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Abstract
We compute the DC conductance for a homogeneous sine–Gordon model and
an impurity system, which in the conformal limit can be reduced to a Luttinger
liquid, by means of the thermodynamic Bethe ansatz and standard potential
scattering theory. We demonstrate that unstable particles and resonances in
impurity systems lead to a sharp increase of the conductance as a function of
the temperature, which is characterized by the Breit–Wigner formula.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the context of integrable quantum field theories in 1 + 1 space-time dimensions, a large
arsenal of extremely powerful non-perturbative techniques has been developed over the last
two and a half decades. The original motivation of treating these theories as a testing
ground for realistic theories in higher dimensions is nowadays supplemented by the possibility
of direct applications, since the nanotechnology has advanced to such a degree that one-
dimensional materials, i.e. quantum wires, may be realized experimentally. A quantity
which can be measured directly [1] is the conductance through the quantum wire. There
also already exist various proposals [2, 3] for how to obtain this quantity from general non-
perturbative techniques, such as the thermodynamic Bethe ansatz (TBA) [4, 5] and the form
factor approach [6] to compute the current–current two-point correlation functions in the
Kubo formula [7]. Here we want to concentrate on the former approach. Whereas in [2] the
emphasis was put on reproducing features of quantum Hall systems and the authors appealed
extensively to massless models, we want to treat here, in contrast, systems which are purely
massive. In particular, we want to investigate how the properties of unstable particles and
impurity resonances are reflected in a possible conductance measurement.

2. From conductance to masses of unstable particles

The direct current I through a quantum wire can be computed simply by determining the
difference of the static charge distributions at the right and left constrictions of the wire,
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i.e. I = Q R − QL . This is based on the Landauer transport theory, i.e., on the assumption [2, 3]
that Q(t) ∼ (Q R −QL)t ∼ (ρR −ρL)t , where the ρs are the corresponding density distribution
functions. For more details and a comparison with the Kubo formula, see [8]. Placing an
impurity in the middle of the wire, we have to quantify the overall balance of particles of type
i and anti-particles ı̄ carrying opposite charges qi = −qı̄ at the end of the wire at different
potentials. This is achieved once we know the density distribution ρr

i (θ, r, µi) as a function of
the rapidity θ , the inverse temperature r and the chemical potential µi . In the set-up described,
half of the particles of one type are already at the same potential at one of the ends of the
wire and the probability for them to reach the other is determined by the amplitude |Ti(θ)| for
transmission through the impurity. Therefore

I =
∑

i

Ii (r, µi ) =
∑

i

∫
dθ

qi

2
[(ρr

i (θ, r, µR
i ) − ρr

i (θ, r, µL
i ))|T 2

i (θ)|]. (1)

By definition, the DC conductance results as

G(r) =
∑

i

Gi (r) =
∑

i

lim
µi →0

Ii (r, µi )/µi (2)

and is of course a property of the material itself and a function of the temperature. In general,
the expressions in (1) tend to zero for vanishing chemical potential such that the limit in (2) is
non-trivial.

Let us now compute the density distribution by means of the TBA. As was pointed out
in [9], the TBA equations for a bulk system and a system with a purely transmitting defect
are identical. This is due to the fact that in the thermodynamic limit the number of defects is
kept fixed and is therefore insignificant in thermodynamic considerations. Therefore the same
equations also hold when we allow the impurity to be such that transmission and reflection are
simultaneously possible. We recall the main equations of the TBA analysis which are directly
relevant in this context; see [4] for more details and, in particular for the introduction of the
chemical potential, see [5]. For a detailed derivation of the TBA equations in this context
see [8]. The main input into the entire analysis is the dynamical interaction encoded into the
scattering matrix Si j(θ) of two particles of masses mi and m j and the assumption regarding the
statistical interaction, which we take to be fermionic. As usual [4, 5], by taking the logarithmic
derivative of the Bethe ansatz equation and relating the density of states ρi (θ) for particles of
type i to the density of occupied states ρr

i (θ), one obtains

ρi (θ, r, µi ) = mi

2π
cosh θ +

∑
j

[ϕi j ∗ ρr
j ](θ). (3)

By ( f ∗g)(θ) := [1/(2π)]
∫

dθ ′ f (θ−θ ′)g(θ ′) we denote the convolution of two functions and
ϕi j(θ) = −i d ln Si j (θ)/dθ . The ratio of the densities serves as the definition of the so-called
pseudo-energies εi(θ):

ρr
i (θ, r, µi )

ρi (θ, r, µi)
= e−εi (θ,r,µi )

1 + e−εi (θ,r,µi )
, (4)

which have to be positive and real. At thermodynamic equilibrium one obtains then the TBA
equations, which read in these variables

rmi cosh θ = εi(θ, r, µi) + rµi +
∑

j

[ϕi j ∗ L j ](θ), (5)

where r = m/T , ml → ml/m, µi → µi/m, Li (θ, r, µi) = ln(1 + e−εi (θ,r,µi )), with m being
the mass of the lightest particle in the model and T the temperature. It is important to note that
µi is restricted to being smaller than 1. This follows immediately from (5) on recalling that
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εi � 0 and that for r large, εi(θ, r, µi) tends to infinity. As pointed out already in [4], here, just
with a small modification of a chemical potential, the comparison between (3) and (5) leads
to the useful relation

ρi (θ, r, µi ) = 1

2π

(
dεi(θ, r, µi )

dr
+ µi

)
. (6)

The main task is therefore to solve (5) for the pseudo-energies from which all densities can then
be reconstructed. In general, due to the non-linear nature of the TBA equation, this is done
numerically. However, in the large-temperature regime, one may carry out various analytical
approximations. For large rapidities and small r , one [4] can approximate the density of states
by

ρi (θ, r, µi ) ∼ mi

4π
e|θ | ∼ 1

2πr
ε(θ)

dεi(θ, r, µi)

dθ
, (7)

where ε(θ) is the step function. To obtain this, we assume in (4) that in the large-rapidity regime
ρr

i (θ, r, µi ) is dominated by (7) and in the small-rapidity regime by the Fermi distribution
function; therefore,

ρr
i (θ, r, µi ) ∼ 1

2πr
ε(θ)

d

dθ
ln[1 + exp(−εi(θ, r, µi ))]. (8)

Using this expression, we approximate the current in (1) and for µR
i = −µL

i = V/2 the
conductance results as

lim
r→0

Gi(r) ∼ qi

2πr

∫ ∞

−∞
dθ

1

1 + exp[εi(θ, r, 0)]

dεi(θ, r, V/2)

dV

∣∣∣∣
V =0

d[ε(θ)|Ti(θ)|2]

dθ
. (9)

In order to evaluate (1) and (9) it remains to specify how to compute the transmission
amplitude. In principle, this can be done by exploiting the factorization equations which result
as a consequence of integrability. However, for systems with a diagonal bulk S-matrix these
equations are not restrictive enough and we will below simply use a free field expansion and
proceed in analogy with standard quantum mechanical potential scattering. Having obtained
Tj (θ) and R j (θ), one can construct the equivalent quantities for multiple defects from these
functions. Here we are particularly interested in a double defect. Placing the two defects of
the same type at x1 = 0, x2 = y, the total transmission amplitude T̂ j can be built up from
those of a single defect as [10]

T̂ j (θ) = T 2
j (θ)

1 − R2
j (θ) exp(i 2y sinh θ)

. (10)

Having assembled all the ingredients for the computation of G, we turn to the question
of how the properties of unstable particles are reflected in this quantity. Assuming that Si j (θ)

possesses a resonance pole at θR = σ − iσ̄ , the Breit–Wigner formula [11] allows us to
determine the mass Mc̃ and the decay width �c̃ of an unstable particle of type c̃:

2M2
c̃ =

√
γ 2 + γ̃ 2 + γ � 2(mi + m j )

2 (11)

�2
c̃ /2 =

√
γ 2 + γ̃ 2 − γ � 4mi m j (1 − cosh σ cos σ̄ ), (12)

where γ = m2
i + m2

j + 2mi m j cosh σ cos σ̄ and γ̃ = 2mi m j sinh |σ | sin σ̄ . The thresholds in
(11) and (12) result from energetic factors [12]. We will now demonstrate that besides unstable
particles, resonances in impurity systems can also be described by means of the Breit–Wigner
formula. An important consequence of (11) is that we can approximate the mass therein by
M2

c̃ ≈ (1/2)mim j (1 + cos σ̄ ) exp |σ | for large σ . Then, under a renormalization group flow
Mc̃ → rC Mc̃, the quantity Mc̃ ∼ r1

C eσ1/2 = r2
C eσ2/2 remains invariant. Once the unstable
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Figure 1. Conductance G for the SU(3)2 HSG model as a function of log(r/2) = log(m/2T ) for
various values of the resonance parameter σ .

particle can be created, it can participate in the overall conductance and one should observe an
increase at TC in G related to this process. For this interpretation to hold, we should observe
the following scaling behaviour of the conductance:

G(r1
C , σ1) = G(r2

C , σ2) for r1
C eσ1/2 = r2

C eσ2/2. (13)

rC is certainly not sharply defined, but taking for instance the mid-point between the beginning
and the end of the onset seems reasonably reliable. Here rC is the inverse of the critical
temperature rC = m/TC at which the unstable particle for fixed σ is formed. This means that
the identification of the onset in a conductance measurement will provide rC such that, for
given σ , the mass of the unstable particle can be deduced.

3. The homogeneous sine–Gordon model

The SU(3)2 homogeneous sine–Gordon (HSG) model is the simplest of its kind and contains
only two self-conjugate solitons, which we denote by ‘+’, ‘−’, and one unstable particle,
which we call c̃. The corresponding scattering matrix was found [13] to be S±± = −1,
S±∓(θ) = ± tanh(θ ± σ − iπ/2)/2, which means that the resonance pole is situated at
θR = ∓σ − iπ/2. Stable bound states may not be formed. It is known [10] that integrable
parity-invariant impurity systems with a diagonal bulk S-matrix, apart from S = ±1, do not
allow simultaneously non-trivial reflection and transmission amplitudes. This statement can
be extended to the parity-violating case [15]. We therefore treat (1) for a transparent defect,
i.e. |T | = 1. The results for the conductance obtained after solving the TBA equations for
µR = −µL = 0.25 numerically are depicted in figure 1.

Taking the limit µ → 0 is rather complicated when one does not have an explicit analytic
expression to hand, as in our case. However, we can take the result for finite µ as a very
good approximation, since we observe that G(r)/µ ∼ constant for small r . We observe the
onset of the unstable particle in the form of a relatively sharp increase in G and in particular
the validity of (13). The interpretation is clear: only when we reach an energy scale at
which the unstable particle can be formed can it participate in the conducting process. All
this information is encoded in the density ρr

i (θ, r, µi ). Also, the bound in (11) is respected.
Computing εi(θ, 0, 0) now in a standard TBA fashion (see, e.g., [16]), we predict analytically
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the plateaus from (9) at 2(1 +
√

5)/(5 +
√

5)π and at 1/2π . The latter value is obtained from
the fact that in the region in which σ 	 −2 log(r/2), the system can be viewed as consisting
of two free fermions such that (9) gives the quoted value.

4. The free fermion with impurities

The continuous version of the (1 + 1)-dimensional Ising model with a line defect was first
treated in [17]. Thereafter it was also considered in [10, 18] and [19] from a different point
of view. In [10, 17, 18] the impurity was taken to be of the form of the energy operator and
in [19] a perturbation in the form of a single fermion has also been considered. Here we also
include a further type of defect.

Let us consider the Lagrangian density for a complex free fermion ψ with � defects:

L = ψ̄(iγ µ ∂µ − m)ψ +
�∑

n=1

δ(x − xn)Dn(ψ̄, ψ), (14)

where we describe the defect by the functions Dn(ψ̄, ψ), which we assume to be linear in the
Fermi fields. In the following we will restrict ourselves to the case � = 2 with xn = ny and
Dn(ψ̄, ψ) = D(ψ̄, ψ). We compute the transmission amplitude as indicated in [10, 18, 19],
namely by decomposing the solution to these equations as ψ(x) = �(x)ψ+(x)+�(−x)ψ−(x)

and substituting them into the equations of motion. In this way we obtain the constraints

iγ 1(ψ+(x) − ψ−(x))|x=xn = ∂Dn(ψ̄, ψ)

∂ψ̄

∣∣∣∣
x=xn

. (15)

Using now the standard Fourier expansion for a complex free Fermi field, the transmission
and reflection amplitudes can be read off componentwise from (15) as the coefficients of
a†

j,−(θ) = R̄ (θ)a†
j,−(−θ), a†

j,−(θ) = T̄ (θ)a†
j,+(θ) etc.

Recalling now that for the free fermion the TBA equations are simply solved by
εi(θ, r, µi ) = rmi cosh θ − rµi , we compute

G(r) = r

2π

∫ ∞

0
dθ

cosh θ |Ti(θ)|2
1 + cosh(r cosh θ)

. (16)

To proceed further we have to specify the impurity.

4.1. The energy operator defect, D(ψ̄, ψ) = gψ̄ψ

From (15) we compute

R j (θ, B) = R̄ (θ, B) = − i sin B cosh θ

sinh θ + i sin B
, (17)

Tj (θ, B) = T̄ (θ, B) = cos B sinh θ

sinh θ + i sin B
, (18)

where we used a common parametrization in this context, sin B = −4g/(4 + g2). The
expressions R̄ (θ, B) and T̄ (θ, B) coincide with the solutions found in [10], which, however,
in general does not correspond to taking our particles simply to be self-conjugate, since we
use Dirac fermions. Using (17) and (18) we compute using (10) the conductance for a double
defect with varying distance y. The results of our numerical computations for the conductance
are depicted in figure 2.
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Figure 2. Conductance G for the free fermion with a double energy defect at distance y as a
function of the inverse temperature r = m/T .

In the high-temperature regime we can confirm these data once more by making some
analytical computations. From (9) we obtain

1

2π

(
cos2 B

1 + sin2 B

)2

� G(r, y) <
1

2π
. (19)

The lower bound becomes exact for y/r < 1. For B = 0.51 the values 0.0602 are well
reproduced in figure 2.

We observe a type of behaviour like that in the preceding section and again denote the
point of onset in the conductance by rC . Then, we deduce from our data the following scaling
relations:

G(r1
C , y1) = G(r2

C , y2) for r2
C y1 = r1

C y2. (20)

Comparison with (13) suggests that we can relate the distance between the two defects to the
resonance parameter as σ = 2 ln(constant/y). However, despite the fact that the net result
with regard to the conductance is the same, the origin of the onset is different. Whereas
in the previous section it resulted from a change in the density distribution function, it is
now triggered by the structure of |T̂ (θ)|. Since ρr keeps its overall shape and just moves
its peak with varying temperature, the onset has to occur when |T̂ (θ)| reaches its maximum.
Using (17), (18) and (10), it is easy to verify that |T̂ (θ = ln[(2n + 1)π/y])| ≈ 1. Drawing
now an analogy to the scattering matrix, this value plays the same role as θR and we therefore
make the identification

σn = ln[(2n + 1)π/y]. (21)

Having fixed the resonance parameter σ we may, in view of (20), relate the temperature to the
mass scale of the unstable particle, associated now with the resonance, analogously to in the
discussion after (13). However, there are some differences. Whereas in the HSG model the
onset is attributed to a single particle, the effect for the double-defect system is attributed to
several resonances. We make the identification σ ≈ σ0 + σ1. The other difference is that y
is now a measurable quantity, such that σ in (21) can be experimentally determined. On the
other hand, the sigma in (13) is usually a free parameter in the HSG-type models. Let us now
verify our observations for a different type of defect.
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Figure 3. Conductance G for the free fermion with two defects Dn(ψ̄, ψ) = ψ̄(g1 + g2γ
0)ψ at

distance y as a function of the inverse temperature m/T .

4.2. Luttinger-type liquid, D(ψ̄, ψ) = ψ̄(g1 + g2γ
0)ψ

There exist various ways to realize Luttinger-type liquids [20]. Taking the conformal limit
of the defect D(ψ̄, ψ) = ψ̄(g1 + g2γ

0)ψ , we obtain an impurity which played a role in this
context [21] when setting the bosonic number counting in there to one. In analogy with the
previous sections, we compute the related transmission and reflection amplitudes

R j (θ, g1, g2) = 4i(g2 − g1 cosh θ)

4i(g1 − g2 cosh θ) + (4 + g2
1 − g2

2) sinh θ
,

Tj (θ, g1, g2) = (4 + g2
2 − g2

1) sinh θ

4i(g1 − g2 cosh θ) + (4 + g2
1 − g2

2) sinh θ
.

The expressions for the particle ̄ are obtained by making the replacement g1 → −g1. The
results of our numerical computation for g1 = 0.7 and g2 = 0.2 depicted in figure 3 confirm
the same physical picture as that outlined in the previous subsection. Our analytical prediction
for the lowest plateau from (9) is 0.0324.

5. Conclusions

By using the TBA to compute the density distribution function and relativistic potential
scattering theory to determine the transmission amplitude, we evaluated the DC conductance
by means of equation (1). We demonstrated that the sharp increase of the conductance as a
function of the temperature can be attributed to the presence of unstable particles in the HSG
models or likewise to a resonance of a double-defect system.

We are grateful to the Deutsche Forschungsgemeinschaft (Sfb288) for financial support. We
thank F Göhmann for valuable comments.
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