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Abstract

For all affine Toda field theories we propose a new type of generic boundary bootstrap equations,
which can be viewed as a very specific combination of elementary boundary bootstrap equations.
These equations allow to construct general solutions for the boundary reflection amplitudes, which
are valid for theories related to all simple Lie algebras, that is simply laced and non-simply laced. We
provide a detailed study of these solutions for concrete Lie algebras in various representations. The
boundary bootstrap equations relating different types of exited boundary states are not automatically
solved by our expressions.

0 2004 Elsevier B.V. All rights reserved.

1. Introduction

Various general physical problems occurring in the context of dissipative systems
[1] or open string theory, e.g., [2], can be understood as quantum field theories with
boundaries. When restricting to integrable theories i1 1 space—time dimensions one
obtains some concrete realizations of systems in condensed matter physics, as for instance
when taking the sine-Gordon model with boundaries [3]. Affine Toda field theories (ATFT)
[4,5] provide the general framework for such type of applications. Describing for instance
guantum wires by minimal ATFT then even without boundaries the computation of the
conductance of these systems leads to rational filling fractions similar to those occurring
in the context of the quantum Hall effect [6]. Including also boundaries will capture the
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effect of the constriction of such wires [7]. It is therefore highly desirable to get a better
and complete understanding of ATFT with boundaries.

Similarly as in most other areas of physics, the majority of investigations on integrable
guantum field theories consists of the study of specific examples, that is particular models.
Certain general ideas and concepts can be studied very well in this manner. However, ulti-
mately one would like to have formulations which go beyond particular examples as they
will unravel better which features are model dependent and which ones are of a generic
nature.

In the case of ATFT such type of formulation exists for the scattering matrices in
1+ 1 space—time dimensions [8,9], where the space is a line extended infinitely in both
directions. The formulae found are of generic validity independent of the particular algebra
underlying the theory. The understanding is not this well developed when the theory is
considered in half-space (or finite), i.e., when the line is restricted by a boundary in one
direction (or possibly both). For such theories the Yang—Baxter equations [10,11] with
reflecting boundaries have been investigated first in [12,13]. Recently some universal
algebraic solutions for the Yang—Baxter equations for lattice models have been constructed
[14]. For a full fletched quantum field theory one needs further properties of these solutions,
such as unitarity, crossing invariance and the bootstrap equations, which were formulated
in [15]. The solutions for the latter system of equations for some affine Toda field theories
were first found in [15,16]. Later on, several other types of solutions for these theories have
been proposed and they have been investigated with respect to various aspects [17—-43]. In
particular the sinh-Gordon model has attracted a considerable amount of attention [44—
50]. Despite all this activities, up to now closed formulae similar to the ones mentioned
for the bulk theories have not been provided for the corresponding scattering amplitudes
when boundaries are included. Furthermore, for some algebras no solutions at all have been
found yet, even on a case-by-case level. One of the purposes of this paper is to fill in the
missing gaps, but the central aim is to supply universal, in the sense of being valid for all
simple Lie algebras and all particle types, formulae for the boundary scattering amplitudes
in affine Toda field theories.

Once the solutions to the boundary bootstrap equations have been found the question
remains whether these solutions are meaningful in the sense that a consistent quantum field
theory can be associated to them. This question will not be answered in this paper and we
will be content to construct closed solutions to the boundary bootstrap equations (2.7). The
closure of the “excited” boundary bootstrap equations (2.8), as discussed for affine Toda
field theories for the first time in [18], will not be the subject of this paper and only briefly
discussed for one example. In general, it is not guaranteed, that our expressions will solve
also these equations, but they can always be taken as seeds to achieve this.

Our manuscript is organized as follows: in Section 2 we recapitulate the key ideas of
the scattering theory with reflecting boundaries and emphasize the possibility of using
certain ambiguity transformations to construct new solutions for the boundary reflection
amplitudes. Section 3 contains our main result. We discuss here the solutions of the
combined bootstrap equations. We first recall the analogue procedure for the bulk theory
and thereafter adapt it to the situation with reflecting boundaries. We provide generic, in the
sense specified above, solutions for ATFTs in form of integral representations as well as the
equivalent products of hyperbolic functions. In Section 4 we provide the explicit evaluation
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of our generic expression for the reflection amplitudes for some ATFTs related to some
concrete Lie algebras. In Section 5 we demonstrate in detail how our solution can be used as
a “seed” for the construction of other types of solutions, in particular we show how one may
obtain from our solution, which respects the strong-weak duality in the coupling constant,
a distinct solution in which this symmetry is broken. We provide a brief argument on
how within the bootstrap context free parameters enter into theories related to non-simply
laced algebras as well as the sinh-Gordon model. We state our conclusions in Section 6.
In Appendix A we supply the details for the evaluation of the inversteformed Cartan

matrix and the kernel entering the integral representation of the reflection amplitudes.

2. Scattering theory with reflecting boundaries

We briefly recall some well known results in order to fix our notation and to state the
problem. Exploiting the fact that the scattering of integrable theoriestirl dimensions
is factorized, one may formulate the theory with the help of particle creation (annihilation)
operators for the particle of typemoving with rapidityd, say Z; (0), and a boundary in
the statey, referred to a¥,,. Throughout this paper we denote particle types and boundary
degrees of freedom by Latin and Greek letters, respectively. The operators are assumed to
obey certain exchange relations, the so-called (extended) Zamolodchikov algebra,

Zi(01)Z(62) = S} (012 Zx (62) Z1(61), 2.1)
Zi(0)Za = R} (0)Z;(—0)Zp. 2.2)

We abbreviate as usuél, = 61 — 6». In this paper we restrict our attention to purely
diagonal theories, i.e., absence of backscattering

sH©0)— 87©0)=5;0) and R ©®) — RIZO) = Ria (0). (2.3)

In the context of affine Toda field theories this corresponds to the well-known fact that
the coupling constant is real, such that there will not be any solitons in the spectrum, but
exclusively particles. In addition we do not distinguish whether we have left or right half-
spaces, i.e., if the particle hits the boundary from the left or right. This means we assume
parity invariance. Eq. (2.2) expresses the fact that the pattisleflected off the boundary

by picking up a boundary reflection amplitude is changing its sign of the momentum

and of course that the particle always has to stay on one particular side of the boundary.
The amplitudes obey the crossing and unitarity equations [51-54]

Sij(0)S;i(—0)=1, Sij(0)=Sji(im —0), (2.4)
Riq (0)Ria (—0) =1, Rig (0) Rig (0 + i) = S;i (20). (2.5)

Most restrictive and specific to the particular theory under investigation are the bootstrap
equations [15,55-57]

Sik(0) = i (0 + i) S (60 — i) (2.6)
Ria(0) = Ria (6 + inf) Rjo (6 — i’ ) Sij (20 + il + in'y). (2.7)
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where theﬁk € R are fusing angles which encode the possibility that the pracegs— k

takes place, i.e., partickecan be formed as a bound state in the scattering process between
the particles and j. The amplituder;, (6) might have single order poles and residues
satisfying—i ResR(9) > 0, at sayy = ”fa which are interpreted as+ o« — S, that is the
particlei can cause the boundary to change from the statdo the state8. This process

is encoded in a second type of boundary bootstrap equations [54]

Rjg(0) = Rjo(©)Si; (6 +in’.)Sij (6 —inl). (2.8)
As in the bulk theory the solutions to these equations are not unique and there are various

ambiguities which can be used to construct from a known soluRigni9) of Egs. (2.5),
(2.7) and (2.8) a new solutioR; , (0)

Rix(6, B) = R|,(0, B) = Ry (0 +im, B), (2.9)
Ria (0, B) > Rio (0, B) = Ria 0, B)[ | 810, B), (2.10)
Riw(®,B)— R, (6,B,B) = Riy (6 B)]_[e S;i (0, B)) (2.11)
1404 ’ ia ’ ’ 1404 ’ j:l 1] ’ ’ .
Rix (0, B) —> Rz{a(g’ B)=R;,0,B") fif S;ij (0, B) = S;; (0, B). (2.12)

Itis clear that (2.9) always holds [16] due to the fact thiat= S;;. The validity of (2.10)

was noted in [18] for some values gfand in general the new, (9) can be related

to a boundary in a different state, such as for instaRgg6) [18]. The possibility to
construct a new solution in the form (2.11) was pointed out in [17], wheatenotes here

the total amount of different particle types in the theory. We have also stated explicitly
some dependence on the effective coupliv@r B’, which will be most important for

what follows. The relevance of this is that we may change by means of (2.11) from a
solution which respects a certain symmetry in the coupling constant, such as the strong-
weak duality, to one in which this symmetry is broken. The relation (2.12) expresses the
fact that once the bulk theory respects a certain symmetry we may construct a new solution
for the boundary reflection amplitude in which this symmetry might be broken by replacing
the coupling according to the bulk symmetry.

Let us briefly comment on the status of explicit solutions to the boundary reflection
amplitude consistency equations (2.5), (2.7) and (2.8). For the particular example of affine
Toda field theory related to simply laced algebras solutions to these equations were already
constructed in [16]. Later on various other types of solutions have been proposed and in-
vestigated with respect to various aspects [17—43]. As we shall demonstrate, essentially all
these solutions can be related to each other or further solutions by means of (2.9)—(2.12).
With regard to the above stated problem of finding closed solutions, not much progress has
been made in the last ten years. Closed solutions which respect the bulk duality symmetry
B — 2 — B for the A and D series were already found in [16]. Therefore, these type of
solutions reduce in the strong as well as in the weak coupling limit to the same limit, such
that if one would like to construct a solution which relates two different types of boundary
conditions in these extremes, as proposed in [19], one has to break the duality symmetry. In
[39] Fateev proposed a conjecture of such type for all simply laced algebras in form of an
integral representation which generalizes a solution foAteeries of [19,32], the latter be-
ing simply related to the original one in [16] by the ambiguity transformations (2.9)—(2.12).
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However, apart froan,l), the conjecture of [39] provides in general only a solution of the
crossing-unitarity relations (2.5). A solution for the boundary bootstrap equation (2.7) is
only proposed in some cases for some particular amplitudes. A conjecture of a similar
nature for some ATFTs related to some non-simply laced aIgeIBfé& C,El), Agi)) was
formulated in [41]. Here we aim to fill in the missing gaps, that is provide solutions for the
amplitudes and algebras not treated so far. Moreover rather than just stating the solution
as a conjecture, we propose a systematic and unified derivation for all Lie algebras, which

was absent so far.

3. Solutions of the combined bootstrap equations
3.1. Bulk theory

We recall now the key idea of how a universal expression for the scattering matrix can
be constructed in the bulk theory and adapt the procedure thereafter to the situation with re-
flecting boundaries. As already mentioned, the central equations for the construction of the
scattering matrices when backscattering is absent are the bootstrap equations (2.6). These
equations express a consequence of integrability, namely that when two partahes |
fuse to a third k), it is equivalent to scatter with an additional particledither with the
two particles before the fusing takes place or with the resulting particle after the fusing
process has happened. In principle, all these “basic” bootstrap equations (2.6), together
with the constraints of crossing and unitarity (2.4), are sufficient to construct solutions for
the scattering amplitudes. Proceeding this way is in general a quite laborious task when
carried out for each algebra individually. However, in [8] it was noted that for affine Toda
field theories there is one very special set of equations which may be obtained by substi-
tuting the previously mentioned “basic” bootstrap equations (2.6) into each other in a very
particular way and which were therefore referred to as “combined bootstrap equations”

AN

S @ +n)Si; 0 —n) =[] Six (0 +6}3)- (3.1)
k=1n=1

In order to keep the writing compact, the following abbreviations will be useful

n; =06 +t0q, 9;; = (2n—1—1ij)9H, (3.2)
in(2—B inB
on :=%=i7ﬂ9h, Oy = 5T =invy. (3.3)
The affine Toda field theory coupling constgnis encoded here into the effective coupling
2Hp?
__2HP" (3.4)
HPB2+4rh

We recall that ATFTs have to be considered in terms of some dual pairs of Lie algebras,
where the classical Lagrangian related to one or the other algebra is obtained either in the
weak or strong coupling limit. For more details on this viewpoint and some of the argu-
ments which led to this picture we refer the reader to [8], where this is reviewed including
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the relevant references. Heteand H denote the respective (generalized) Coxeter num-
bers. The integers symmetrize the incidence matrix i.e., I;;t; = I;;; and are either

t; = 1 or equal to the ratio of the length of long and short rapts oziz/asz, with o, being

a short root. For more details on the notation see also [8].

The remarkable fact about Eq. (3.1) is that it contains the information about the entire
bulk scattering theory. Just by solving these equations [8] one may derive universal
expressions for the scattering amplitudes &dir particle typesi,j andall simple Lie
algebras. In form of an integral representation the solutions acquire a particularly compact
and neat form

Sij (0, B) :exp/ ﬂd%,-(t)sinh(,@—t), (3.5)
t 17T
0
with
@; (1) = 8sinh1) sinh(tiﬁHt)Ki;l(t), (3.6)

Kij(t) = 2costut + t;9u1)8ij — [ijlge = (43" +q G ")8;j — i1z, (3.7)

where we used the standard notatiorl, = (¢" — ¢™")/(¢* — ¢~1) for g-deformed
integers. The deformation parameters are related to the coupling constant arid) ate
expt¥,) and g(r) = exp(tdy). In fact the only relevant cases here for the deformed
incidence matrix arg0l;;) = 0, [l = 1, [2l5¢) = 2cosiPyt) and [3]5) = 1 +
2cosh2d ).

In [8] the combined bootstrap equations (3.1) were derived by translating an identity in
the root space of the underlying simple Lie algebras into an expression for the scattering
matrices. We present here a much simpler heuristic argument on how to obtain (3.1) which
is suitable for a generalization to the situation with reflecting boundaries. For this purpose
we can formally assume the following operator product identity

JAf

Zi©+n)Zi® —n) =[] []2e(0 +065). (3.8)

k=1 n=1

Itis then clear that the combined bootstrap equations (3.1) follow immediately when we act
on both sides of (3.8) witlz ; (¢") from the right (left) and move it to the left (right) subject

to the exchange relations (2.1). As such, this is a rather evident statement, but the relation
(3.8) will lead to less obvious results when reflecting boundaries are included. Here we
employ (3.8) only as a very useful computational tool, but it would be very interesting to
have a deeper physical understanding of this identity as well as of the combined bootstrap
equation (3.1). Note that for each concrete algebra we can disentangle precisely in which
way (3.1) can be manufactured from the “basic” bootstrap equations (2.6), but at present
we are not able to provide a general construction scheme which achieves this in a case
independent manner.
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3.2. Theory with reflecting boundaries

Let us adapt the above arguments to the situation with reflecting boundaries. In that
case we have besides the exchange relations (2.1) also the relations (2.2) at our disposal.
We act now with each product of particle states on the left- and right-hand side in the
identity (3.8) on the boundary stafein such a way that each individual particle hits this
boundary state. For simplicity we suppress here for the time being the explicit mentioning
of the boundary degree of freedoii(— Z) and assume that the boundaries remain in
the same state during this process of subsequent bombardment with particles. Ensuring
that all particles have contact with the boundary and considering thereafter the resulting
state, amounts to saying that an asymptotic in-state is related to an out-state by a complete
reversal of all signs in the momenta. Viewing then the asymptotic states obtained in this
manner as equivalent, we derive a set of “combined boundary bootstrap equations”

R; (6 + 77i)R'(9 —1;)Sii (20)

—HHR O+or) ] SuCo+en+or)

j=1n=1 1<n<m <)

l] lik

< J1 TIT]six(20+6}+65). (3.9)

1< j<k<l n=1m=1

The occurrence of the bulk scattering matrices in (3.9) is due to the fact that after a
particle has hit the boundary a subsequent particle can only reach the boundary when
it first scatters with the particle already returning back from the boundary, sucls that
always depends on the sum of the rapidities of the originally incoming particles. The
product]‘[1<n<m<, involving particles of the same type only emerges for non-simply
laced algebras. Eqs (3.9) are central for our investigations and we can regard them as
the analogues of (3.1). Therefore, we may expect that they contain all informations of
the boundary reflection. Let us solve them similarly as in [8,15,16], that is we take the
logarithm of (3.9) and subsequently use Fourier transforms. For this we define first

1 , 1 .
INR;(6) = Z/dte”erj(t) and InS;;(20) = Z/dte”eskj(t) (3.10)

such that from (3.9) follows
¢

Z |:Kij (Orj(r) — Z sjj (t)e(e[‘jw;;')/z]

1<n<m <)

l] lik

S] n] ‘IZ — 8 . .
= 2 DY s — i) (3.11)

1<j<k<tl n=1 m=1

The important difference in comparison with the bulk theory is that this equation is
non-homogeneous, in the sense that besides the quantity we want to deteriiines
contains terms involving quantities we already know, namgly). We can use this to
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our advantage and solve this equation fgt), using the integral representation for the
scattering matrix (3.5). Thus we obtain the main result of this paper, namely a closed
expression for the boundary reflection matrix valid for affine Toda field theories related to
all simple Lie algebras

o
R; (6, B) =exp/ %pﬂt)sinh(,e—t), (3.12)
LT
0
with kernel
1 ¢ .
P =5 > [K0]0" 0Pk /), (3.13)
jvk9p=l
Ij—1
kp
X" == 80l garelljplge —28u8j, +2 ) [nlgdep. (3.14)
n=1

In the simply laced case the tengpreduces to

k

X" = Lixlip = Spiljp —28jx8p- (3.15)
In the derivation we made use of parity invariance, that is we wg€d = s;; (r). To the
particular solution we constructed from (3.9) we refer from now on alwayg, &, B)

in order to distinguish it from other solutions which might be obtained by means of the
ambiguities (2.9)—(2.12).

3.3. Integral representation versus blocks of hyperbolic functions

The integral representations (3.1) and (3.12) are very useful starting points for various
applications such as the computations of form factors or the thermodynamic Bethe ansatz.
However, one has to be cautious when one analytically continues them into the complex
rapidity plane as one usually leaves the domain of convergence when one simply carries out
shifts in6. In addition, the singularity structure of the integral representation is not directly
obvious. Therefore one would like to carry out the integrations which for the above type of
integral always yield some finite products of hyperbolic functions. A further reason why
we wish to carry out the integrals is that already many case-by-case solutions for the above
theories exist in the literature, which we want to compare with.

When performing the integration, the scattering matrix of affine Toda field theory (3.5)
may be represented in the form [8]

h H
5ij@ =[] [Tt e (3.16)

x=1y=1
where

_xyle T dt hH . ﬂ
{x,y}p:= 7[x,y]—e _exp/ Sinfr 1y (t)smh(in), (3.17)
0
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with
oyl SiNh[0 + (x — 1O, + (v — DOx1SINh3[0 + (x + 1)6), + (v + 1oy ]
0= Sinh3[0 + (x — Dy + (v + DOx1sinh3[0 + (x + Do) + (y — DOx1’
(3.18)
£ (1) = 8sinh(wy1) sinh(@ 1) sinh(t — x4t — yout). (3.19)

The powersu;;(x, y) are semi-integers, which can be computed in general from some
inner products between roots and weights rotated by spmieformed Coxeter element
[8,9].2 Alternatively, one can determine them also from the generating function

2h 2H 1 g%geH L
Mij(q. @)= 3 mij(x, )4"q" = ———K;'Olt)1g. (3.20)
x=1y=1

For this we have to VieV\Ki_-l(t) in the g-deformed formulation (3.7) and expand the
right-hand side of (3.20) into a polynomial gnandg. For simply laced theories one could
use simpler functions as in that case the two dual algebras coincide, suéh=thidtand
{x,x}s =: {x}p. The advantage of the formulation (3.20) is that it allows for a unified
treatment of all algebras.

We can proceed now similarly for the reflection amplitudes and seek to represent them
in the form

2h 2H .
Ri@) =[] [T ylgh™, (3:21)
x=1y=1
where
(x, y) [ d 0
X, Y¥)o t ~h H . t
, = =e . ) sinhf — ), 3.22
vl i= e [ it (m) (3.22)
0
with
sinhi[o + 2510, + 252041 sinhd[o + 2tLe, + 2o
<x’ o 2[ 2 Yh 2 H] 2[ 2 Vh 2 H] (323)

0= — : 2 ,
sinh3[0 + 2520, + 2326y 1sinhi[60 + 2516, + 1 20y]
th’,yH(t) = 8sinh¥,t/2) sinh(®yt/2) sinht — x 9,1 /2 — yOyt/2). (3.24)
In this case we deduce the semi-integerée, y) from

2h 2H
Mi(g. )= Y ii(x.y)q"/%q"/?
x=1y=1

_ 1— qZthZH

5 [K~'0],; Xf”[Kfl(t/z)]kp [tp)g1/2. (3.25)

3 As is known for more than ten years, in the special case of simply laced Lie algebras one can use the simpler
formulation in terms of ordinary Coxeter elements [58,59]. However, this formulation will not be used here.
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Once again for the simply laced cases this becomes gfsiellg =: || x|lg, which equal
the blocksW,_, (6) used in [16]. For the non-simply laced cases we have in principle two
possible algebras, whose Lie algebraic properties we can relate to. We make here the choice
to express everything in terms of the non-twisted algebra. Clearly one can also formulate
equivalently a generating function in terms of its dual as carried out for the bulk theory in
[8], but as this does not yield new physical information, we shall be content here to do so
for one algebra only.

In the following, we also abbreviate some products of the above blocks in a more
compact form

n—1 n—1
(ol = [Tory+20, I yalla = [ ] Ix. v+ 211, (3.26)
1=0 1=0
and
{1, 1 x2, 5% s xn Yl b = e yadp 2, y2be Z o by (3.27)
|1 y3%s x2, 52 s v | = s yally ez, y2lly? - lloas yully”. (3.28)

For completeness we also introduce here a more elementary block which will be useful for
the comparison with results in the literature

sinh® +imx/h)/2

)0 = e — imx/ By 2

[e.¢]

dt . ., ot
= —exp<2/ Sinfr smht(l—x/h)smh;). (3.29)

0

We shall also use below the blocks

(X l)(X+l h)

”-x”0 = (x 1+B _h)(x+173)’ (330)

(h+x l)(h x+l)(h+x l+B)(h X+1 B)

(3.31)

” ”9 = (h+x+l)(h xX— l)(h+x+l B)(h X— 1+B)

which break the strong weak-duality.

By evaluating (3.25), we can determine case-by-case the powers in (3.21). For the
simply laced case, it will turn out that our solutions coincide with the ones found by
Kim [60] upon the use of the ambiguity (2.9)or the non-simply laced cases only two
specific examples have been treated in [61]. On further solutions related to non-simply
laced algebras we shall comment below.

4 \We are grateful to J.D. Kim for informing us that hep-th/9506031 is published in [60] and that there is some
discrepancy between the two versions.
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4. R; (9, B) case-by-case

We shall now be more concrete and evaluate our generic solution of §24)B) in
more detail for some specified Lie algebras. We compare with some solutions previously
found in the literature. As our solutions are invariant under the strong-weak duality
transformation we commence by comparing with those being of this type also. Apart from
the Aél)-case, we postpone the comparison with other types of solutions to Section 5.

For the simply laced algebras the closed solution (3.12) admits an even simpler general
block formulation

h
Ri@ +im By =[] 12 - 1l ( TT il - 2h||e>, (4.)

x=1 xeX;

where the integers; are defined through the relati(}_r[f.:l Sij(0) = ]‘[fizl{x}g" and the

sets X; are specific to each algebra. At present we do not know how a general case
independent formula which determines the sgts

4.1. Ale)-affine Toda field theory

4.1.1. Aél)—affine Toda field theory

Let us exemplify the working of the above formulae with some easy example. As
the sinh-Gordon modeM((ll)—ATFT) is very special [44-50] and exhibits a distinguished
behaviour from all other ATFTs related to simply laced Lie algebras, we consider the next
simple case, namelyﬁzl)-ATFT. This was already studied in [15,16,19] and especially
detailed in [31]. The Coxeter number ks= 3 in this case. The essential Lie algebraic
input here is the inverse of thedeformed Cartan matrix (3.7)

1 1 2cosh/h 1 )
K~0= 1+2cosh2/h ( 1 2cosh/h )’ (4.2)
With this we compute from (3.13) and (3.15)
. . SINN(B — 2)t/12] sinh(Bt /12) cosHt /6)
prt) = p2(1) = 16 1+ 2cosh2:/3) ' (43)
and (3.25) yields
R1(6, B) = Ra(0, B) = R1(6,2— B) = |7, 7ll4 119, 9lls, (4.4)
= —(—1)9(—2)5(1+ B/2)g(3— B/2)g(B/2+ 2)9(2— B/2)s. (4.5)

We compare now with various solutions constructed before in the literature and demon-
strate that they can all be related to our solut®rby means of the ambiguities (2.9)—
(2.12). We can drop the subscripts and &#ge= R, = R. In [31] the following solutions
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were studied in detail

RN®@, B)=RN®@H, B —2—2n) =Rt (©6,2— B)

=(=2)9(=B/2)¢(2+ B/2)g, (4.6)
R (0,B)=R " (0,B—2—2h)=—(—1)9(B/2—1)g(3— B/2)g, (4.7)
R*T(6,B)=R** (6, B—2—2h)=RN®®,2— B)

=(=2)9(B/2—1)s(3— B/2). (4.8)

The solutionkRNeY(9, B) was already found in [15] and several arguments were provided
in [31] to identify it with the Neumann boundary condition. In additiaR!* (0, B)

was related to the fixed boundary condition. T~ (6, B) doubts on a conclusive
identification were raised. Using now the expressions for the scattering matrix [62]

511(0, B) = S22(0, B) = (2)9(B — 2)¢(—B)s, (4.9)

S12(0, B) = $21(0, B) = —(1)¢(3+ B)o(—1— B)g, (4.10)
it is easy to see that our solutidhis relatable to the above ones

RN®Y0, B) = R(0, B)S11(0, B/2)S12(0, B/2), (4.11)

R~™(,B)=RO +im, B)/S11(6, B/2)/S12(6, B/2), (4.12)

RT (6, B) = R(0, B)S11(0, 1 — B/2)S12(6,1— B/2). (4.13)

Thus we have changed by means of some ambiguities from a solution which respects the
strong-weak duality transformatio® — 2 — B to one in which this symmetry is broken

and replaced by the new symmey— B — 2 — 2h. The solution investigated in [60] is
related to our solution by (2.10)

RX6,B)=R® +in, B). (4.14)

For all amplitudes which were computed in [60] related to simply laced Lie algebras,
the relation (4.14) always holds. The perfect agreement is quite remarkable as Kim
constructed in [60] the solutions by starting from the lightest particle and then by explicitly
bootstrapping (2.7) to the heavier particles, whereas here the solutions are found by solving
(3.9).

4.1.2. Generiaﬂ\él)-aﬁine Toda field theory
We label the particles according to the Dynkin diagram

Qg Qo Qg Q2 Qp—1 Qy
o—0 0 ——0—©

T

The Coxeter number i5 = ¢ + 1 in this case. We indicated also the automorphism which
relates the particles of typgto their anti-particles: — j. From the formulae derived in
Appendix A.1, we compute now the kernel of the integral representation (3.12) to

Ay 4sint 2.8t sinhZL cosh sinh(4;1 ) sinh4! sinh(24 ) (4.15)
j - ; ! ai t ’ '
sinht coshy sint?



O. Castro-Alvaredo, A. Fring / Nuclear Physics B 682 [FS] (2004) 551-584 563

Solving the integral or more practical using the generating function (3.25), we transform
this into the block representation (3.21) and find

Jj h—p
Rj@+im, By=Ry_j0+im. B)=[] []I2k—1lls forj<h/2 (4.16)
p=1lk=p

We used here the well-known relation between particles and anti-particles indicated above.
For j = 1 our solution coincides with the amplitude found in [60] shiftedibyin the
rapidity. More solutions were not reported in [60] for this algebra.

Co['nputing]'[f.=1 Sij©) =TT)-1 Hﬁ;ﬁ{k}e, we note here the additional structure (4.1)
with X; =@ for 1 <i < ¢.

4.2. D,El)-affine Toda field theory

We proceed now similarly and label the particles according to the Dynkin diagram

Q-1

()ég,;

Qy

In the Dy-case the Coxeter numberis= 2(¢ — 1). As indicated most particles are self-
conjugate apart from the two “spinors” at the end which are conjugate to each other.
From the formulae derived in Appendix A.2, we compute now the kernel in (3.12) for
1<j<t—-2to

. _ . _ . . iV - i
(1) — 16 sint( %L ) sinh 82 cosh22" sinh? sinh Y5 sinh 4 4.17)
J sinht sini? 4
and for the spinors
D D
Py ‘(= pgfl(t)
8sinh(Z;E )1 sinh 2L sinh U5 ginh (L2121 gjny /2] (4.18)

; inh ! cinh .t
sinht sth smhﬁ

Solving the integral in (3.12) or using the generating function (3.25), we find the following
compact and closed expressions for the reflection matrices in terms of hyperbolic functions

j j h-p
Rj(0+im)= |:H||h—2k+1||:| [TT]02k—11 forj=1,....¢-2
k=1 p=1k=p
(4.19)
[¢/2] h—2p+1
Ry +im)=Rea@+im)=[] [] 12-1l. (4.20)

p=1k=2p—-1



564 O. Castro-Alvaredo, A. Fring / Nuclear Physics B 682 [FS] (2004) 551-584

For Dfll) our solution agrees with the one reported in [63] when shiftedsbyn the
rapidity. This is one of the few examples for which a perturbative calculation has been
carried out, using Neumann boundary conditions in this case. For higher ranks only a
solution forj = 1 was also reported in [60], which once again coincides with ours subject
to the relation (4.14).

Computing novv]'[‘j-=l Sij (0)¢, We note thai® admits the alternative form (4.1) with

&

=0 fori=14¢-1,¢, (4.21)

U (h+4k-20i-1) fora<i<e-2 (4.22)
1<k<[(2i+1)/4]

t

i

4.3. Eél)-affine Toda field theory

The labeling of the particle types is now according to the Dynkin diagram

(e%)
o] a3 Qg 5 Qg
S~

The Coxeter number equals= 12 in this case. We indicated the conjugation properties.
From the formulae derived in Appendix A.3, we can obtain the integral representation
(3.12) from which we deduce the block representation (3.21) directly or use the generating
function (3.25). We find

Ri(0+im)=Re(0 +im) =135 7% 94114134154 17:19,21||,,  (4.23)
R3(6 +im)=Rs(6 +im)

= |1;3% 5% 74 9% 11% 134 15% 173 19% 21, (4.24)
Rp(0 +im) = |1;3; 5% 73 9% 113,13 15% 17%, 19, 21, (4.25)
Ra(0 +im) = |1; 3% 5% 76, 9% 11°% 13°, 15% 173, 1% 21 . (4.26)

This solution coincides precisely with the amplitudes found in [60] shiftedoyn the
rapidity. We note here that the structure of the blocks in (4.23)—(4.26) can be encoded
elegantly into the form (4.1) with

X=X =0, X=X =(7),
X8 =11,  X°={579) (4.27)
4.4. Egl)-affine Toda field theory

The labeling of the particle types is now according to the Dynkin diagram
as

(051 Qa3 a4 Q5 Qg [0%4
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The Coxeter number equals= 18 for E7. All particles are self-conjugate. Using the
formulae of Appendix A.4, we can again either solve the integral (3.12) or use the
generating function (3.25) and deduce the block representation (3.21). We find that these
amplitudes coincide precisely with those reported in [60] (published version) when shifted
by i in the rapidity. We note here once more, that they admit the additional structure (4.1)
with

X =17, X7 ={11, X7 ={7,1115),

X7 =15,7,9% 11,13, 17}, (4.28)

XFT=1{7,9,11,15), X' =917, A =0 (4.29)
4.5, Egl)-affine Toda field theory

In this case we label the particles according to the Dynkin diagram

2

aq [0 %3 Q4 Qs g a7 as

The Coxeter number equals= 30 for Eg. All particles are self-conjugate. Using the
formulae of Appendix A.5, we can solve the integral (3.12) or use the generating function
(3.25) and deduce the block representation (3.21). Once more we find that these amplitudes
coincide precisely with those reported in [60] (published version) when shifteer by

the rapidity. They admit the additional structure (4.1) with

X8 =(17,29),  X,®={111519 23),

Xy = {7,11,13,15,17, 19, 23,27}, (4.30)
X8 =15,7,9%,112,13%, 152, 178, 19, 21%, 23, 25%, 29), (4.31)
X8 = {7,9%,112,13 15%, 17,19, 21, 23, 27}, (4.32)
X8 =19,11,13 17,19, 21, 25,29},

X8 ={11,19,27),  X3°={29. (4.33)

4.6. (B(l),A(zill)-aﬁine Toda field theory

As not many examples for reflection amplitudes of ATFTSs related to non-simply laced
Lie algebras have been computed, we consider it useful to start with some specific example
before turning to the generic case. In general we label the particle types according to the
Dynkin diagram

a1 oz Qg g1y Qg &1 Qo Qv Qap—2 Q201
o—0 o—0 —— o—0

~——
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4.6.1. (Bél), Agz))—affine Toda field theory

In this case we have for the (generalized) Coxeter nuniberd, H = 6, the incidence
matrix I12 = 2, I>1 = 1 and the symmetrizerg = 2 andr = 1. This is already enough
Lie algebraic information needed for the computation of the relevant matrices in equation
(3.13). We obtain

K1) =

1 (cosht(z?h + %) coshtdy ) (4.34)

coshy /2 1/2 cosh (9, + 29g)

With the help of this matrix we can evaluate the scattering amplitudes (3.5) and (3.12).
Alternatively we may compute the representation in terms of blocks from this. The
expression (3.16) yields

§11(0) = {1, 1}{1, 313, 3}{3, S}s,

S22(0) = {1, 143, S}s, S12(0) = {2, 21{2, 4}¢ (4.35)
and (3.21)

R1(0 +im) =1, 1|11, 31113, 311113, 511113, 711115. 5lle. (4.36)

R2(6 +im) = |I1, 1113, 311113, 51115, Ollg- (4.37)

The solutions (4.36), (4.37) correspond precisely to those found by Kim in [61] after
re-defining the effective coupling a8 — B/2 and shiftingd by iwx. These solutions

are especially trustworthy as they have also been double checked against perturbation
theory. As the non-simply laced cases are not yet covered very much in the literature,
we consider it useful to perform some more analysis at least for this case. Let us study
the bootstrap equation (2.8) which relates different boundary states to each other in more
detail. Adopting here the same principle as in the bulk, see [8,18] and references therein,
namely that-i ResR(6 = n) > 0 in the entire range of the coupling constant we find here

—iRe§_ s g g, Ria®+im) >0, (4.38)

Solving for this angleyga the bootstrap equation (2.8) yields

Riq (8) = Si1(—0)Rip (0). (4.39)
Considering now the new solutia®z (6), we observe that

—i Re%_)ngﬂ:3gh+59H Riﬂ O +imr)>0. (4.40)

These are the only poles with the property to have positive definitive sign in the entire
range of the coupling constant, such that we have just the two boundary @tatess.
The corresponding energies are computed in the same way as in [18,54]. Using that

m1=msinh(20, +49y) and mo=msinh6;, + 0g), (4.42)
with m being an overall mass scale, we find for the energies of the two boundary states
Ey,=Eg — m2coshoy +6n)=Eg—my1/2, (4.42)

such that it appears that Kim’s solution is not the ground state. When performing the same
analysis for our solutior®; (9) we find that there is no simple order pole which respects
(4.38), such that there is only one state in that case.
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4.6.2. Generic{BEl),Ag)_l)—afﬁne Toda field theory

In this case we havé = 2¢ and H = 2(2¢ — 1). The task of finding general block
expressions for all reflection amplitudes, such as for instance in (4.16&2}%rturns
out to be quite involved in this case and therefore we present only closed expressions
corresponding to some specific particles. For the first particle we fingl-fo2

REUALD g 4 i )
2(6—1)
=|h—1.1H=3lzh+1H-1|, [] |2k+1 143k,
k=0+1
-2
x [ [ll2k + 1. 14k + 112, . (4.43)
k=0

whereas for the second with£ 2, 3 we obtain

M AD
RY Y0 4 in B)

1,13h—3,[H—T7l3;h—3,[H —5l2; h — 1,[H — Sla;
h—1H-1h+1[H-1l2h+1 H+5h+3[H+3];

-2
h+3, H +3; 2h — 3, [2H — 71z, [ ] | 2% + 3. 14k + 512 2
k=0
2(6—1)
x T ll2x+3. 14k + 1122 (4.44)
k=0+1

For the last two particles the amplitudes are
1) A
RE 2 (g 4 in B)
-2
= 1_[||2k+ 1, [4k + 1]2; 2k + 3, [4k + 3]3; 4k + 5,8k + 5],
k=0
-2
x [ ]2k + 3. 4k + 5: 4k + 3, [8k + 1]2: 4k + 3.8k + 7|,
k=1
=4 2(6—n—2)
x ]‘[ ]‘[ |2k + 1, [4k — 314
n=0 k=C—n

M 7A@
R (BZ ’A2K71)
¢

. (4.45)

0 +in, B)

-1 £—2 2(L—n—1)
= []‘[ 14k + 1, 8k + 1||9] IT 1 l2-1 14k -5, (4.46)

k=0 n=0 k={—n
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In particular, one can easily specialize these functions to reproduce the exdmpk$
treated in the previous subsections. We also report hereé for, the corresponding
integral representation which is given in terms of the kernel,

¢
BUAL D ] L ke g B A D -
Z [k Be Az (t)]zj' X; [K B Az (t/Z)]kp [tplg1/2
jvk9p=l
s W th (8, +29 )
4 sinh=== =)

sinhz sin

(04 1205)
h 2

sinht (%, + 29g)
1(21- H)dy — Hz?h))
) .

As the expressions for the other amplitudes turn out to be rather lengthy we do not report
them here, but it should be clear how to obtain them.

( COSh“’% Sinht(l9h+2194ﬁ)(2—h) sinh2@x (h—l)-ﬁfﬁy (h—=2))

th(v 29 .
(O + H)SI

+ cosh nh

(4.47)

4.7. (szl), Dﬁ)l)—aﬁine Toda field theory

We label the particle types according to the Dynkin diagram

Q1 Q2 Qg Op—1, Qp
oo 4—0:@0

e

The (generalized) Coxeter numbers are 2¢, H = 2¢ + 2 in this case. Similarly as in the
previous section, we present only closed formulae for some particles. For the first particle
we find for¢ # 2

@D
RE P 1 i B
-2
=|h—11h—1122n—3.2n+ 1|, [ [ 112k + 1.2k + 1])p
k=0
2(6-1)
< [T 112k =12+ 3], (4.48)
k=(+1

whereas for the second we obtain

_c® p@
RSP0 4 in, B)

1,1,h—3,[h—3l2;h—3,h—3;h—1,[h—1]3;h+1 h+1;
2(6—1)
h+1,h+52n—32n+1|, [] I12k—12+3|3
k=0+2
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-4
x [ ]l2k+3 2+ 3|3 (4.49)
k=0
with € # 2, 3. For the amplitudes related to the last two particles we find

@D
R P 0 in, B
=2
=[]l2k + 1. 2% + 1: 2 + 3. [2k + 3]2: 4k + 5.4k + 9,
k=0
(-3 2(t—n—1)
<[] JI 02k—12—12k—1 2k+3|. (4.50)
n=0 k=0+1-n
@D K2
REP g 1 i By
-2
= |11, Lollo [ ]|} 2% + 3. [2k + 3l: 2k +5. 2k + 5],
k=0
0—4 2(—n—2)
< [T TI 12k+3 2+32k+3 2+7lo
n=0 k=l—n
-2
x [ [ 12k +5, 2k +9: 4k + 5, 4k + 5s. (4.51)
k=1

Once again we do report the remaining amplitudes as their expressions turn out to rather
lengthy.

4.8. (Ffll), Egz))-affine Toda field theory

We label the particle types according to the Dynkin diagram

(e} (12; a3 Q4 o Qo Qg Qs g

The (generalized) Coxeter numbers are 12 andH = 18 in this case, withy = =2
andrz = 14 = 1. We compute

Rl(O +im)=|1,12;3,50:,5,73;7,9; 7,93, 9,113, 9,15; 11, 134; 11, 17,
13, 17,;13,23; 15,21; 15, 213; 17, 23; 17, 27,
19,25, 21, 2%, (4.52)
1,12 3,33: 3,5 5,54 5,53:5,9; 7, 75, 7, 92: 7, 11%;
9,959, 139, 132; 11,134;11,155; 11, 15; 11, 19;

Ro(0 +im) =|
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13,174;13,17% 13,21; 15,193; 15, 23, 15, 27; 17, 21;

17,25;17,29; 19, 25 19, 31; 21, 29; —19, —29| . (4.53)
R0 +in)=|1,1;3,3; 3,35 5,53, 5, 72; 7, 74; 7,11%, 9, 114; 9, 13%;

11, 153; 11, 15; 11, 15; 13, 173; 13, 21% 15, 19; 15, 21y

15,23, 17,23 17,29, 19, 27, 19, 31; 21, 33, (4.54)
Ra(® +im)=1,1;3,3; 5,50 7, 9; 7,11: 9, 13 9, 13; 11, 155; 13,17; 13,

21; 15, 21p; 15, 23; 17, 25;; 19, 31; 21, 33))4. (4.55)

We are not aware of any kind of solution known in the literature related to this algebra.
4.9. (G<21), Df))—affine Toda field theory

We label the particle types according to the Dynkin diagram

vy
D) ~ a3

The (generalized) Coxeter numbers are riow 12 andH = 18. In this case we compute
the integral representation

G® 16 sinh?’ sinh 24 (sinh, sinh 8. — cosh B! coshBLD1)
P ()= I - - , (4.56)
5 — coshg + cosh;
W 16 sinh?! sinh 222 [(2 cosht — 1) sinh 22! — 1 coshB-D1]
Py 2 (1) = 2 2 - hg 2 2 48 ) (457)

1 1
35— cosh§ + coshz

When computing the block representation (3.21) we find complete agreement with the
solution found in [61] shifted by in the rapidities up to some obvious typos. We therefore
do not need to report it here. The solutions differ from the ones reported in [17].

5. Breaking of the strong-weak duality

The above solutions are very general and can be related easily by means of the
ambiguities (2.9)—(2.12) to all other solutions which are reported in the literature so far.
Let us consider one particular ambiguity in more detail

14
Ri(0.B)=Ri(0.B) [ ] Sij(6.1- B/2). (5.1)
j=1
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At first sight there seems to be nothing special aliy(#, B). Nonetheless, certain evident
features can be seen from (5.1). Our solutiy®, B) for the reflection amplitude shares
with the bulk scattering amplituds;; (6, B) the property of being invariant under the
strong-weak duality transformatia® — 2 — B. SinceS;; (8,1 — B/2) # S;; (6, B/2) it

is clear from (5.1) thaR; (6, B) is not invariant under the strong-weak transformation. As
was argued in [19], it is desirable to construct such solutions for the reflection amplitudes,
because unlikek; (8, B) which tends to 1 in the weak and strong classical limit, i.e.,

B — 0, 2, we have now simply

14

Ri©.B=0)=]]s,0.B=1), (5.2)
j=1
Ri(6,B=2)=1. (5.3)

This means, whilstR; (9, B) reduces in the classical limit to a theory with Neumann
(free) boundary condition, the amplitudg (6, B) tends to a theory with fixed boundary
conditions forB — 0, but forB — 2 to a theory with Neumann boundary condition. Hence
the formulation (5.1) constitutes a simple mechanism of breaking consistently the duality
and changing from one type of boundary conditions to another. This picture of obtaining
two different classical Lagrangians is familiar for the bulk theories of ATFT related to non-
simply laced Lie algebras and was put forward for theories with boundaries in [19] based
on observations of the classical theory.

Let us evaluate the solution (5.1) in detail. From the above data and in particular the
formulae provided in the appendix, we compute for the simply laced algebras an integral
representation foR analogue to (3.12), where the corresponding kernel is

. 1(2—B)
sinh“Z |:

t
cosh§

A - B 1 Bt ., Xt
bit)=4 smh§<1+ ﬂ)[K t/2)],; — ZCOShE Z smhﬂ:|.
xeX;
(5.4)

The X; are sets specific to the algebras and particle types. We find (see the appendix for
some details on this calculations) that

X =g fori<i<e, (5.5)
XD =y fori=1e-1.¢ (5.6)
2P = U (2i+1—4k} for2<i<e-—2, (5.7

1<k<[(2i41) /4]
S E SE S E SE
REs—RFs—p  RFs= pFe =15},

X0 ={1, X°=(357), (5.8)
v E7 O E7 DE7

Xy =1{1}, Xyt =17}, X3 =1{3,7,11},

X7 =11,5%,7,9%,11,13}, (5.9)

F7=(37.911,  XT=(@9. A =4 (5.10)



572 O. Castro-Alvaredo, A. Fring / Nuclear Physics B 682 [FS] (2004) 551-584

X8 =1{1,13,  A°={(7,111519),

78 = (3,7,112,13,15,17, 19, 23}, (5.11)
2,8 =11,52,7,9%, 112,13, 152, 178, 19, 212, 23, 25}, (5.12)
8 — 13,729,112, 13,157 17,19, 212, 23}, (5.13)

A58 =1{1,519,111317,1921), A/*=(3,11,19, A t={(1). (5.14)

Up to some minor typo, the expression (5.4) correspondg faio the formula proposed
by Fateev in [39], which was obtained by changing from the block form (3.21) provided
in [19] to an integral representation. For certain amplitudes, namely when the Kac label
n; =¥+ A; = 1, with ¢y being the highest root arid the fundamental weight, a conjecture
was put forward in [39], which corresponds precisely to our expression (5.4))&hemhe
empty set). At present the condition for the Kac labels is only an observation and has no
deeper physical or mathematical meaning, but probably when one computes the quantities
in terms of inner products of simple roots and weights, analogue to computations in [8] for
the bulk S-matrix, one can provide a reasoning for it. Note that the two’(seatadX can
be obtained from each other when replacing each element; by (h — x) € X

We may carry out the sum

L tx N 2 2 (i T 28 N ¢
sinh— = [ sinh— sinh sinh = — 5.15
I R R e 519
xeX, ¢
for 2 <i < ¢ —2 and obtain the only amplitudes which were provided in [39] not satisfying
the conditiorm; = 1. In this case we find agreement with our solution up to a minor typo.
Alternatively, we can turn (5.4) into a block form formulation

Ri(0.B)= ]"[nxne"” [T ixie. (5.16)

xeX

where the powerg;; relate to the bulk scattering matrix as defined in (3.16) and the
blocksm, llx]l¢ were introduced in (3.30) and (3.31). Note tm/aﬂemem = {x}2

and| x|y llx[lo+i» = 1, such that we see that the crossing relation (2.5) block-wise trivially
satisfied wherﬁk = I@,;.

In principle the formula (5.1) also holds for the non-simply laced case and a similar
reasoning as for the simply laced cases can be carried out. However, we expect now also
the occurrence of some free parameters according to the arguments of [19,21,64]. This
means some modifications are needed here. Even for special choices of the parameters the
conjecture put forward in [41] does not seem to agree with (5.1). Let us briefly comment
on the mechanisms, which leads to free parameters within the bootstrap approach. We
commence with the easiest model which exhibits such features, that is the sinh-Gordon
model (A<ll)—ATFT). Our solution for the reflection amplitude for the one particle in the
model reads in this case

R(0, B) = (1)o(—B/2)g(B/2 — 1)q. (5.17)
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The S-matrix is well known to be [55,65,66]
S0, B) = —(—B)o(B — 2)p. (5.18)

We can relate our solution easily to an expression analyzed relatively recently by
Chenghlou and Corrigan [48] against perturbation theory. In their notation we find

SO,1— E)SO,1— F)
S0,B/2)SO,1+ B/2)’

whereE andF are free parameters. As there is no bootstrap in the sinh-Gordon model, it is
clear that every solution fak multiplied by S(@, B") constitutes also a perfectly consistent
solution from the bootstrap point of view. If then in addition the effective coupling is taken
to be in the range & B’ < 2 there will be no additional poles introduced by this multiplier,
such that the bootstrap equation (2.8) is not coming into play. An important consequence
is that the energy of the corresponding boundary state of this solution will be the same
for all values of the free paramet®f in the stated regime. The facto§$9, 1 — E) and
S(6,1— F) are precisely of this type, when the parameters are taken to be in the range
as argued in [54], i.eF =0 andE =1 — B/2. In [48,49] also a different choice of the
parameters was considered, which lead to new poles in the physical sheet, which means
that for that regime the bootstrap equation (2.8) has to be newly analyzed and the amount
and the energies of the boundary bound states will change. In that case our argumentation
also needs modification. In addition our argument is not yet sufficient to explain why there
are precisely two free parameters (as in principle it would allow the introduction of an
arbitrary number), but it explains when they might arise. Similarly, we obtain a solution
which was found in [67] for the sinh-Gordon model with dynamical boundary condifions.
The solution found in there relates to oursR®, B) = R(0, B)/S®,1).

Let us look at a more complicated model which involves a non-trivial bootstrap and for
which we also expect this phenomen()Bél), Aéz))—ATFT. In that case we can define the
new amplitudes

RO, B) =R, B)

(5.19)

R1(0, B, B’) - R1(0, B)S11(0, B'),
R2(0, B, B') = R2(0, B)S12(0, B'), (5.20)

where the parameterQ B’ < 2 is kept free. Clearly there is no problem with crossing,
unitarity (2.5) and by construction also the boundary bootstrap equation (2.7) is satisfied.
As the amplitudesS11 and S12 introduce no new poles whose residues satisfy (4.38), we
have similarly as for sinh-Gordon a new solution whose energies of the bound states are
the same as for the original solution for all possible values of the free paradetkr
comparison we can look at thAe(zl)-ATFT, where such freedom does not exist. In that
theory the process-t 1 and 2+ 2 lead to new bound states, such that we cannot multiply
with the corresponding S-matrices without changing the energies of the boundary states.
We have indicated here briefly how free parameters may emerge naturally in the boot-
strap approach. A more detailed analysis of this argument we shall present elsewhere [68].

5 We are grateful to P. Baseilhal for bringing [67] to our attention.
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6. Conclusion

In this manuscript we have provided a closed generic solukigh for the boundary
bootstrap equations (2.7) valid for affine Toda field theories related to all simple Lie
algebras, simply laced as well as non-simply laced. We have worked out this formula in
detail for specific Lie algebras in form of an integral representation as well as in form of
blocks of hyperbolic functions. Our solutia®(9) can be used as a seed to construct (all)
other solutions related to various types of boundary conditions.

The non-uniqueness of the solution is related to the fact that one can make use of
the transformations (2.9)—(2.12) and always produce new types of solutions. The natural
guestion which arises is: which of these solutions are meaningful? In the bulk theories
one finds that essentially all solutions to the bootstrap equations subjected to minimal
analyticity lead to meaningful quantum field theories. Very often there is no classical
counterpart in form of a Lagrangian known to these solutions. Even though conceptually
not needed, as an organizing principle classical Lagrangians are very useful. In the case of
boundary theories it is the different types of boundary conditions which label the solutions
(theories). In a sequence of papers the Durham/York group [19,21,64] has investigated
which type of classical boundary terms can be used to perturb an affine Toda field theory
such that the integrability is preserved. The findings were that the theory has to be of the
form

4
m ..
ﬁ:@(—x)EATFT—S(x)? E K“/nieﬁa, WZ, (6.1)
i=0

where thes; are the usual Kac labels occurringdiret, defined through the expansion of
the highest rooty = —ag = Zleniai in terms of simple roots;. For theories related to
simply laced algebras (except sinh—Gordemgl) where the two parameters are free) the
constantg; can be either all zerg; = 0 for Vi (Neumann boundary condition) pf;| =1
for Vi. For the non-simply laced case theare fixed depending on the algebra and there
are up to two free parametets either exclusively related to the short or long roots (see
Appendix D in [21] for details).

How can our solution (3.12) be related to the different choices of the boundary in (6.1)?
Let us consider the slightly generalized expression (5.1) foAth&TFT

Iéj.i(e,B):Rj(e,B)iﬁsjk(e,l—B/Z)il. (6.2)
k=1
Computing now the classical limit, we find
4
llgiinoléj.i(Q,B):Iéi(9,3=0)iHSjk(9,1)il (6.3)
k=1

e ‘
dt . t DN )
= exp(:tB/ — sink? = kE_l K@) smh;) (6.4)
2 _
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[e¢]

dt .t t o1 s
_exp<i4/ TSmhﬂtanhEKff (t/2)3|nh5> (6.5)
0
=-(NFh - D (6.6)
_ z:sinheqzl/mej’ 6.7)
isinhf £ 1/2mm;

where we usedn; = 2msin(jr/h), with m being once more an overall mass scale.
The expression (6.7) is what is predicted in this limit [19,21,64]. It is then clear that
combinations oijE(e, B) for different j can be used to construct all possible fixed

boundary solutions, i.e.R (6, B), R, (8, B), R5 (0, B), ... — {+,—,—,...}. Similar

limits can be carried out for the other Lie algebras. For non-simply laced algebra and
the sinh-Gordon model, we gave a short argument which leads to the occurrence of free
parameter within the bootstrap approach. As many solution give the same classical limit,
it is clear that even in the simply laced cases the classical®liiminot enough to pin

down the solutions and relate them one-to-one to one particular boundary condition. More
information can be obtained from perturbative computations, as at Sfdgready many
solutions start to differ from each other, although even at that order some distinct solutions
still coincide. Unfortunately, there are not many computations of this kind existing in the
literature to compare with.

A further way to minimize the amount of solutions which can be generated from our
generic solution of (2.7R and the ambiguities (2.9)—(2.12) is of course to close also the
second type of bootstrap equation (2.8) [18,32,35] (see also Section 4.6.1 for an example
related to non-simply laced Lie algebras) and eliminate those solutions which do not allow
for such a closure. A systematic study of this kind has not been carried out so far and
we share the pessimistic viewpoint expressed in [32] concerning such an undertaking.
Whereas it appears possible to show that some solutions do indeed close, it seems difficult
to develop a systematic scheme which selects solution which do not close. Possibly when
developing a formulation in terms of Coxeter geometry similarly as in the bulk [8], this can
be understood better.

More in the spirit of exactly solvable models are considerations carried out in [69,70],
where the scaling functions (free energies) have been computed in two alternative ways. On
one hand one can compute it by means of the thermodynamic Bethe ansatz and on the other
by a semi-classical perturbation around the conformal field theory. Since in the former the
boundary reflection amplitude enters as an input and in the latter the explicit boundary
conditions one may compare the outcome and therefore indirectly relate solutions of the
boundary bootstrap equations and classical boundary conditions. We leave this analysis for
future investigations [71].

6 We do not see how this is compatible with the statement expressed in [32], where the opposite is claimed,
namely that different boundary conditions share the same quantum reflection amplitude.
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Appendix A. Theinverseof K and the evaluation of p

The central object which enters into the computation of the bulk scattering amplitude
(3.5) as well as into the reflection amplitude (3.12) is the inverse of teformed Cartan
matrix (3.7). We demonstrate that the entries of this matrix can be written in a closed form
and furthermore that the sums over rows or columns can be carried out explicitly. Also this
closed form can be used when they enter the expression for the kernel in (3.13) and (5.4).

Let us comment on the evaluation for this object in this appendix. We only present
the formulae for the simply laced algebmand first determine the determinant&fzr).

For simply laced algebras we know the eigenvalues of the incidence niatfig to be
Iijyj(n) = 2cogms,/h)y; (n), where thes, are the exponents gf Therefore we conclude
directly

Kl.gj (0)yj(n) =4cos(t +imsy)/2h]| cosH (t — imsn)/2h]yi(n)
= Jnyi (n). (A1)
Appealing to the well-known relation between the eigenvalues of a matrix and its
determinant we obtain

4 4
detk9(r) = ]_[ 29— ]_[ 4cosl(t + imsy)/2h] cost (t — imsy)/2h). (A.2)
n=1 n=1

Having in mind to compute the inverse &f(r) we also need to determine its cofactors.

It turns out that the sub-matrix resulting from the elimination of ititerow and thejth
column always decomposes into some matrices which can be identified as a deformed
Cartan matrix of some new algeb@gsandg;

K9Y9(t) - KY% (1) & KY9 (1). (A.3)
Here we introduced the matrices
K9Y9(r) := 2 coshir/ h) — I9. (A.4)

Hencek 9/9(¢) differs from K 9(¢) in the sense that the Coxeter numbeappearing in its
diagonal belongs tg rather tharg. The same argument which lead to (A.1) then gives the
eigenvalues ok 9/9(r)

3Y/9 = dcoshit /2 + in5, /2h) cosht /2h + in5,/2h). (A-5)
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Therefore we obtain the inverse of the (douhjyjieformed Cartan matrix

detk /% (1) detk 9% (1) 1%, 239 [1,. e
- ; ,
detK9(t) e, 29

(K907, = (A.6)

What remains to be specified is the precise decomposition (A.3). We shall demonstrate this
in detail. For this we need to specialize the formula (A.6) for some concrete algebras. As
(A.6) consists of products it is not very suitable in that form and we therefore also present
some alternative method which turns the products into sums. We also need to compute the
sum over some rows or columns &f(r) 1 and then we evaluate the sums in (3.13).

Al A,

Takingg to beA, in (A.6) it is easy to convince oneself that

detk At/Ai-1 detK Ae/Ae-j

[k, =[K*0], = oA fori < (A7)
Ag/Ai_y =i 4 Ae/Ae-j
An } hn
=H” L = l_i . (A.8)
n=1""n

Having in mind to sum over some rows and columnskaf) 1, we present a different
method to compute (A.7). For this we develop the determinaitf*» with respect to
the first row or column

detkAt/An = detk At/AL detk At/An-1 — detk At/An-2, (A.9)

Understanding that d&t”¢/Ao = 1 and dek /A = 0 forn < 0, we can view (A.9) as a
recursive equation for d&t” /A« in terms of dekAt/A1 = KA¢/A1 which we can leave
completely arbitrary at this point. We note that the equation (A.9) is the recursive equation
for the Chebychev polynomials of the second kindx), such that

n/2] B
detk At/An = Z(—l)"(" L k) (KAAY 2 = g, (kAR ), (A.10)

where[x] denotes the integer part of We also need below

p [n/2]

Ag/An _ k(P =1k oA A pn
ZdetK Z%kzo( 1) ( . )(K ) (A.11)
Let us now fixKA¢/A1 = 4 + ¢4, Then we obtain from (A.10)
detk A/ = U, [(q +¢7%) /2] = (1 +nly, (A.12)
such that (A.7) yields
Lilglh — jlq

[KA (1)~ 1] =[k" @)~ 1] fori < j. (A.13)

an



578 O. Castro-Alvaredo, A. Fring / Nuclear Physics B 682 [FS] (2004) 551-584

The same specialization reduces (A.11) to

p—1
Y detk /A = [(p+1)/2] [plyre. (A.14)
n=0

We can now also carry out the sum over tiierow or column. From (A.7), (A.12), (A.13)
and (A.14) follows

Z [KA ()™,

j=1

o~

=i i—2
! [detKAff/Af1 > " detkAt/A) 4 detk Ac/Ae S detKA‘Z/AJ'}

" detk A 2, >
" [, (i1 1- i)/2),Th = i1z + U = i1 /2117 = 1],372)
1
- m[h —ilg2lil e
tanh(z/2 B
- ﬁt%ﬂ)(w t/2);" (A.15)

To be able to compute (3.13) in more detail we derive from the above relations

(KA 0] 0 o[k /271,
__2costit/2h) sini (1 — h)t/2h]
N coshy/2sinnt/ h)
It is the non-obvious feature that the sum in (A.15) as well as the expressions in (A.15)
are both proportional t(QK(t/Z));.1 which allows for the computation of (5.4). For the

other algebras there are additional terms appearing as indicated in (5.5)—(5.14). We proceed
similarly for them.

(KA (t/2) (A.16)

A.2. Dy

We may now proceed as in the previous section and find also a recursive relation for
this case by expanding the determinant with respect to the first (last) row or column

detk P¢/Pr = g Pe/A1[detk Pe/Ar-1 — detk Pe/An-s].

Solving this and performing similar computations as before we finally find the following
closed formulaefor Ki <¢ -2

4
Yo KoMK 27,

J.k,p=1
(h—2)t ! ainh (=t qinp it
:4coshTsthsmh > Sinh
; ; t
sinht sini? 4

: (A.17)
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and

¢
Y [KP o] x, PIKPe/2)~ 1]
Jk,p=1
2 sinh ;2! smh(h“*zzlf/Zl)t sinh!L/2]

= %~ % h (A.18)
smhtsmhﬁsmhﬁ

for i = ¢ — 1, ¢. Having these formulae at hand we can easily obtain the kernels (4.17)
and (4.18). In this case we found that the proportionalitykaz/2)~1);;, observed in

the previous section, no longer holds and therefore the formulae are more lengthy when
i#1,0-1,¢.

A.3. Eg

Developing the determinant gives again some recursive equation
detk e = K Fe/A1detk Fe/Ds _ detk Bo/Ps, (A.19)
From this we compute

bt

J.k,p=1

Co1+2yp, cosh’l"
B cosh} 11

~

N

— 4[>"2_; cosh¥. + cosh] [KE6<£>1]
(1 — 2cosh)(1 - 2coshyf;) 2 22

: Eo,n—11 kp| wEof ! - _ 4y3 , coshys Eof ! -
> kB0 x| K =7 |K :
i % 2 kp 1—2coshy 2 33

Jj.k.p=1

6 -1 -1
> (KB, [KE6<t> ] =72(1+2005h%)[1(56<5> ] .
Pt 4j % 2 kp 1— 2coshj 2 "

Taking the first subscript to be 5 or 6 equals the expressions for taking them to be 3 or 1,
respectively. This is sufficient to compute the expression&for

A.4. E7

Developing the determinant gives now the recursive equations

detk 57 = KF7/A1detk F7/Ps _ detk E7/As. (A.20)
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Therefore

7 k ‘ —1
E —1 E
Y KOy x [K (2) ]k,,

J.k,p=1

(Zk ,CoshiL + cosh2k + coshdb) (K E7(5) 7111
1- 2coshﬂ3+200$h§)(1 ZCOShg)

’

7 ~1q
t
> [kF 0 zjxf”[K&(E)
Jok.p=1 ~kp
_2- 437 _,coshit + cosht 1 [ (£>‘1]
2coshi — 1 2 22
7 — 1
Z KE7 1 kp Er( ! '
0 gy | K5 ( 5
J.k,p=1 -kp
_ 2(1+2cosh + 2 coshg) [KE7 ( t )‘1}
- 2cosh — 1 2) a3
7 _
E7 1 kp| E7( L '
Z K - 4] Xj K 2
J.k,p=1 kp
_ 4(coshgg + cosh%) — coshrt 1 [KE7(£)_1}
2coshy — 1 2 44
7 -1
> [KF®™ 5]xf”[1<57(2> ]
J.k,p=1 kp
[4(1— coshg + 3°7_g coshig) + i JIK®(5) s
- 1—2coshj ’
7 -1 5 k -1
> [KEF O X" [KE7(’> ] - 472":3 coshag [KEV(5> }
W 6;%i 2 kp 1—2coshg 2 66
7 —
E7 .41 kp| E7( L '
Yo KT x| K >
jkp=1 kp

[4(3 ,coshit +37 ¢ COShit) + Cosh ][KE7( Yy 177
(1—2cosh§)(Zcosh§ 1)

which suffices to comput®.
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A5. Es

Developing the determinant gives now the recursive equations
detk B8 = K F8/A1detk Fe/P7 _ detk Bs/Ae, (A.21)

We obtain now
8

3 (),

j.k,p=1
k _
_2(1+2cos — 27 _5coshiL) s ﬂ) 1
—1-|-Zcosh§ 2 11
8 ‘ -1
Y (KB " [KE8(2> ]
J.k.p=1 kp

_ 8coshgg(1+ coshyg[1 - 2Y°2_; cosh])[KEs(5) ]
B 2 coshi + 2 coshft — 2 coshiz — 1

8 -1
Esn—11 kp| pEgf L
Zl[K o ]3ij [K 8(2> :|kp

’

Jj-k,p=
7 -1
_ 4(3"_scosht — coshgs) [KE8<£> :| ’
1+ 2coshyfz — 2 coshf — 2 coshis 2 33
8 k ‘ -1
E 1, x| kE

> [KB@” 1a; % [K 8<2> ]k

J.k.p=1 P

4(coshf + coshf5) |:KE8<t)li|
14 2cosh{z — 2 coshf — 2 coshft 2 a4
8 A1
Eg,\—1 E
> [KB) ]51 |:K 8(2> ]
Jj.k,p=1 kp

_ 2+ 40 s coshih — coshy;) [KEs <£>—1:| ’
1+ 2coshyfz — 2 coshf — 2 coshis 2)  es

-1
Eg .\ —1 kp| Egf !
l[K *(1) ]6/ Xj [K 8(2) ]kp

9 _
R Z(Zk 5COsh%5 + 2 coshih) [KE8<£> 1}

 (1+2coshiz —2Y°¢_scoshil) coshiz 2 66
8

> KB, x KEB(t>1 _ 24 4% Coshiy KEB(5>1
7% 2 kp 1—2coshg 2 -7

J.k,p=1

~
<M=
1
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8

—1
E 1 k Egf !
3 o)),

]7k9p=l
B (coshL0 + 12 g coshil) [K B8 (5)~Mgg
~ (2coshiy — 1)(1+ 2 coshiz — 2 coshi — 2 coshiL)’

from which we can deduce directR.
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