—2mi) Res a(, — )@ (8, — uy) b(O) — 1) (8 — uy)
Nfz =t i =t

=1

><F(i7T) H (F(H] ('),)F((), 911‘)45(9/' - “m))

ni—1
et H (1)(01 - I‘Ij)(b(()l - ”,i)a(()n - ll_/)¢({))1 - l‘j)T(uj - Mm)) ei?(z”,,,‘()]-—‘(/,,)

i=l

. ¥o) = .
=2i TOp Cln fz,,_n_l (Q) S’ln cee 3n~~1n
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if we relate the normalization constants by the recursion relation

O pEims W

o)
NY = NY
" e 4m

(B.7)
We have also used that oo, = (—1)" and

F(u) F(u+im) d(u) =1,
blu+im) d(u+im)alu) p(u) r(—u)=1,

which follows from the definitions (4.12) and (4.13). Finally we have used the normal-
ization F(im) = | and Res,=q a(1)@(u) = Res,zir (1) p(u) = ~2i/’f"‘f}.i“(0) because
of Eq. (4.14). Note also that the signs from the as and bs cancel and o¢, = (—1)""2,
since all particles are fermions.

The remaining contribution to (iii) is due to R and Ry

R‘lz)n + Rgi)n = 21 C'” fg.)ﬂ—«] (Q)

If both particles at | and n are solitons both vanish. If one particle at 1 or n is an
soliton and the other an anti-soliton one term gives the desired expression and the other
vanish. If both particles at 1 and n are anti-solitons both terms cancel. These facts can
be proven as follows.

The contribution of (2) is given by the «,,-integration along the small circle around
uy = 6, (see again Fig. 4). Now S(8; — up,) yields the permutation operator S(0) = P
and the co-vector part of this contribution for u,, = 8, = 6, + i is

20 CI,.,;I(Qa uy) ... Cl.,.n(Qﬁ ty =0y) Py(s)

i) t\ Uy
. Uy
v
= = 01
\
. Uiy U - \‘\Jﬁn
0,1 6, G- 0, o1 6, B 6,
n nm—1
= Ha(e, — Upy) H (a(By —up)a(l, —u;))
i=1 J=1
XCiy 25y 1Cryr (0,101) o Co i (0, 1) Py (5) Pu(s), (B.8)

where the Yang—Baxter relation (2.8) has been used iteratively. Py (3) and P,(s) project
onto the components where the particle at | is a soliton and at » is an anti-soliton,
respectively. The remaining components if both particles at 1 and » are anti-solitons are
calculated below.

We combine this with the scalar function g, and after having performed the remaining
i;-integrations we obtain
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R Pi(s)=Ciy £2,_1(8) Pi(5) Py(s)
(@]

N ) . .
Xm N”éi_z lh:-%?iiw(_zvﬂ) 1553. a(fy — uy) (0 — uy) a(6, — Un)P(6, — uy)

n—1

<F(imy [T (FO ~ 0)F (0~ 6,6 — ) (0, — un) )

i=2

m—1

X H (a(el —u;)p(0) —up)a(8, —u;))P(6, — u;j)r(u; — u,,,)) g5 (2un=01=6.)

J=1

= “2’.0-011(:!1! fég,“n-l(é) P] (i) P,,(S) .

if we apply the condition exp(275) = (—1)" = oo, and if we relate the normalization
constants as above. We have used the identities

F(—u) Flu+im)a(u) ¢(u) =1,
a(u) d(u) alu — im) dp{u — im) 7(—u) = 1. (B.9)

The contribution of (3) is given by u,,-integration along the small circle around u,, =
8, — i7 (see again Fig. 4). Now §(6, — u,) yields the annihilation-creation operator
S(im) = K and the co-vector part of this contribution for u,, = 6, — 2mwi =6, — iw is

K0 Cl...n(Qq uy) ... Cl,.,n(Qs Uy =6, —im) P(s)

Ui Up j
u
= pod 9,1
Uy ' /ﬁﬂn __V,/J Upy
011 6, s 011 6 61! L,
n m—1
=160~ wn) TT (601~ uppiie, —up)
i=1 J=1
XCpy (11 Co e (Botr) .. Co et (Butty—) PL(s) Py(3) (B.10)

if the particle at |1 is a soliton and that at »n an anti-soliton. This contribution obviously
vanishes if n is a soliton. Again the remaining components if both particles at 1 and n
are anti-solitons are calculated below.

Again we combine this with the scalar function g, and after having performed the

remaining u;-inlegrations we obtain
) T NS
Ry Pi(s)=Cy, fS,_1(8) Pi(s) P,,(S),-nﬁé’—;
n-2

x P RHCS (_27”) RHGS 1)(011 - ”m)(rb(0n - ”IH) b(gl - Mm)(b(al o “m)
1=, +1m 1y, =H, — i1
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n—1
XF(’T”) H <F(91 - H:)F(HJ o ﬁu)b(gi - ”nl)d)(gi - “m))
i=2
m—1
* H (j’(()' —u)) (O — u)) (6, — 1 )Py — u;)T(1; u,,,,)) e TS 2= =0,)
J=1

. NG) = .
= 2i00,C1, 15, () Pi(s) P,(§)
provided that we fix the normalization constants as above. We have used the identities

by F(—u) Fu+im) ¢lu)=1,
a(uy p(u) alu —im)y d(u—im) 7(—u)=1. (B.11)

Finally we calculate R\™ + R\ for the case that both particles at 1 and at n are

anti-solitons. Instead of Eq. (B.8) we have now for u,, =60, =6, + i

" m—
0 -
Hil((}" =) H (ZI(H] - l,lj)('l((}” P )) E_g_‘_% l))

i=1 =t

XA y1Ca e (év uy) ... Ca oy {_g_ 2} Dy gy (éa Upy—1) P1(8) Pp(5) + ...
and because of the Yang-Baxter relations (B.6)

C(?) ) ...C(é.l(,,,-..?)D(_Z_).Il,,, )

= H oty ~ 1) DB tty-1)C(B111)...C(B utyn) + ...,
blu; — thy-1)

where the dots refer to similar terms with Dg,_,,q(é, uj), (j < m—1). Because of
symmetry with respect to the C-operators it is sufficient to consider only this term.
Similarly we get instead of Eq. (B.10) wu,, =8y —- 27w = 6, — i

1ir—1

61— -
Hb(() iy H (a(ﬁl —up)alt, — u;) );}EH—I% ];
S N

=1

X0 gt Cayi (Botty) o Ca oy (Ottyn) As Ly (Buttyy_y) Pr(5) Py(5) + ...

and because of the Yang-Baxter relations (B.6)

C(Q~ i) C(é, Iy —-2) A(é‘”m -1)
n—2

ali, -l o
:H———'-l————~'—~ (B, 16-1) C(B.1)) . OBy ) .,
- b{ityy = 1)

where the dots again refer to similar terms with A, ,_; (8, ), (j < m-—1). We
apply Da_ -y (B.1,1) and As (8.1,_1) to the pseudo-vacuum, use as above the
identitics (B.9) and (B.11), and find that the sum R'? - R is proportional to (with
H=1Iy—1)
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=

' c(6, - u) a(u, - u) .
f { ——— h(6; — 6; — u
/ du a0, — 1) H h( ) h( u) H b(u _”)'r(u, i)

c,

0

n—1 m-2
c(f — 1) ) a(u — ;)
T———— . 9" — 0‘ - Eum e — — — [
+ b6, ) LI a( 1)h( u) /l:l blua, )T(ll, 1)

Due to crossing we have

(B —1yy) _ (0 =ty — 2i)
a(en — Uy-1) b(al — U1 — 2771) '

In addition we use the quasi-periodicity properties (4.15) and (4.16) of ¢(-) and 7(-)
and get

/ / du (O — 1)
"UhO — o)
n—1 -

al ) — M
X Ha((}i_”m—l)(b(gi U1 ) H ( ool )T(“[ = Upy—1)

pe iy~ uy)

which vanishes since the integrand is holomorphic inside the contour C; — (Cj + 277i).

Appendix C. Some useful formulae

In this appendix we provide some explicit formulae (which partly may also be found
elsewhere in the literature) for typical scattering matrices, minimal form factors and
some auxiliary functions which we frequently employed in the explicit computations,
We state some typical integral representation, which are very useful since via (4.19)
and (4.20) they relate the scattering matrix and the minimal form tactors effortlessly.
The infinite product representations in terms of Gamma functions, obtained from the
evaluation of the integrals or the direct solution of the functional relations, make the
singularity structure more transparent. For numerical purposes it is often more useful to
express the Gamma functions with the help of Euler’s product representation in terms
of rational functions at the cost of an additional infinite product.

A typical S-matrix eigenvalue is (for ¢ > )

X
. a4 x d o
S(irx,a) = = / — "“sinhtx.
a-—x !

According to (4.19) and (4.20) the corresponding minimal form factor function is
therefore
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w ! —cosht(l —x)

(ee]
. dt
™ (imx, a) =exp / n 2e”

2sinh ¢
II(N+2+a~xMﬂ+a+x)_ 3+ 4
- (214 1 + a)? F(l+4-5Hrg+3%"

=0 <

In particular, for a = 0 we recover the scattering matrix of the Ising model
§=—1-— fM™(imx) =sin 5 x.

For negative values of a we use S(6.a) = 1/5(6, —a) and f™(8,a) = 1/f™" (6, —a).
A further typical S-matrix eigenvalue® is (for 0 < a < 1)

Sin T (a+ x Tdi _sinht(1 —a)
S(imx,a) = &—) =exp / had ”'u-—-wa—) S

2 - inhtx
m—(a~x) ! sinh ¢

0
with the corresponding minimal form factor function
fmm(”TX Cl)

’dt 2sinht(l —a) 1 —cosht(1l - x)
1 sinh ¢ 2sinht

= exp

0
ﬁﬁ 204+2k+a+x 2 ;
2H4+2k+2—-a+x2+2k+4—-a--x \214+2k+1+4a

1=0
! 2
rk+54+9%)
(k=3 -4%)

1l

w;gk+z+amx(ﬂ+ak+3~a)2

C

TR (ST

4y Tk

fi(k+1
o Tk+§+4) Itk+1+

12l

|

R

The sine-Gordon soliton-soliton S-matrix reads

o]
dt sinhi(1 —p)r
Sye(imx) = a(imx) =exp TMGinh fz}r th)l_[ sinh tx
g 3 sh 5

_HH I4+v+ky+x 20424+ kv +x
204 v+hkv—x20+2+kv~x

x2[+]-+-v+kv~x2l+l+kv—-x

2--14+v+kv+x2l+1+kv+x
:HI((v+ kv - x)/2) F'((2+ kv —x)/2)
o Tt kv +0)/2) P2+ kv +x) /2)

Xl (I +v+kv+x)/2) I'((1+ kv +x)/2)
il +p 4 kv — .x‘)/Z) I'¢(1+kv —x)/2)

8 For instance, almost all diagonal scattering matrices related to perturbation of certain conformal field
theories may be built out of these eclementary blocks
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with
. ™ T .
a(im(x+v)) = -—Col—z—x cot E(X +v)a(imx).
Consequently, the minimal form factor function is

dt sinh 1 (1 —v)t 1 —cosht(l —x)
fsmh VfCOSh 3t 2sinht

f[’llll](lwx) _exp
()
S dm 42424+ v+kv—x 2mA4+204+v+ky+x

1\01_0’11_02n1+2l+3+V'fk1/—-—'l 2m+21+]+ll+kl/+)

X2m+2/+4+kvﬂx 2m+ 21+ 2+ kv + x
2m+20+3+ kv —x 2m+ 214+ 1 + kv +x

(2m+21+2+u+kv 2m+~21¢2+kv>2

2m+21+ 1+ v+ kv 2m+ 21+ 3+ kv
1'(l+ 13+r+ kv—.x)) 1‘<1+ s(1+v+ kv +.r))

0o o
HH I‘(1+ L+ 4w+ kv __X)) r</+l:(v+kv+.x—)>

‘(l+%(3+kv—x}> r<l+§(1+ku+x))
: (1+2+'3(kv»--x)) 1'(/+]+—'2~(kv+x)>

B
P304 +kn) P21+ 1G4 k))
1‘3(/+ I+ 3 (v + ku)) 1‘2(/+ 1+ %kv)

x

with asymptotic behavior for [Ref| — oc (|[Im8 — 7| < T (3 + v — [l —v))
fmnGim = 8) = ey (717 4 0(1))
with the constant

dt sinh 2(1 —»)t l—»
C=exp s i ,
2 t \sinh svtcosh 5t sinh ¢ vt

0

The corresponding functions ¢(u) = (F()FUm+w)) " and 7(u) = () p(—u)) ™!
with F(imx) = sin(Zx) f" (imx) are

T arsinh 51— )1 (cosht(% ) — ‘>
- exp | — 2 S Sttt
Fz(m) sin(arx) ]t sinb Lot sinh 7

0

2
B 1 ﬁﬁ21%1+vw~kv+r2l+2+v%kv~x 2/+kv+%
“Fz(m) . 20+ kv 4 x Ut T+kv—x \2+vthv+]
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| ﬁ (3t +0) P30 -k -n) ()
P(E) o r(J0+v s+ n) rl@er k- 0) (%)
with
) sin Z.
dlim(x+v)) = = dlimx)
cos -( x+v)
and
» F2(im2)F (~im[2) . . .
T(imx) = — sinarx sin(wx/v)
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