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Abstract

For all affine Toda field theories we propose a new type of generic boundary bootstrap equ
which can be viewed as a very specific combination of elementary boundary bootstrap equ
These equations allow to construct general solutions for the boundary reflection amplitudes
are valid for theories related to all simple Lie algebras, that is simply laced and non-simply lace
provide a detailed study of these solutions for concrete Lie algebras in various representatio
boundary bootstrap equations relating different types of exited boundary states are not autom
solved by our expressions.
 2004 Elsevier B.V. All rights reserved.

1. Introduction

Various general physical problems occurring in the context of dissipative sys
[1] or open string theory, e.g., [2], can be understood as quantum field theories
boundaries. When restricting to integrable theories in 1+ 1 space–time dimensions on
obtains some concrete realizations of systems in condensed matter physics, as for
when taking the sine-Gordon model with boundaries [3]. Affine Toda field theories (A
[4,5] provide the general framework for such type of applications. Describing for ins
quantum wires by minimal ATFT then even without boundaries the computation o
conductance of these systems leads to rational filling fractions similar to those occ
in the context of the quantum Hall effect [6]. Including also boundaries will capture
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effect of the constriction of such wires [7]. It is therefore highly desirable to get a b
and complete understanding of ATFT with boundaries.

Similarly as in most other areas of physics, the majority of investigations on integ
quantum field theories consists of the study of specific examples, that is particular m
Certain general ideas and concepts can be studied very well in this manner. Howev
mately one would like to have formulations which go beyond particular examples a
will unravel better which features are model dependent and which ones are of a g
nature.

In the case of ATFT such type of formulation exists for the scattering matrice
1 + 1 space–time dimensions [8,9], where the space is a line extended infinitely in
directions. The formulae found are of generic validity independent of the particular al
underlying the theory. The understanding is not this well developed when the the
considered in half-space (or finite), i.e., when the line is restricted by a boundary i
direction (or possibly both). For such theories the Yang–Baxter equations [10,11
reflecting boundaries have been investigated first in [12,13]. Recently some un
algebraic solutions for the Yang–Baxter equations for lattice models have been cons
[14]. For a full fletched quantum field theory one needs further properties of these solu
such as unitarity, crossing invariance and the bootstrap equations, which were form
in [15]. The solutions for the latter system of equations for some affine Toda field the
were first found in [15,16]. Later on, several other types of solutions for these theorie
been proposed and they have been investigated with respect to various aspects [17
particular the sinh-Gordon model has attracted a considerable amount of attentio
50]. Despite all this activities, up to now closed formulae similar to the ones ment
for the bulk theories have not been provided for the corresponding scattering amp
when boundaries are included. Furthermore, for some algebras no solutions at all ha
found yet, even on a case-by-case level. One of the purposes of this paper is to fil
missing gaps, but the central aim is to supply universal, in the sense of being valid
simple Lie algebras and all particle types, formulae for the boundary scattering amp
in affine Toda field theories.

Once the solutions to the boundary bootstrap equations have been found the q
remains whether these solutions are meaningful in the sense that a consistent quant
theory can be associated to them. This question will not be answered in this paper
will be content to construct closed solutions to the boundary bootstrap equations (2.7
closure of the “excited” boundary bootstrap equations (2.8), as discussed for affine
field theories for the first time in [18], will not be the subject of this paper and only br
discussed for one example. In general, it is not guaranteed, that our expressions wi
also these equations, but they can always be taken as seeds to achieve this.

Our manuscript is organized as follows: in Section 2 we recapitulate the key ide
the scattering theory with reflecting boundaries and emphasize the possibility of
certain ambiguity transformations to construct new solutions for the boundary refle
amplitudes. Section 3 contains our main result. We discuss here the solutions
combined bootstrap equations. We first recall the analogue procedure for the bulk
and thereafter adapt it to the situation with reflecting boundaries. We provide generic

sense specified above, solutions for ATFTs in form of integral representations as well as the
equivalent products of hyperbolic functions. In Section 4 we provide the explicit evaluation
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of our generic expression for the reflection amplitudes for some ATFTs related to
concrete Lie algebras. In Section 5 we demonstrate in detail how our solution can be
a “seed” for the construction of other types of solutions, in particular we show how one
obtain from our solution, which respects the strong-weak duality in the coupling con
a distinct solution in which this symmetry is broken. We provide a brief argumen
how within the bootstrap context free parameters enter into theories related to non-
laced algebras as well as the sinh-Gordon model. We state our conclusions in Se
In Appendix A we supply the details for the evaluation of the inverseq-deformed Cartan
matrix and the kernel entering the integral representation of the reflection amplitude

2. Scattering theory with reflecting boundaries

We briefly recall some well known results in order to fix our notation and to stat
problem. Exploiting the fact that the scattering of integrable theories in 1+ 1 dimensions
is factorized, one may formulate the theory with the help of particle creation (annihila
operators for the particle of typei moving with rapidityθ , sayZi(θ), and a boundary in
the stateα, referred to asZα . Throughout this paper we denote particle types and boun
degrees of freedom by Latin and Greek letters, respectively. The operators are assu
obey certain exchange relations, the so-called (extended) Zamolodchikov algebra,

(2.1)Zi(θ1)Zj (θ2) = Skl
ij (θ12)Zk(θ2)Zl(θ1),

(2.2)Zi(θ)Zα = R
jβ
iα (θ)Zj (−θ)Zβ.

We abbreviate as usualθ12 = θ1 − θ2. In this paper we restrict our attention to pure
diagonal theories, i.e., absence of backscattering

(2.3)Skl
ij (θ) → S

ij

ij (θ) = Sij (θ) and R
jβ

iα (θ) → Riα
iα (θ) = Riα(θ).

In the context of affine Toda field theories this corresponds to the well-known fac
the coupling constant is real, such that there will not be any solitons in the spectru
exclusively particles. In addition we do not distinguish whether we have left or right
spaces, i.e., if the particle hits the boundary from the left or right. This means we a
parity invariance. Eq. (2.2) expresses the fact that the particlei is reflected off the boundar
by picking up a boundary reflection amplitudeR, is changing its sign of the momentu
and of course that the particle always has to stay on one particular side of the bou
The amplitudes obey the crossing and unitarity equations [51–54]

(2.4)Sij (θ)Sji (−θ)= 1, Si̄ (θ) = Sji(iπ − θ),

(2.5)Riα(θ)Riα(−θ) = 1, Riα(θ)Rı̄α(θ + iπ) = Sii (2θ).

Most restrictive and specific to the particular theory under investigation are the boo
equations [15,55–57]

(2.6)Slk(θ) = Sli
(
θ + iη

j

ik

)
Slj
(
θ − iηijk

)
,

(2.7)Rkα(θ) = Riα

(
θ + iη

j

ik

)
Rjα

(
θ − iηijk

)
Sij
(
2θ + iη

j

ik + iηijk
)
,
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where theηjik ∈ R are fusing angles which encode the possibility that the processi+j → k

takes place, i.e., particlek can be formed as a bound state in the scattering process be
the particlesi andj . The amplitudeRiα(θ) might have single order poles and residu
satisfying−i ResR(θ) > 0, at sayθ = η

β
iα which are interpreted asi + α → β , that is the

particlei can cause the boundary to change from the stateα into the stateβ . This process
is encoded in a second type of boundary bootstrap equations [54]

(2.8)Rjβ(θ) = Rjα(θ)Sij
(
θ + iη

β
iα

)
Sij
(
θ − iη

β
iα

)
.

As in the bulk theory the solutions to these equations are not unique and there are
ambiguities which can be used to construct from a known solutionRiα(θ) of Eqs. (2.5),
(2.7) and (2.8) a new solutionR′

iα(θ)

(2.9)Riα(θ,B) → R′
iα(θ,B) = Rı̄α(θ + iπ,B),

(2.10)Riα(θ,B) → R′
iα(θ,B) = Riα(θ,B)

∏
j
Sij (θ,B),

(2.11)Riα(θ,B) → R′
iα(θ,B,B ′) = Riα(θ,B)

∏�

j=1
Sij (θ,B

′),

(2.12)Riα(θ,B) → R′
iα(θ,B

′) = Riα(θ,B
′) if Sij (θ,B) = Sij (θ,B

′).
It is clear that (2.9) always holds [16] due to the fact thatSij = Sı̄̄ . The validity of (2.10)
was noted in [18] for some values ofj and in general the newR′

iα(θ) can be related
to a boundary in a different state, such as for instanceRiβ(θ) [18]. The possibility to
construct a new solution in the form (2.11) was pointed out in [17], where� denotes here
the total amount of different particle types in the theory. We have also stated exp
some dependence on the effective couplingB or B ′, which will be most important fo
what follows. The relevance of this is that we may change by means of (2.11) fr
solution which respects a certain symmetry in the coupling constant, such as the
weak duality, to one in which this symmetry is broken. The relation (2.12) express
fact that once the bulk theory respects a certain symmetry we may construct a new s
for the boundary reflection amplitude in which this symmetry might be broken by repl
the coupling according to the bulk symmetry.

Let us briefly comment on the status of explicit solutions to the boundary refle
amplitude consistency equations (2.5), (2.7) and (2.8). For the particular example of
Toda field theory related to simply laced algebras solutions to these equations were
constructed in [16]. Later on various other types of solutions have been proposed a
vestigated with respect to various aspects [17–43]. As we shall demonstrate, essent
these solutions can be related to each other or further solutions by means of (2.9)–
With regard to the above stated problem of finding closed solutions, not much progre
been made in the last ten years. Closed solutions which respect the bulk duality sym
B → 2 − B for theA andD series were already found in [16]. Therefore, these typ
solutions reduce in the strong as well as in the weak coupling limit to the same limit,
that if one would like to construct a solution which relates two different types of boun
conditions in these extremes, as proposed in [19], one has to break the duality symm
[39] Fateev proposed a conjecture of such type for all simply laced algebras in form

integral representation which generalizes a solution for theA series of [19,32], the latter be-
ing simply related to the original one in [16] by the ambiguity transformations (2.9)–(2.12).
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However, apart fromD(1)
n , the conjecture of [39] provides in general only a solution of

crossing-unitarity relations (2.5). A solution for the boundary bootstrap equation (2
only proposed in some cases for some particular amplitudes. A conjecture of a s
nature for some ATFTs related to some non-simply laced algebras (B

(1)
n ,C

(1)
n ,A

(2)
2n ) was

formulated in [41]. Here we aim to fill in the missing gaps, that is provide solutions fo
amplitudes and algebras not treated so far. Moreover rather than just stating the s
as a conjecture, we propose a systematic and unified derivation for all Lie algebras,
was absent so far.

3. Solutions of the combined bootstrap equations

3.1. Bulk theory

We recall now the key idea of how a universal expression for the scattering matr
be constructed in the bulk theory and adapt the procedure thereafter to the situation w
flecting boundaries. As already mentioned, the central equations for the construction
scattering matrices when backscattering is absent are the bootstrap equations (2.6
equations express a consequence of integrability, namely that when two particles (i andj )
fuse to a third (k), it is equivalent to scatter with an additional particle (l) either with the
two particles before the fusing takes place or with the resulting particle after the f
process has happened. In principle, all these “basic” bootstrap equations (2.6), to
with the constraints of crossing and unitarity (2.4), are sufficient to construct solutio
the scattering amplitudes. Proceeding this way is in general a quite laborious task
carried out for each algebra individually. However, in [8] it was noted that for affine T
field theories there is one very special set of equations which may be obtained by
tuting the previously mentioned “basic” bootstrap equations (2.6) into each other in
particular way and which were therefore referred to as “combined bootstrap equatio

(3.1)Sij (θ + ηi)Sij (θ − ηi) =
�∏

k=1

Iik∏
n=1

Sjk
(
θ + θnik

)
.

In order to keep the writing compact, the following abbreviations will be useful

(3.2)ηi := θh + tiθH , θnij := (2n− 1− Iij )θH ,

(3.3)θh := iπ(2−B)

2h
= iπϑh, θH := iπB

2H
= iπϑH .

The affine Toda field theory coupling constantβ is encoded here into the effective coupli

(3.4)B = 2Hβ2

Hβ2 + 4πh
.

We recall that ATFTs have to be considered in terms of some dual pairs of Lie alg
where the classical Lagrangian related to one or the other algebra is obtained eithe

weak or strong coupling limit. For more details on this viewpoint and some of the argu-
ments which led to this picture we refer the reader to [8], where this is reviewed including



um-
r

entire
versal

mpact

ed

tity in
ttering
which
rpose

e act
ct
elation
re we
ng to
otstrap
which

resent
556 O. Castro-Alvaredo, A. Fring / Nuclear Physics B 682 [FS] (2004) 551–584

the relevant references. Hereh andH denote the respective (generalized) Coxeter n
bers. The integersti symmetrize the incidence matrixI , i.e., Iij tj = Iji ti and are eithe
ti = 1 or equal to the ratio of the length of long and short rootsti = α2

i /α
2
s , with αs being

a short root. For more details on the notation see also [8].
The remarkable fact about Eq. (3.1) is that it contains the information about the

bulk scattering theory. Just by solving these equations [8] one may derive uni
expressions for the scattering amplitudes forall particle typesi,j and all simple Lie
algebras. In form of an integral representation the solutions acquire a particularly co
and neat form

(3.5)Sij (θ,B) = exp

∞∫
0

dt

t
Φij (t)sinh

(
θt

iπ

)
,

with

(3.6)Φij (t) = 8 sinh(ϑht)sinh(tiϑH t)K−1
ij (t),

(3.7)Kij (t) = 2 cosh(ϑht + tiϑH t)δij − [Iij ]q̄(t ) = (
qq̄ti + q−1q̄−ti

)
δij − [Iij ]q̄ ,

where we used the standard notation[n]q = (qn − q−n)/(q1 − q−1) for q-deformed
integers. The deformation parameters are related to the coupling constant and areq(t) =
exp(tϑh) and q̄(t) = exp(tϑH ). In fact the only relevant cases here for the deform
incidence matrix are[0]q̄(t ) = 0, [1]q̄(t ) = 1, [2]q̄(t ) = 2 cosh(ϑH t) and [3]q̄(t ) = 1 +
2 cosh(2ϑH t).

In [8] the combined bootstrap equations (3.1) were derived by translating an iden
the root space of the underlying simple Lie algebras into an expression for the sca
matrices. We present here a much simpler heuristic argument on how to obtain (3.1)
is suitable for a generalization to the situation with reflecting boundaries. For this pu
we can formally assume the following operator product identity

(3.8)Zi(θ + ηi)Zi(θ − ηi) =
�∏

k=1

Iik∏
n=1

Zk

(
θ + θnik

)
.

It is then clear that the combined bootstrap equations (3.1) follow immediately when w
on both sides of (3.8) withZj(θ

′) from the right (left) and move it to the left (right) subje
to the exchange relations (2.1). As such, this is a rather evident statement, but the r
(3.8) will lead to less obvious results when reflecting boundaries are included. He
employ (3.8) only as a very useful computational tool, but it would be very interesti
have a deeper physical understanding of this identity as well as of the combined bo
equation (3.1). Note that for each concrete algebra we can disentangle precisely in
way (3.1) can be manufactured from the “basic” bootstrap equations (2.6), but at p

we are not able to provide a general construction scheme which achieves this in a case
independent manner.
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3.2. Theory with reflecting boundaries

Let us adapt the above arguments to the situation with reflecting boundaries. I
case we have besides the exchange relations (2.1) also the relations (2.2) at our d
We act now with each product of particle states on the left- and right-hand side
identity (3.8) on the boundary stateZ in such a way that each individual particle hits th
boundary state. For simplicity we suppress here for the time being the explicit ment
of the boundary degree of freedom (Zα → Z) and assume that the boundaries remai
the same state during this process of subsequent bombardment with particles. E
that all particles have contact with the boundary and considering thereafter the re
state, amounts to saying that an asymptotic in-state is related to an out-state by a co
reversal of all signs in the momenta. Viewing then the asymptotic states obtained
manner as equivalent, we derive a set of “combined boundary bootstrap equations”

Ri(θ + ηi)Ri(θ − ηi)Sii (2θ)

=
�∏

j=1

Iij∏
n=1

Rj

(
θ + θnij

) ∏
1�n<m�Iij

Sjj
(
2θ + θnij + θmij

)

(3.9)×
∏

1�j<k��

Iij∏
n=1

Iik∏
m=1

Sjk
(
2θ + θnij + θmik

)
.

The occurrence of the bulk scattering matrices in (3.9) is due to the fact that a
particle has hit the boundary a subsequent particle can only reach the boundary
it first scatters with the particle already returning back from the boundary, such tS

always depends on the sum of the rapidities of the originally incoming particles
product

∏
1�n<m�Iij

involving particles of the same type only emerges for non-sim
laced algebras. Eqs. (3.9) are central for our investigations and we can regard th
the analogues of (3.1). Therefore, we may expect that they contain all informatio
the boundary reflection. Let us solve them similarly as in [8,15,16], that is we tak
logarithm of (3.9) and subsequently use Fourier transforms. For this we define first

(3.10)lnRj (θ) = 1

2π

∫
dt eitθ rj (t) and lnSkj (2θ) = 1

2π

∫
dt eitθ skj (t)

such that from (3.9) follows

�∑
j=1

[
Kij (t)rj (t)−

∑
1�n<m�Iij

sjj (t)e
(θnij+θmij )/2

]

(3.11)=
∑

1�j<k��

Iij∑
n=1

Iik∑
m=1

sjk(t)e
(θnij+θmik )/2 − sii(t).

The important difference in comparison with the bulk theory is that this equatio

non-homogeneous, in the sense that besides the quantity we want to determine,rj (t), it
contains terms involving quantities we already know, namelysij (t). We can use this to
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our advantage and solve this equation forri(t), using the integral representation for t
scattering matrix (3.5). Thus we obtain the main result of this paper, namely a c
expression for the boundary reflection matrix valid for affine Toda field theories rela
all simple Lie algebras

(3.12)R̃j (θ,B) = exp

∞∫
0

dt

t
ρj (t)sinh

(
θt

iπ

)
,

with kernel

(3.13)ρi(t) = 1

2

�∑
j,k,p=1

[
K−1(t)

]
ij
χ
kp

j (t)Φkp(t/2),

(3.14)χ
kp
j = (1− δpk)[Ijk]q̄1/2[Ijp]q̄1/2 − 2δjkδjp + 2

Ijk−1∑
n=1

[n]q̄δkp.

In the simply laced case the tensorχ reduces to

(3.15)χ
kp
j = IjkIjp − δpkIjp − 2δjkδjp.

In the derivation we made use of parity invariance, that is we usedsij (t) = sji (t). To the
particular solution we constructed from (3.9) we refer from now on always asR̃i (θ,B)

in order to distinguish it from other solutions which might be obtained by means o
ambiguities (2.9)–(2.12).

3.3. Integral representation versus blocks of hyperbolic functions

The integral representations (3.1) and (3.12) are very useful starting points for v
applications such as the computations of form factors or the thermodynamic Bethe
However, one has to be cautious when one analytically continues them into the co
rapidity plane as one usually leaves the domain of convergence when one simply car
shifts inθ . In addition, the singularity structure of the integral representation is not dir
obvious. Therefore one would like to carry out the integrations which for the above ty
integral always yield some finite products of hyperbolic functions. A further reason
we wish to carry out the integrals is that already many case-by-case solutions for the
theories exist in the literature, which we want to compare with.

When performing the integration, the scattering matrix of affine Toda field theory
may be represented in the form [8]

(3.16)Sij (θ) =
h∏

x=1

H∏
y=1

{x, y}2µij (x,y)

θ ,

where

[x, y]θ
∞∫

dt
(
θt
)

(3.17){x, y}θ := [x, y]−θ

= exp

0
t sinht

f h,H
x,y (t)sinh

iπ
,
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with

(3.18)

[x, y]θ := sinh1
2[θ + (x − 1)θh + (y − 1)θH ]sinh1

2[θ + (x + 1)θh + (y + 1)θH ]
sinh1

2[θ + (x − 1)θh + (y + 1)θH ]sinh1
2[θ + (x + 1)θh + (y − 1)θH ] ,

(3.19)f h,H
x,y (t) = 8 sinh(ϑht)sinh(ϑH t)sinh(t − xϑht − yϑH t).

The powersµij (x, y) are semi-integers, which can be computed in general from s
inner products between roots and weights rotated by someq-deformed Coxeter elemen
[8,9].3 Alternatively, one can determine them also from the generating function

(3.20)Mij (q, q̄) =
2h∑
x=1

2H∑
y=1

µij (x, y)q
xq̄y = 1− q2hq̄2H

2
K−1

ij (t)[tj ]q̄ .

For this we have to viewK−1
ij (t) in the q-deformed formulation (3.7) and expand t

right-hand side of (3.20) into a polynomial inq andq̄. For simply laced theories one cou
use simpler functions as in that case the two dual algebras coincide, such thath = H and
{x, x}θ =: {x}θ . The advantage of the formulation (3.20) is that it allows for a uni
treatment of all algebras.

We can proceed now similarly for the reflection amplitudes and seek to represen
in the form

(3.21)R̃i (θ) =
2h∏
x=1

2H∏
y=1

‖x, y‖2µ̄i (x,y)
θ ,

where

(3.22)‖x, y‖θ := 〈x, y〉θ
〈x, y〉−θ

= exp

∞∫
0

dt

t sinht
f̄ h,H
x,y (t)sinh

(
θt

iπ

)
,

with

(3.23)〈x, y〉θ := sinh1
2[θ + x−1

2 θh + y−1
2 θH ]sinh1

2[θ + x+1
2 θh + y+1

2 θH ]
sinh1

2[θ + x−1
2 θh + y+1

2 θH ]sinh1
2[θ + x+1

2 θh + y−1
2 θH ] ,

(3.24)f̄ h,H
x,y (t) = 8 sinh(ϑht/2)sinh(ϑH t/2)sinh(t − xϑht/2 − yϑH t/2).

In this case we deduce the semi-integersµ̄i (x, y) from

M̄i(q, q̄) =
2h∑
x=1

2H∑
y=1

µ̄i(x, y)q
x/2q̄y/2

(3.25)= 1− q2hq̄2H

2

[
K−1(t)

]
ij
χ
kp
j

[
K−1(t/2)

]
kp

[tp]q̄1/2.
3 As is known for more than ten years, in the special case of simply laced Lie algebras one can use the simpler
formulation in terms of ordinary Coxeter elements [58,59]. However, this formulation will not be used here.
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Once again for the simply laced cases this becomes easier‖x, x‖θ =: ‖x‖θ , which equal
the blocksWh−x(θ) used in [16]. For the non-simply laced cases we have in principle
possible algebras, whose Lie algebraic properties we can relate to. We make here the
to express everything in terms of the non-twisted algebra. Clearly one can also form
equivalently a generating function in terms of its dual as carried out for the bulk theo
[8], but as this does not yield new physical information, we shall be content here to
for one algebra only.

In the following, we also abbreviate some products of the above blocks in a
compact form

(3.26){x, yn}θ :=
n−1∏
l=0

{x, y + 2l}θ , ‖x, yn‖θ :=
n−1∏
l=0

‖x, y + 2l‖θ ,

and

(3.27)
{
x1, y

µ1
1 ;x2, y

µ2
2 ; · · · ;xn, yµn

n

}
θ
:= {x1, y1}µ1

θ {x2, y2}µ2
θ · · · {xn, yn}µn

θ ,

(3.28)
∥∥x1, y

µ1
1 ;x2, y

µ2
2 ; · · · ;xn, yµn

n

∥∥
θ
:= ‖x1, y1‖µ1

θ ‖x2, y2‖µ2
θ · · · ‖xn, yn‖µn

θ .

For completeness we also introduce here a more elementary block which will be use
the comparison with results in the literature

(x)θ := sinh(θ + iπx/h)/2

sinh(θ − iπx/h)/2

(3.29)= −exp

(
2

∞∫
0

dt

t sinht
sinht (1− x/h)sinh

θt

iπ

)
.

We shall also use below the blocks

(3.30)‖̂x‖θ := ( x−1
2 )( x+1

2 − h)

( x−1+B
2 − h)( x+1−B

2 )
,

(3.31)‖x‖θ := ( h+x−1
2 )( h−x+1

2 )( h+x−1+B
2 )( h−x+1−B

2 )

( h+x+1
2 )( h−x−1

2 )( h+x+1−B
2 )( h−x−1+B

2 )
,

which break the strong weak-duality.
By evaluating (3.25), we can determine case-by-case the powers in (3.21). F

simply laced case, it will turn out that our solutions coincide with the ones foun
Kim [60] upon the use of the ambiguity (2.9).4 For the non-simply laced cases only tw
specific examples have been treated in [61]. On further solutions related to non-s
laced algebras we shall comment below.
4 We are grateful to J.D. Kim for informing us that hep-th/9506031 is published in [60] and that there is some
discrepancy between the two versions.
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4. R̃i(θ,B) case-by-case

We shall now be more concrete and evaluate our generic solution of (2.7)R̃i(θ,B) in
more detail for some specified Lie algebras. We compare with some solutions prev
found in the literature. As our solutions are invariant under the strong-weak d
transformation we commence by comparing with those being of this type also. Apar
theA(1)

2 -case, we postpone the comparison with other types of solutions to Section 5
For the simply laced algebras the closed solution (3.12) admits an even simpler g

block formulation

(4.1)R̃i (θ + iπ,B)=
h∏

x=1

‖2x − 1‖κiθ
( ∏

x∈X̃i

‖x‖θ‖x − 2h‖θ
)
,

where the integersκi are defined through the relation
∏�

j=1Sij (θ) =∏h
x=1{x}κiθ and the

sets X̃i are specific to each algebra. At present we do not know how a genera
independent formula which determines the setsX̃i .

4.1. A(1)
� -affine Toda field theory

4.1.1. A(1)
2 -affine Toda field theory

Let us exemplify the working of the above formulae with some easy example
the sinh-Gordon model (A(1)

1 -ATFT) is very special [44–50] and exhibits a distinguish
behaviour from all other ATFTs related to simply laced Lie algebras, we consider the
simple case, namelyA(1)

2 -ATFT. This was already studied in [15,16,19] and especi
detailed in [31]. The Coxeter number ish = 3 in this case. The essential Lie algebr
input here is the inverse of theq-deformed Cartan matrix (3.7)

(4.2)K−1(t) = 1

1+ 2 cosh2t/h

(
2 cosht/h 1

1 2 cosht/h

)
.

With this we compute from (3.13) and (3.15)

(4.3)ρ1(t) = ρ2(t) = 16
sinh[(B − 2)t/12]sinh(Bt/12)cosh(t/6)

1+ 2 cosh(2t/3)
,

and (3.25) yields

(4.4)R̃1(θ,B) = R̃2(θ,B) = R̃1(θ,2−B) = ‖7,7‖θ‖9,9‖θ ,
(4.5)= −(−1)θ (−2)2θ (1+B/2)θ (3−B/2)θ (B/2+ 2)θ (2−B/2)θ .

We compare now with various solutions constructed before in the literature and d

strate that they can all be related to our solutionR̃ by means of the ambiguities (2.9)–
(2.12). We can drop the subscripts and useR1 = R2 = R. In [31] the following solutions
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were studied in detail

RNeu(θ,B) = RNeu(θ,B − 2− 2h) = R++(θ,2−B)

(4.6)= (−2)θ (−B/2)θ (2+B/2)θ ,

(4.7)R−−(θ,B) = R−−(θ,B − 2− 2h) = −(−1)θ (B/2− 1)θ (3−B/2)θ ,

R++(θ,B) = R++(θ,B − 2− 2h) = RNeu(θ,2−B)

(4.8)= (−2)θ (B/2− 1)θ (3−B/2)θ .

The solutionRNeu(θ,B) was already found in [15] and several arguments were prov
in [31] to identify it with the Neumann boundary condition. In addition,R++(θ,B)

was related to the fixed boundary condition. ForR−−(θ,B) doubts on a conclusiv
identification were raised. Using now the expressions for the scattering matrix [62]

(4.9)S11(θ,B) = S22(θ,B) = (2)θ (B − 2)θ (−B)θ ,

(4.10)S12(θ,B) = S21(θ,B) = −(1)θ (3+B)θ (−1−B)θ ,

it is easy to see that our solutioñR is relatable to the above ones

(4.11)RNeu(θ,B) = R̃(θ,B)S11(θ,B/2)S12(θ,B/2),

(4.12)R−−(θ,B) = R̃(θ + iπ,B)/S11(θ,B/2)/S12(θ,B/2),

(4.13)R++(θ,B) = R̃(θ,B)S11(θ,1−B/2)S12(θ,1−B/2).

Thus we have changed by means of some ambiguities from a solution which respe
strong-weak duality transformationB → 2 − B to one in which this symmetry is broke
and replaced by the new symmetryB → B − 2 − 2h. The solution investigated in [60] i
related to our solution by (2.10)

(4.14)RK(θ,B) = R̃(θ + iπ,B).

For all amplitudes which were computed in [60] related to simply laced Lie alge
the relation (4.14) always holds. The perfect agreement is quite remarkable a
constructed in [60] the solutions by starting from the lightest particle and then by exp
bootstrapping (2.7) to the heavier particles, whereas here the solutions are found by
(3.9).

4.1.2. GenericA(1)
� -affine Toda field theory

We label the particles according to the Dynkin diagram

The Coxeter number ish = � + 1 in this case. We indicated also the automorphism wh
relates the particles of typej to their anti-particlesh − j . From the formulae derived i
Appendix A.1, we compute now the kernel of the integral representation (3.12) to

2−B Bt t 1−h jt h−j
(4.15)ρ
A�

j (t) = 4 sinh( 4h )t sinh4h cosh2h sinh( 2h )t sinh
h

sinh(
h

)t

sinht cosht
2 sinh2 t

h

.
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Solving the integral or more practical using the generating function (3.25), we tran
this into the block representation (3.21) and find

(4.16)R̃j (θ + iπ,B) = R̃h−j (θ + iπ,B) =
j∏

p=1

h−p∏
k=p

‖2k − 1‖θ for j � h/2.

We used here the well-known relation between particles and anti-particles indicated
For j = 1 our solution coincides with the amplitude found in [60] shifted byiπ in the
rapidity. More solutions were not reported in [60] for this algebra.

Computing
∏�

j=1Sij (θ) =∏i
p=1

∏h−p
k=p {k}θ , we note here the additional structure (4

with X̃i = ∅ for 1 � i � �.

4.2. D(1)
� -affine Toda field theory

We proceed now similarly and label the particles according to the Dynkin diagram

In the D�-case the Coxeter number ish = 2(� − 1). As indicated most particles are se
conjugate apart from the two “spinors” at the end which are conjugate to each
From the formulae derived in Appendix A.2, we compute now the kernel in (3.12
1 � j � �− 2 to

(4.17)ρ
D�

j (t) = 16 sinh(2−B
4h )t sinhBt

4h cosh(h−2)t
4h sinh t

4 sinh(j−h)t
2h sinh j t

2h

sinht sinh2 t
2h

and for the spinors

ρ
D�

� (t) = ρ
D�

�−1(t)

(4.18)= 8 sinh(2−B
4h )t sinhBt

4h sinh (1−h)t
2h sinh (h+1−2[�/2])t

2h sinh t [�/2]
h

sinht sinh t
h

sinh t
2h

.

Solving the integral in (3.12) or using the generating function (3.25), we find the follo
compact and closed expressions for the reflection matrices in terms of hyperbolic fun

(4.19)

R̃j (θ + iπ) =
[

j∏
k=1

‖h− 2k + 1‖
]

j∏
p=1

h−p∏
k=p

‖2k − 1‖ for j = 1, . . . , �− 2,

˜ ˜
[�/2]∏ h−2p+1∏
(4.20)R�(θ + iπ) = R�−1(θ + iπ) =
p=1 k=2p−1

‖2k − 1‖.
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For D(1)
4 our solution agrees with the one reported in [63] when shifted byiπ in the

rapidity. This is one of the few examples for which a perturbative calculation has
carried out, using Neumann boundary conditions in this case. For higher ranks
solution forj = 1 was also reported in [60], which once again coincides with ours su
to the relation (4.14).

Computing now
∏�

j=1Sij (θ)θ , we note thatR̃ admits the alternative form (4.1) with

(4.21)X̃i = ∅ for i = 1, �− 1, �,

(4.22)X̃i =
⋃

1�k<[(2i+1)/4]
{h+ 4k − 2i − 1} for 2 � i � �− 2.

4.3. E(1)
6 -affine Toda field theory

The labeling of the particle types is now according to the Dynkin diagram

The Coxeter number equalsh = 12 in this case. We indicated the conjugation proper
From the formulae derived in Appendix A.3, we can obtain the integral represen
(3.12) from which we deduce the block representation (3.21) directly or use the gene
function (3.25). We find

(4.23)R̃1(θ + iπ) = R̃6(θ + iπ) = ∥∥1;3;5;72;92;112;132;152;17;19;21
∥∥
θ
,

R̃3(θ + iπ) = R̃5(θ + iπ)

(4.24)= ∥∥1;32;53;74;94;114;134;153;172;192;21
∥∥
θ
,

(4.25)R̃2(θ + iπ) = ∥∥1;3;52;73;93;113;132;153;172;19;21
∥∥
θ
,

(4.26)R̃4(θ + iπ) = ∥∥1;33;55;76;96;116;135;154;173;192;21
∥∥
θ
.

This solution coincides precisely with the amplitudes found in [60] shifted byiπ in the
rapidity. We note here that the structure of the blocks in (4.23)–(4.26) can be en
elegantly into the form (4.1) with

X̃E6
1 = X̃E6

6 = ∅, X̃E6
3 = X̃E6

5 = {7},
(4.27)X̃E6

2 = {11}, X̃E6
4 = {5,7,9}.

4.4. E(1)
7 -affine Toda field theory

The labeling of the particle types is now according to the Dynkin diagram
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The Coxeter number equalsh = 18 for E7. All particles are self-conjugate. Using th
formulae of Appendix A.4, we can again either solve the integral (3.12) or use
generating function (3.25) and deduce the block representation (3.21). We find tha
amplitudes coincide precisely with those reported in [60] (published version) when s
by iπ in the rapidity. We note here once more, that they admit the additional structure
with

X̃E7
1 = {17}, X̃E7

2 = {11}, X̃E7
3 = {7,11,15},

(4.28)X̃E7
4 = {

5,7,92,11,132,17
}
,

(4.29)X̃E7
5 = {7,9,11,15}, X̃E7

6 = {9,17}, X̃E7
7 = ∅.

4.5. E(1)
8 -affine Toda field theory

In this case we label the particles according to the Dynkin diagram

The Coxeter number equalsh = 30 for E8. All particles are self-conjugate. Using th
formulae of Appendix A.5, we can solve the integral (3.12) or use the generating fun
(3.25) and deduce the block representation (3.21). Once more we find that these am
coincide precisely with those reported in [60] (published version) when shifted byiπ in
the rapidity. They admit the additional structure (4.1) with

X̃E8
1 = {17,29}, X̃E8

2 = {11,15,19,23},
(4.30)X̃E8

3 = {
7,11,13,15,17,192,23,27

}
,

(4.31)X̃E8
4 = {

5,7,92,112,133,152,173,192,213,23,252,29
}
,

(4.32)X̃E8
5 = {

7,92,112,13,152,17,192,21,232,27
}
,

X̃E8
6 = {9,11,13,17,19,21,25,29},

(4.33)X̃E8
7 = {11,19,27}, X̃E8

8 = {29}.

4.6. (B(1)
� ,A(2)

2�−1)-affine Toda field theory

As not many examples for reflection amplitudes of ATFTs related to non-simply l
Lie algebras have been computed, we consider it useful to start with some specific e
before turning to the generic case. In general we label the particle types according
Dynkin diagram
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4.6.1. (B(1)
2 ,A

(2)
3 )-affine Toda field theory

In this case we have for the (generalized) Coxeter numbersh = 4,H = 6, the incidence
matrix I12 = 2, I21 = 1 and the symmetrizerst1 = 2 andt2 = 1. This is already enoug
Lie algebraic information needed for the computation of the relevant matrices in eq
(3.13). We obtain

(4.34)K−1(t) = 1

cosht/2

(
cosht (ϑh + ϑH ) coshtϑH

1/2 cosht (ϑh + 2ϑH)

)
.

With the help of this matrix we can evaluate the scattering amplitudes (3.5) and (
Alternatively we may compute the representation in terms of blocks from this.
expression (3.16) yields

S11(θ) = {1,1}{1,3}{3,3}{3,5}θ,
(4.35)S22(θ) = {1,1}{3,5}θ, S12(θ) = {2,2}{2,4}θ

and (3.21)

(4.36)R̃1(θ + iπ) = ‖1,1‖‖1,3‖‖3,3‖‖3,5‖‖3,7‖‖5,5‖θ,
(4.37)R̃2(θ + iπ) = ‖1,1‖‖3,3‖‖3,5‖‖5,9‖θ .

The solutions (4.36), (4.37) correspond precisely to those found by Kim in [61]
re-defining the effective coupling asB → B/2 and shiftingθ by iπ . These solutions
are especially trustworthy as they have also been double checked against pertu
theory. As the non-simply laced cases are not yet covered very much in the liter
we consider it useful to perform some more analysis at least for this case. Let us
the bootstrap equation (2.8) which relates different boundary states to each other i
detail. Adopting here the same principle as in the bulk, see [8,18] and references t
namely that−i ResR(θ = η) > 0 in the entire range of the coupling constant we find h

(4.38)−i Res
θ→η

β

2α=θh+θH
R̃iα(θ + iπ) > 0.

Solving for this angleηβ2α the bootstrap equation (2.8) yields

(4.39)Riα(θ) = Si1(−θ)Riβ(θ).

Considering now the new solutionRiβ(θ), we observe that

(4.40)−i Resθ→ηα2β=3θh+5θH R̃iβ (θ + iπ) > 0.

These are the only poles with the property to have positive definitive sign in the
range of the coupling constant, such that we have just the two boundary statesα andβ .
The corresponding energies are computed in the same way as in [18,54]. Using tha

(4.41)m1 = msinh(2θh + 4θH ) and m2 = msinh(θh + θH ),

with m being an overall mass scale, we find for the energies of the two boundary sta

(4.42)Eα = Eβ −m2 cosh(θh + θH ) = Eβ −m1/2,

such that it appears that Kim’s solution is not the ground state. When performing the

analysis for our solutioñRi(θ) we find that there is no simple order pole which respects
(4.38), such that there is only one state in that case.
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4.6.2. Generic(B(1)
� ,A(2)

2�−1)-affine Toda field theory
In this case we haveh = 2� andH = 2(2� − 1). The task of finding general bloc

expressions for all reflection amplitudes, such as for instance in (4.16) forA
(1)
� turns

out to be quite involved in this case and therefore we present only closed expre
corresponding to some specific particles. For the first particle we find for� �= 2

R̃
(B(1)

� ,A(2)
2�−1)

1 (θ + iπ,B)

= ∥∥h− 1, [H − 3]3;h+ 1,H − 1
∥∥
θ

2(�−1)∏
k=�+1

∥∥2k + 1, [4k − 3]2
∥∥
θ

(4.43)×
�−2∏
k=0

∥∥2k + 1, [4k + 1]2
∥∥
θ
,

whereas for the second with� �= 2,3 we obtain

R̃
(B(1)

� ,A(2)
2�−1)

2 (θ + iπ,B)

= ∥∥1,12;h− 3, [H − 7]3;h− 3, [H − 5]2;h− 1, [H − 5]4;
h− 1,H − 1;h+ 1, [H − 1]2;h+ 1,H + 5;h+ 3, [H + 3]2;

h+ 3,H + 3;2h− 3, [2H − 7]2
∥∥
θ

�−2∏
k=0

∥∥2k + 3, [4k + 5]2
∥∥2
θ

(4.44)×
2(�−1)∏
k=�+1

∥∥2k + 3, [4k + 1]2
∥∥2
θ
.

For the last two particles the amplitudes are

R̃
(B(1)

� ,A(2)
2�−1)

�−1 (θ + iπ,B)

=
�−2∏
k=0

∥∥2k + 1, [4k + 1]2;2k + 3, [4k + 3]3;4k + 5,8k + 5
∥∥
θ

×
�−2∏
k=1

∥∥2k + 3,4k + 5;4k + 3, [8k + 1]2;4k + 3,8k + 7
∥∥
θ

(4.45)×
�−4∏
n=0

2(�−n−2)∏
k=�−n

∥∥2k + 1, [4k − 3]4
∥∥
θ
,

R̃
(B(1)

� ,A(2)
2�−1)

� (θ + iπ,B)[
�−1∏ ]

�−2∏ 2(�−n−1)∏ ∥∥ ∥∥
 (4.46)=
k=0

‖4k + 1,8k + 1‖θ
n=0 k=�−n

2k − 1, [4k − 5]2 θ
.
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In particular, one can easily specialize these functions to reproduce the examples� = 2,3
treated in the previous subsections. We also report here fori = �, the corresponding
integral representation which is given in terms of the kernel,

�∑
j,k,p=1

[
K(B(1)

� ,A(2)
2�−1)(t)

]−1
�j

χ
kp

j

[
K(B(1)

� ,A(2)
2�−1)(t/2)

]−1
kp

[tp]q̄1/2

= 4 sinhth(ϑh+2ϑH )
4

sinht sinh t (ϑh+2ϑH )
2

×
(

coshtϑH

2 sinh t (ϑh+2ϑH )(2−h)
4 sinh t (ϑh(h−1)+2ϑH (h−2))

4

sinht (ϑh + 2ϑH)

(4.47)+ cosh
th(ϑh + 2ϑH)

4
sinh

t (2(1−H)ϑH −Hϑh)

4

)
.

As the expressions for the other amplitudes turn out to be rather lengthy we do not
them here, but it should be clear how to obtain them.

4.7. (C(1)
� ,D(2)

�+1)-affine Toda field theory

We label the particle types according to the Dynkin diagram

The (generalized) Coxeter numbers areh = 2�, H = 2�+2 in this case. Similarly as in th
previous section, we present only closed formulae for some particles. For the first p
we find for� �= 2

R̃
(C(1)

� ,D(2)
�+1)

1 (θ + iπ,B)

= ∥∥h− 1, [h− 1]2;2h− 3,2h+ 1
∥∥
θ

�−2∏
k=0

‖2k + 1,2k + 1‖θ

(4.48)×
2(�−1)∏
k=�+1

‖2k − 1,2k + 3‖θ ,

whereas for the second we obtain

R̃
(C(1)

� ,D(2)
�+1)

2 (θ + iπ,B)

= ∥∥1,1;h− 3, [h− 3]2;h− 3, h− 3;h− 1, [h− 1]3;h+ 1, h+ 1;

h+ 1, h+ 5;2h− 3,2h+ 1
∥∥ 2(�−1)∏

‖2k − 1,2k + 3‖2

θ

k=�+2
θ
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(4.49)×
�−4∏
k=0

‖2k + 3,2k + 3‖2
θ

with � �= 2,3. For the amplitudes related to the last two particles we find

R̃
(C(1)

� ,D(2)
�+1)

�−1 (θ + iπ,B)

=
�−2∏
k=0

∥∥2k + 1,2k + 1;2k + 3, [2k + 3]2;4k + 5,4k + 9
∥∥
θ

(4.50)×
�−3∏
n=0

2(�−n−1)∏
k=�+1−n

‖2k − 1,2k − 1;2k − 1,2k + 3‖θ ,

R̃
(C(1)

� ,D(2)
�+1)

� (θ + iπ,B)

= ‖1,12‖θ
�−2∏
k=0

∥∥2k + 3, [2k + 3]3;2k + 5,2k + 5
∥∥
θ

×
�−4∏
n=0

2(�−n−2)∏
k=�−n

‖2k + 3,2k + 3;2k + 3,2k + 7‖θ

(4.51)×
�−2∏
k=1

‖2k + 5,2k + 9;4k + 5,4k + 5‖θ .

Once again we do report the remaining amplitudes as their expressions turn out to
lengthy.

4.8. (F(1)
4 ,E(2)

6 )-affine Toda field theory

We label the particle types according to the Dynkin diagram

The (generalized) Coxeter numbers areh = 12 andH = 18 in this case, witht1 = t2 = 2
andt3 = t4 = 1. We compute

R̃1(θ + iπ) =‖1,12;3,52;5,73;7,9;7,93;9,113;9,15;11,134;11,17;
13,172;13,23;15,21;15,213;17,23;17,27;

(4.52)19,25;21,292‖θ ,
R̃2(θ + iπ) =∥∥1,12;3,33;3,52;5,54;5,53;5,9;7,75;7,92;7,112;
9,95;9,132;9,132;11,134;11,153;11,15;11,19;
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13,174;13,172;13,21;15,193;15,23;15,27;17,21;
(4.53)17,25;17,29;19,252;19,31;21,29;−19,−29

∥∥
θ
,

R̃3(θ + iπ) =∥∥1,1;3,3;3,32;5,53;5,72;7,74;7,112;9,114;9,132;
11,153;11,15;11,152;13,173;13,212;15,19;15,212;

(4.54)15,23;17,232;17,29;19,27;19,31;21,33
∥∥
θ
,

R̃4(θ + iπ) =‖1,1;3,3;5,52;7,92;7,11;9,132;9,13;11,153;13,17;13,

(4.55)21;15,212;15,23;17,252;19,31;21,33‖θ.
We are not aware of any kind of solution known in the literature related to this algeb

4.9. (G(1)
2 ,D(3)

4 )-affine Toda field theory

We label the particle types according to the Dynkin diagram

The (generalized) Coxeter numbers are nowh = 12 andH = 18. In this case we compu
the integral representation

(4.56)ρ
G(1)

2
1 (t) = 16 sinhϑht

2 sinhϑH t
2 (sinh t

12 sinhBt
16 − cosh(B+4)t

48 cosh(B+4)t
24 )

1
2 − cosht

3 + cosht
2

,

(4.57)ρ
G(1)

2
2 (t) = 16 sinhϑht

2 sinh3ϑH t
2 [(2 cosht6 − 1)sinhϑht

2 − 1
2 cosh(B−4)t

48 ]
1
2 − cosht

3 + cosht
2

.

When computing the block representation (3.21) we find complete agreement wi
solution found in [61] shifted byiπ in the rapidities up to some obvious typos. We theref
do not need to report it here. The solutions differ from the ones reported in [17].

5. Breaking of the strong-weak duality

The above solutions are very general and can be related easily by means
ambiguities (2.9)–(2.12) to all other solutions which are reported in the literature s
Let us consider one particular ambiguity in more detail

ˆ ˜
�∏
(5.1)Ri(θ,B) = Ri(θ,B)

j=1

Sij (θ,1−B/2).



nt
s
e

As
tudes,
.e.,

nn
ry
ce
uality
ining

non-
based

ar the
tegral

dix for
O. Castro-Alvaredo, A. Fring / Nuclear Physics B 682 [FS] (2004) 551–584 571

At first sight there seems to be nothing special aboutR̂i(θ,B). Nonetheless, certain evide
features can be seen from (5.1). Our solutionR̃i (θ,B) for the reflection amplitude share
with the bulk scattering amplitudeSij (θ,B) the property of being invariant under th
strong-weak duality transformationB → 2 − B. SinceSij (θ,1 − B/2) �= Sij (θ,B/2) it
is clear from (5.1) that̂Ri(θ,B) is not invariant under the strong-weak transformation.
was argued in [19], it is desirable to construct such solutions for the reflection ampli
because unlikeR̃i (θ,B) which tends to 1 in the weak and strong classical limit, i
B → 0,2, we have now simply

(5.2)R̂i (θ,B = 0) =
�∏

j=1

Sij (θ,B = 1),

(5.3)R̂i (θ,B = 2) = 1.

This means, whilstR̃i(θ,B) reduces in the classical limit to a theory with Neuma
(free) boundary condition, the amplitudêRi(θ,B) tends to a theory with fixed bounda
conditions forB → 0, but forB → 2 to a theory with Neumann boundary condition. Hen
the formulation (5.1) constitutes a simple mechanism of breaking consistently the d
and changing from one type of boundary conditions to another. This picture of obta
two different classical Lagrangians is familiar for the bulk theories of ATFT related to
simply laced Lie algebras and was put forward for theories with boundaries in [19]
on observations of the classical theory.

Let us evaluate the solution (5.1) in detail. From the above data and in particul
formulae provided in the appendix, we compute for the simply laced algebras an in
representation for̂R analogue to (3.12), where the corresponding kernel is

(5.4)

ρ̂i (t) = 4
sinh t (2−B)

4h

cosht
2

[
sinh

t

2

(
1+ B

2h

)[
K−1(t/2)

]
ii

− 2 cosh
Bt

4h

∑
x∈X̂i

sinh
xt

2h

]
.

The X̂i are sets specific to the algebras and particle types. We find (see the appen
some details on this calculations) that

(5.5)X̂A�

i = ∅ for 1 � i � �,

(5.6)X̂D�

i = ∅ for i = 1, �− 1, �,

(5.7)X̂D�

i =
⋃

1�k<[(2i+1)/4]
{2i + 1− 4k} for 2 � i � �− 2,

X̂E6
1 = X̂E6

6 = ∅, X̂E6
3 = X̂E6

5 = {5},
(5.8)X̂E6

2 = {1}, X̂E6
4 = {3,5,7},

X̂E7
1 = {1}, X̂E7

2 = {7}, X̂E7
3 = {3,7,11},

(5.9)XE7
4 = {

1,52,7,92,11,13
}
,

(5.10)X̂E7
5 = {3,7,9,11}, X̂E7

6 = {1,9}, X̂E7
7 = ∅,
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X̂E8
1 = {1,13}, X̂E8

2 = {7,11,15,19},
(5.11)X̂E8

3 = {
3,7,112,13,15,17,19,23

}
,

(5.12)X̂E8
4 = {

1,52,7,93,112,133,152,173,192,212,23,25
}
,

(5.13)X̂E8
5 = {

3,72,9,112,13,152,17,192,212,23
}
,

(5.14)X̂E8
6 = {1,5,9,11,13,17,19,21}, X̂E8

7 = {3,11,19}, X̂E8
8 = {1}.

Up to some minor typo, the expression (5.4) corresponds forA� to the formula propose
by Fateev in [39], which was obtained by changing from the block form (3.21) prov
in [19] to an integral representation. For certain amplitudes, namely when the Kac
ni = ψ· λi = 1, withψ being the highest root andλi the fundamental weight, a conjectu
was put forward in [39], which corresponds precisely to our expression (5.4) whenX̂i is the
empty set∅. At present the condition for the Kac labels is only an observation and h
deeper physical or mathematical meaning, but probably when one computes the qu
in terms of inner products of simple roots and weights, analogue to computations in
the bulk S-matrix, one can provide a reasoning for it. Note that the two setsX̂i andX̃i can
be obtained from each other when replacing each elementx ∈ X̃i by (h− x) ∈ X̂i .

We may carry out the sum

(5.15)
∑

x∈X̂D�
i

sinh
tx

2h
=
[
sinh

it

2h
sinh

(i − 1)t

2h

]
sinh−1 t

h

for 2 � i � �−2 and obtain the only amplitudes which were provided in [39] not satisf
the conditionni = 1. In this case we find agreement with our solution up to a minor ty

Alternatively, we can turn (5.4) into a block form formulation

(5.16)R̂i (θ,B) =
h∏

x=1

‖̂x‖2µii

θ

∏
x∈X̂i

‖x‖θ ,

where the powersµii relate to the bulk scattering matrix as defined in (3.16) and
blocks ‖̂x‖, ‖x‖θ were introduced in (3.30) and (3.31). Note that̂‖x‖θ ‖̂x‖θ+iπ = {x}2θ
and‖x‖θ‖x‖θ+iπ = 1, such that we see that the crossing relation (2.5) block-wise triv
satisfied whenR̂k = R̂k̄ .

In principle the formula (5.1) also holds for the non-simply laced case and a si
reasoning as for the simply laced cases can be carried out. However, we expect n
the occurrence of some free parameters according to the arguments of [19,21,64
means some modifications are needed here. Even for special choices of the param
conjecture put forward in [41] does not seem to agree with (5.1). Let us briefly com
on the mechanisms, which leads to free parameters within the bootstrap approa
commence with the easiest model which exhibits such features, that is the sinh-G
model (A(1)

1 -ATFT). Our solution for the reflection amplitude for the one particle in
model reads in this case
(5.17)R̃(θ,B) = (1)θ (−B/2)θ (B/2− 1)θ .
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The S-matrix is well known to be [55,65,66]

(5.18)S(θ,B) = −(−B)θ (B − 2)θ .

We can relate our solution easily to an expression analyzed relatively recen
Chenghlou and Corrigan [48] against perturbation theory. In their notation we find

(5.19)R(θ,B) = R̃(θ,B)
S(θ,1−E)S(θ,1− F)

S(θ,B/2)S(θ,1+B/2)
,

whereE andF are free parameters. As there is no bootstrap in the sinh-Gordon mode
clear that every solution forR multiplied byS(θ,B ′) constitutes also a perfectly consiste
solution from the bootstrap point of view. If then in addition the effective coupling is ta
to be in the range 0� B ′ � 2 there will be no additional poles introduced by this multipl
such that the bootstrap equation (2.8) is not coming into play. An important conseq
is that the energy of the corresponding boundary state of this solution will be the
for all values of the free parameterB ′ in the stated regime. The factorsS(θ,1 − E) and
S(θ,1 − F) are precisely of this type, when the parameters are taken to be in the
as argued in [54], i.e.,F = 0 andE = 1 − B/2. In [48,49] also a different choice of th
parameters was considered, which lead to new poles in the physical sheet, which
that for that regime the bootstrap equation (2.8) has to be newly analyzed and the a
and the energies of the boundary bound states will change. In that case our argume
also needs modification. In addition our argument is not yet sufficient to explain why
are precisely two free parameters (as in principle it would allow the introduction o
arbitrary number), but it explains when they might arise. Similarly, we obtain a sol
which was found in [67] for the sinh-Gordon model with dynamical boundary conditio5

The solution found in there relates to ours asR(θ,B) = R̃(θ,B)/S(θ,1).
Let us look at a more complicated model which involves a non-trivial bootstrap an

which we also expect this phenomenon:(B
(1)
2 ,A

(2)
3 )-ATFT. In that case we can define th

new amplitudes

R1(θ,B,B ′) → R1(θ,B)S11(θ,B
′),

(5.20)R2(θ,B,B ′) → R2(θ,B)S12(θ,B
′),

where the parameter 0� B ′ � 2 is kept free. Clearly there is no problem with crossi
unitarity (2.5) and by construction also the boundary bootstrap equation (2.7) is sa
As the amplitudesS11 andS12 introduce no new poles whose residues satisfy (4.38)
have similarly as for sinh-Gordon a new solution whose energies of the bound sta
the same as for the original solution for all possible values of the free parameterB ′. In
comparison we can look at theA(1)

2 -ATFT, where such freedom does not exist. In t
theory the process 1+ 1 and 2+ 2 lead to new bound states, such that we cannot mul
with the corresponding S-matrices without changing the energies of the boundary s

We have indicated here briefly how free parameters may emerge naturally in the
strap approach. A more detailed analysis of this argument we shall present elsewhe
5 We are grateful to P. Baseilhal for bringing [67] to our attention.
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6. Conclusion

In this manuscript we have provided a closed generic solutionR̃(θ) for the boundary
bootstrap equations (2.7) valid for affine Toda field theories related to all simple
algebras, simply laced as well as non-simply laced. We have worked out this form
detail for specific Lie algebras in form of an integral representation as well as in fo
blocks of hyperbolic functions. Our solutioñR(θ) can be used as a seed to construct (
other solutions related to various types of boundary conditions.

The non-uniqueness of the solution is related to the fact that one can make
the transformations (2.9)–(2.12) and always produce new types of solutions. The n
question which arises is: which of these solutions are meaningful? In the bulk th
one finds that essentially all solutions to the bootstrap equations subjected to m
analyticity lead to meaningful quantum field theories. Very often there is no clas
counterpart in form of a Lagrangian known to these solutions. Even though concep
not needed, as an organizing principle classical Lagrangians are very useful. In the
boundary theories it is the different types of boundary conditions which label the solu
(theories). In a sequence of papers the Durham/York group [19,21,64] has inves
which type of classical boundary terms can be used to perturb an affine Toda field
such that the integrability is preserved. The findings were that the theory has to be
form

(6.1)L = Θ(−x)LATFT − δ(x)
m

β2

�∑
i=0

κi
√
nie

βαi ·ϕ/2,

where theni are the usual Kac labels occurring inLATFT, defined through the expansion
the highest rootψ = −α0 =∑�

i=1niαi in terms of simple rootsαi . For theories related t

simply laced algebras (except sinh-Gordon≡ A
(1)
1 where the two parameters are free)

constantsκi can be either all zeroκi = 0 for ∀i (Neumann boundary condition) or|κi | = 1
for ∀i. For the non-simply laced case theκi are fixed depending on the algebra and th
are up to two free parametersκi either exclusively related to the short or long roots (
Appendix D in [21] for details).

How can our solution (3.12) be related to the different choices of the boundary in
Let us consider the slightly generalized expression (5.1) for theA�-ATFT

(6.2)R̂±
j (θ,B) = R̃j (θ,B)±

�∏
k=1

Sjk(θ,1−B/2)±1.

Computing now the classical limit, we find

(6.3)lim
B→0

R̂±
j (θ,B) = R̃i (θ,B = 0)±

�∏
k=1

Sjk(θ,1)±1

(6.4)= exp

(
±8

∞∫
dt

sinh2 t
�∑

K−1(t)sinh
θt
)

0
t 2h

k=1
jk iπ
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(6.5)= exp

(
±4

∞∫
0

dt

t
sinh

t

2h
tanh

t

2
K−1

jj (t/2)sinh
θt

iπ

)

(6.6)= −(j)±θ (h− j)±θ

(6.7)= i sinhθ ∓ 1/2mmj

i sinhθ ± 1/2mmj

,

where we usedmj = 2msin(jπ/h), with m being once more an overall mass sca
The expression (6.7) is what is predicted in this limit [19,21,64]. It is then clear
combinations ofR̂±

j (θ,B) for different j can be used to construct all possible fix

boundary solutions, i.e.,̂R+
1 (θ,B), R̂−

2 (θ,B), R̂−
3 (θ,B), . . . → {+,−,−, . . .}. Similar

limits can be carried out for the other Lie algebras. For non-simply laced algebr
the sinh-Gordon model, we gave a short argument which leads to the occurrence
parameter within the bootstrap approach. As many solution give the same classica
it is clear that even in the simply laced cases the classical limit6 is not enough to pin
down the solutions and relate them one-to-one to one particular boundary condition
information can be obtained from perturbative computations, as at orderβ2 already many
solutions start to differ from each other, although even at that order some distinct so
still coincide. Unfortunately, there are not many computations of this kind existing i
literature to compare with.

A further way to minimize the amount of solutions which can be generated from
generic solution of (2.7)̃R and the ambiguities (2.9)–(2.12) is of course to close also
second type of bootstrap equation (2.8) [18,32,35] (see also Section 4.6.1 for an e
related to non-simply laced Lie algebras) and eliminate those solutions which do not
for such a closure. A systematic study of this kind has not been carried out so fa
we share the pessimistic viewpoint expressed in [32] concerning such an under
Whereas it appears possible to show that some solutions do indeed close, it seems
to develop a systematic scheme which selects solution which do not close. Possibl
developing a formulation in terms of Coxeter geometry similarly as in the bulk [8], this
be understood better.

More in the spirit of exactly solvable models are considerations carried out in [69
where the scaling functions (free energies) have been computed in two alternative wa
one hand one can compute it by means of the thermodynamic Bethe ansatz and on t
by a semi-classical perturbation around the conformal field theory. Since in the form
boundary reflection amplitude enters as an input and in the latter the explicit bou
conditions one may compare the outcome and therefore indirectly relate solutions
boundary bootstrap equations and classical boundary conditions. We leave this anal
future investigations [71].
6 We do not see how this is compatible with the statement expressed in [32], where the opposite is claimed,
namely that different boundary conditions share the same quantum reflection amplitude.



ancial

ul

litude

form
o this
(5.4).

esent

e

d its

rs.

formed

the
576 O. Castro-Alvaredo, A. Fring / Nuclear Physics B 682 [FS] (2004) 551–584

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft (Sfb288), for fin
support. This work is supported by the EU network “EUCLID,Integrable models and
applications: from strings to condensed matter”, HPRN-CT-2002-00325. We are gratef
to G.W. Delius and M. Stanishkov for discussions.

Appendix A. The inverse of K and the evaluation of ρ

The central object which enters into the computation of the bulk scattering amp
(3.5) as well as into the reflection amplitude (3.12) is the inverse of theq-deformed Cartan
matrix (3.7). We demonstrate that the entries of this matrix can be written in a closed
and furthermore that the sums over rows or columns can be carried out explicitly. Als
closed form can be used when they enter the expression for the kernel in (3.13) and

Let us comment on the evaluation for this object in this appendix. We only pr
the formulae for the simply laced algebrasg and first determine the determinant ofK(t).
For simply laced algebras we know the eigenvalues of the incidence matrixI of g to be
Iij yj (n) = 2 cos(πsn/h)yi(n), where thesn are the exponents ofg. Therefore we conclud
directly

K
g
ij (t)yj (n) = 4 cosh

[
(t + iπsn)/2h

]
cosh

[
(t − iπsn)/2h

]
yi(n)

(A.1)= λ
g
nyi(n).

Appealing to the well-known relation between the eigenvalues of a matrix an
determinant we obtain

(A.2)detKg(t) =
�∏

n=1

λ
g
n =

�∏
n=1

4 cosh
[
(t + iπsn)/2h

]
cosh

[
(t − iπsn)/2h

]
.

Having in mind to compute the inverse ofK(t) we also need to determine its cofacto
It turns out that the sub-matrix resulting from the elimination of theith row and thej th
column always decomposes into some matrices which can be identified as a de
Cartan matrix of some new algebrasg̃i andg̃j

(A.3)Kg/g̃(t) → Kg/g̃i (t) ⊕Kg/g̃j (t).

Here we introduced the matrices

(A.4)Kg/g̃(t) := 2 cosh(t/h) − I g̃.

HenceKg/g̃(t) differs fromK g̃(t) in the sense that the Coxeter numberh appearing in its
diagonal belongs tog rather thañg. The same argument which lead to (A.1) then gives
eigenvalues ofKg/g̃(t)
(A.5)λ
g/g̃
n = 4 cosh(t/2h+ iπ s̃n/2h̃)cosh(t/2h + iπ s̃n/2h̃).
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Therefore we obtain the inverse of the (doubly)q-deformed Cartan matrix

(A.6)
[
Kg(t)−1]

ij
= detKg/g̃i (t)detKg/g̃j (t)

detKg(t)
=
∏�i

n=1λ
g/g̃i
n

∏�j
n=1λ

g/g̃j
n∏�

n=1λ
g
n

.

What remains to be specified is the precise decomposition (A.3). We shall demonstr
in detail. For this we need to specialize the formula (A.6) for some concrete algebr
(A.6) consists of products it is not very suitable in that form and we therefore also pr
some alternative method which turns the products into sums. We also need to comp
sum over some rows or columns ofK(t)−1 and then we evaluate the sums in (3.13).

A.1. A�

Takingg to beA� in (A.6) it is easy to convince oneself that

(A.7)
[
KA�(t)−1]

ij
= [

KA�(t)−1]
ji

= detKA�/Ai−1 detKA�/A�−j

detKA�
for i � j

(A.8)=
∏i−1

n=1λ
A�/Ai−1
n

∏�−j

n=1λ
A�/A�−j
n∏�

n=1λ
A�
n

.

Having in mind to sum over some rows and columns ofK(t)−1, we present a differen
method to compute (A.7). For this we develop the determinant ofKA�/An with respect to
the first row or column

(A.9)detKA�/An = detKA�/A1 detKA�/An−1 − detKA�/An−2.

Understanding that detKA�/A0 = 1 and detKA�/An = 0 for n < 0, we can view (A.9) as a
recursive equation for detKA�/An in terms of detKA�/A1 = KA�/A1, which we can leave
completely arbitrary at this point. We note that the equation (A.9) is the recursive eq
for the Chebychev polynomials of the second kindUn(x), such that

(A.10)detKA�/An =
[n/2]∑
k=0

(−1)k
(
n− k

k

)(
KA�/A1

)n−2k = Un

(
KA�/A1/2

)
,

where[x] denotes the integer part ofx. We also need below

(A.11)
p∑

n=0

detKA�/An =
p∑

n=0

[n/2]∑
k=0

(−1)k
(
p − n + k

k

)(
KA�/A1

)p−n
.

Let us now fixKA�/A1 = q + q−1. Then we obtain from (A.10)

(A.12)detKA�/An = Un

[(
q + q−1)/2

]= [1+ n]q,
such that (A.7) yields[ ] [ ] [i] [h− j ]
(A.13)KA�(t)−1
ij

= KA�(t)−1
ji

= q q

[h]q for i � j.
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The same specialization reduces (A.11) to

(A.14)
p−1∑
n=0

detKA�/An = [
(p + 1)/2

]
q
[p]q1/2.

We can now also carry out the sum over theith row or column. From (A.7), (A.12), (A.13
and (A.14) follows

�∑
j=1

[
KA�(t)−1]

ij

= 1

detKA�

[
detKA�/Ai−1

�−i∑
j=0

detKA�/Aj + detKA�/A�−i

i−2∑
j=0

detKA�/Aj

]

= 1

[h]q
([i]q[(h + 1− i)/2

]
q
[h− i]q1/2 + [h− i]q[i/2]q[i − 1]q1/2

)
= 1

2 cosht/2
[h− i]q1/2[i]q1/2

(A.15)= tanh(t/2)

2 sinh(t/2h)

(
KA�(t/2)

)−1
ii

.

To be able to compute (3.13) in more detail we derive from the above relations[
KA�(t)−1]

ij
χ
kp
j (t)

[
KA�(t/2)−1]

kp

(A.16)= 2 cosh(t/2h)sinh[(1− h)t/2h]
cosht/2 sinh(t/h)

(
KA�(t/2)

)−1
ii

.

It is the non-obvious feature that the sum in (A.15) as well as the expressions in (
are both proportional to(K(t/2))−1

ii which allows for the computation of (5.4). For th
other algebras there are additional terms appearing as indicated in (5.5)–(5.14). We p
similarly for them.

A.2. D�

We may now proceed as in the previous section and find also a recursive relat
this case by expanding the determinant with respect to the first (last) row or column

detKD�/Dn = KD�/A1
[
detKD�/An−1 − detKD�/An−3

]
.

Solving this and performing similar computations as before we finally find the follow
closed formulae for 1� i � �− 2

�∑
j,k,p=1

[
KD�(t)−1]

ij
χ
kp
j

[
KD�(t/2)−1]

kp

(h−2)t t (i−h)t it
(A.17)= 4 cosh 4h sinh4 sinh 2h sinh2h

sinht sinh2 t
2h

,
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and

�∑
j,k,p=1

[
KD�(t)−1]

ij
χ
kp
j

[
KD�(t/2)−1]

kp

(A.18)= 2 sinh(1−h)t
2h sinh (h+1−2[�/2])t

2h sinh t [�/2]
h

sinht sinh t
h

sinh t
2h

,

for i = � − 1, �. Having these formulae at hand we can easily obtain the kernels (
and (4.18). In this case we found that the proportionality to(K(t/2)−1)ii , observed in
the previous section, no longer holds and therefore the formulae are more lengthy
i �= 1, �− 1, �.

A.3. E6

Developing the determinant gives again some recursive equation

(A.19)detKE6 = KE6/A1 detKE6/D5 − detKE6/D4.

From this we compute

6∑
j,k,p=1

[
KE6(t)−1]

1jχ
kp
j

[
KE6

(
t

2

)−1]
kp

= −1+ 2
∑5

k=1 coshkt
12

cosht
2

[
KE6

(
t

2

)−1]
11
,

6∑
j,k,p=1

[
KE6(t)−1]

2jχ
kp

j

[
KE6

(
t

2

)−1]
kp

= 2− 4
[∑2

k=1 coshkt
12 + cosht

3

]
(1− 2 cosht3)(1− 2 cosh t

12)

[
KE6

(
t

2

)−1]
22
,

6∑
j,k,p=1

[
KE6(t)−1]

3jχ
kp

j

[
KE6

(
t

2

)−1]
kp

= 4
∑3

k=2 coshkt
12

1− 2 cosht3

[
KE6

(
t

2

)−1]
33
,

6∑
j,k,p=1

[
KE6(t)−1]

4jχ
kp
j

[
KE6

(
t

2

)−1]
kp

= 2(1+ 2 cosht4)

1− 2 cosht3

[
KE6

(
t

2

)−1]
44
.

Taking the first subscript to be 5 or 6 equals the expressions for taking them to be
respectively. This is sufficient to compute the expressions forR.

A.4. E7

Developing the determinant gives now the recursive equations
(A.20)detKE7 = KE7/A1 detKE7/D6 − detKE7/A5.
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Therefore

7∑
j,k,p=1

[
KE7(t)−1]

1jχ
kp
j

[
KE7

(
t

2

)−1]
kp

= 4
(∑3

k=2 coshkt
18 + cosh5t

18 + cosh7t
18

)[KE7( t2)
−1]11

(1− 2 cosh t
18 + 2 cosht9)(1− 2 cosht3)

,

7∑
j,k,p=1

[
KE7(t)−1]

2jχ
kp

j

[
KE7

(
t

2

)−1]
kp

= 2− 4
∑5

k=2 coshkt
18 + cosh−1 t

18

2 cosht3 − 1

[
KE7

(
t

2

)−1]
22
,

7∑
j,k,p=1

[
KE7(t)−1]

3jχ
kp
j

[
KE7

(
t

2

)−1]
kp

= 2(1+ 2 cosh2t
9 + 2 cosh5t

18)

2 cosht3 − 1

[
KE7

(
t

2

)−1]
33
,

7∑
j,k,p=1

[
KE7(t)−1]

4jχ
kp
j

[
KE7

(
t

2

)−1]
kp

= 4(cosh t
18 + cosh5t

18) − cosh−1 t
18

2 cosht3 − 1

[
KE7

(
t

2

)−1]
44
,

7∑
j,k,p=1

[
KE7(t)−1]

5jχ
kp
j

[
KE7

(
t

2

)−1]
kp

=
[
4
(
1− cosht

9 +∑5
k=4 coshkt

18

)+ 1
cosh t

18

][KE7( t2)
−1]55

1− 2 cosht3
,

7∑
j,k,p=1

[
KE7(t)−1]

6jχ
kp
j

[
KE7

(
t

2

)−1]
kp

= 4

∑5
k=3 coshkt

18

1− 2 cosht3

[
KE7

(
t

2

)−1]
66
,

7∑
j,k,p=1

[
KE7(t)−1]

7jχ
kp
j

[
KE7

(
t

2

)−1]
kp

=
[
4
(∑3

k=2 coshkt
18 +∑7

k=6 coshkt
18

)+ 1
cosh t

18

][KE7( t2)
−1]77

(1− 2 cosht9)(2 cosht3 − 1)
which suffices to computeR.
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A.5. E8

Developing the determinant gives now the recursive equations

(A.21)detKE8 = KE8/A1 detKE8/D7 − detKE8/A6.

We obtain now
8∑

j,k,p=1

[
KE8(t)−1]

1jχ
kp
j

[
KE8

(
t

2

)−1]
kp

= 2
(
1+ 2 cosh t

30 − 2
∑9

k=3 coshkt
30

)
−1+ 2 cosht3

[
KE8

(
t

2

)−1]
11
,

8∑
j,k,p=1

[
KE8(t)−1]

2jχ
kp
j

[
KE8

(
t

2

)−1]
kp

= 8 cosh t
30

(
1+ cosh t

30

[
1− 2

∑2
k=1 coshkt

15

])[KE8( t2)
−1]22

2 cosht5 + 2 cosh4t
15 − 2 cosh t

15 − 1
,

8∑
j,k,p=1

[
KE8(t)−1]

3jχ
kp
j

[
KE8

(
t

2

)−1]
kp

= 4
(∑7

k=4 cosht
6 − cosh t

30

)
1+ 2 cosh t

15 − 2 cosht5 − 2 cosh4t
15

[
KE8

(
t

2

)−1]
33
,

8∑
j,k,p=1

[
KE8(t)−1]

4jχ
kp
j

[
KE8

(
t

2

)−1]
kp

= 4(cosht
6 + cosh7t

30)

1+ 2 cosh t
15 − 2 cosht5 − 2 cosh4t

15

[
KE8

(
t

2

)−1]
44
,

8∑
j,k,p=1

[
KE8(t)−1]

5jχ
kp

j

[
KE8

(
t

2

)−1]
kp

= 2+ 4
(∑7

k=5 coshkt
30 − cosh t

10

)
1+ 2 cosh t

15 − 2 cosht5 − 2 cosh4t
15

[
KE8

(
t

2

)−1]
55
,

8∑
j,k,p=1

[
KE8(t)−1]

6jχ
kp

j

[
KE8

(
t

2

)−1]
kp

= 1+ 2
(∑9

k=5 coshkt
30 + 2 cosh7t

30

)(
1+ 2 cosh t

15 − 2
∑4

k=3 coshkt
15

)
cosh t

15

[
KE8

(
t

2

)−1]
66
,

8∑ [
KE8(t)−1] χ

kp

[
KE8

(
t
)−1]

= 2+ 4
∑9

k=6 coshkt
30
[
KE8

(
t
)−1]

,

j,k,p=1
7j j 2 kp 1− 2 cosht3 2 77
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8∑
j,k,p=1

[
KE8(t)−1]

8jχ
kp
j

[
KE8

(
t

2

)−1]
kp

= 4
(
cosh t

30 +∑10
k=6 coshkt

30

)[KE8( t2)
−1]88

(2 cosh t
10 − 1)(1+ 2 cosh t

15 − 2 cosht5 − 2 cosh4t
15)

,

from which we can deduce directlyR.

References

[1] A.O. Caldeira, A.J. Leggett, Influence of dissipation on quantum tunneling in macroscopic systems
Rev. Lett. 46 (1981) 211.

[2] K. Li, E. Witten, Role of short distance behavior in off-shell open string field theory, Phys. Rev. D 48 (
853–860.

[3] P. Fendley, A.W.W. Ludwig, H. Saleur, Exact conductance through point contacts in theν = 1/3 fractional
quantum Hall effect, Phys. Rev. Lett. 74 (1995) 3005.

[4] A.V. Mikhailov, M.A. Olshanetsky, A.M. Perelomov, Two-dimensional generalized Toda lattice, Com
Math. Phys. 79 (1981) 473.

[5] D.I. Olive, N. Turok, Local conserved densities and zero curvature conditions for Toda lattice field the
Nucl. Phys. B 257 (1985) 277.

[6] O.A. Castro-Alvaredo, A. Fring, Rational sequences for the conductance in quantum wires from affin
field theories, J. Phys. A 36 (2003) L425–L432.

[7] J.S. Caux, H. Saleur, F. Siano, The Josephson current in Luttinger liquid-superconductor junctions
Rev. Lett. 88 (2002) 106402.

[8] A. Fring, C. Korff, B.J. Schulz, On the universal representation of the scattering matrix of affine Tod
theory, Nucl. Phys. B 567 (2000) 409–453.

[9] T. Oota, q-deformed Coxeter element in non-simply laced affine Toda field theories, Nucl. Phys.
(1997) 738–752.

[10] C.-N. Yang, Some exact results for the many body problems in one dimension with repulsive delta fu
interaction, Phys. Rev. Lett. 19 (1967) 1312–1314.

[11] R.J. Baxter, One-dimensional anisotropic Heisenberg chain, Ann. Phys. 70 (1972) 323–327.
[12] I.V. Cherednik, Factorizing particles on a half line and root systems, Theor. Math. Phys. 61 (1984) 97
[13] E.K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A 21 (1988) 2375.
[14] P. Kulish, On universal solution to the reflection equation, talk presented at the conference on I

Dimensional Algebras and Quantum Integrable Systems, Faro, Portugal, July 2003.
[15] A. Fring, R. Köberle, Factorized scattering in the presence of reflecting boundaries, Nucl. Phys.

(1994) 159–172.
[16] A. Fring, R. Köberle, Affine Toda field theory in the presence of reflecting boundaries, Nucl. Phys.

(1994) 647–664.
[17] R. Sasaki, Reflection bootstrap equations for Toda field theory, in: W. Nahm, J. Shen (Eds.), Ha

Proceedings, Interface between Mathematics and Physics, World Scientific, 1994, hep-th/9311027.
[18] A. Fring, R. Köberle, Boundary bound states in affine Toda field theory, Int. J. Mod. Phys. A 10 (

739–752.
[19] E. Corrigan, P.E. Dorey, R.H. Rietdijk, R. Sasaki, Affine Toda field theory on a half line, Phys. Lett. B

(1994) 83–91.
[20] J.D. Kim, Boundary reflection matrix in perturbative quantum field theory, Phys. Lett. B 353 (1995)

221.
[21] P. Bowcock, E. Corrigan, P.E. Dorey, R.H. Rietdijk, Classically integrable boundary conditions for

Toda field theories, Nucl. Phys. B 445 (1995) 469–500.
[22] G.M. Gandenberger, N.J. MacKay, Exact S-matrices ford
(2)
(N+1) affine Toda solitons and their bound states,

Nucl. Phys. B 457 (1995) 240–272.



1995)

ories,

ntrivial

s. Lett.

–556.

1998)

flection

659–

.

8) 008.

Phys.

ansatz,

s. Lett.

on the

grable

in Toda

513.
a half-

4801–

Phys.

model,

–8614.
e sinh-

in the

metric

) 295.
O. Castro-Alvaredo, A. Fring / Nuclear Physics B 682 [FS] (2004) 551–584 583

[23] A. Fujii, R. Sasaki, Boundary effects in integrable field theory on a half line, Prog. Theor. Phys. 93 (
1123–1134.

[24] P. Bowcock, E. Corrigan, R.H. Rietdijk, Background field boundary conditions for affine Toda field the
Nucl. Phys. B 465 (1996) 350–364.

[25] S. Penati, A. Refolli, D. Zanon, Classical versus quantum symmetries for Toda theories with a no
boundary perturbation, Nucl. Phys. B 470 (1996) 396–418.

[26] S. Penati, A. Refolli, D. Zanon, Quantum boundary currents for nonsimply-laced Toda theories, Phy
B 369 (1996) 16–22.

[27] J.D. Kim, I.G. Koh, Square root singularity in boundary reflection matrix, Phys. Lett. B 388 (1996) 550
[28] G.W. Delius, Restricting affine Toda theory to the half-line, JHEP 09 (1998) 016.
[29] G.W. Delius, Soliton-preserving boundary condition in affine Toda field theories, Phys. Lett. B 444 (

217–223.
[30] P. Dorey, R. Tateo, G. Watts, Generalisations of the Coleman–Thun mechanism and boundary re

factors, Phys. Lett. B 448 (1999) 249–256.

[31] G.M. Gandenberger, Ona(2)
(1) reflection matrices and affine Toda theories, Nucl. Phys. B 542 (1999)

693.
[32] G.W. Delius, G.M. Gandenberger, Particle reflection amplitudes ina

(n)
(1) Toda field theories, Nucl. Phys

B 554 (1999) 325–364.
[33] P. Bowcock, Classical backgrounds and scattering for affine Toda theory on a half-line, JHEP 05 (199

[34] M. Perkins, P. Bowcock, Quantum corrections to the classical reflection factor ina
(2)
(1) Toda field theory,

Nucl. Phys. B 538 (1999) 612–630.
[35] V. Riva, Boundary bootstrap principle in two-dimensional integrable quantum field theories, Nucl.

B 604 (2001) 511–536.
[36] C. Ahn, C. Kim, C. Rim, Reflection amplitudes of boundary Toda theories and thermodynamic Bethe

Nucl. Phys. B 628 (2002) 486–504.
[37] V.A. Fateev, Expectation values of boundary fields in integrable boundary Toda theories, Mod. Phy

A 16 (2001) 1201–1212.
[38] G.W. Delius, N.J. MacKay, Quantum group symmetry in sine-Gordon and affine Toda field theories

half-time, Commun. Math. Phys. 233 (2003) 173–190.
[39] V.A. Fateev, Normalization factors, reflection amplitudes and integrable systems, hep-th/0103014.
[40] V.A. Fateev, E. Onofri, Boundary one-point functions, scattering theory and vacuum solutions in inte

systems, Nucl. Phys. B 634 (2002) 546–570.
[41] V.A. Fateev, E. Onofri, Boundary one-point functions, scattering, and background vacuum solutions

theories, Int. J. Mod. Phys. A 18 (2003) 879–900.

[42] T. Kojima, The affineA(1)
(n−1) Toda fields with boundary reflection, Int. J. Mod. Phys. A 17 (2002) 487–

[43] P. Bowcock, M. Perkins, Aspects of classical backgrounds and scattering for affine Toda theory on
line, JHEP 02 (2003) 016.

[44] S. Ghoshal, Bound state boundary S-matrix of the sine-Gordon model, Int. J. Mod. Phys. A 9 (1994)
4810.

[45] E. Corrigan, On duality and reflection factors for the sinh-Gordon model with a boundary, Int. J. Mod.
A 13 (1998) 2709–2722.

[46] H.S. Cho, K.S. Soh, J.D. Kim, One-loop boundary reflection for the integrable boundary sinh-Gordon
J. Korean Phys. Soc. 32 (1998) 661–665.

[47] E. Corrigan, G.W. Delius, Boundary breathers in the sinh-Gordon model, J. Phys. A 32 (1999) 8601
[48] A. Chenaghlou, E. Corrigan, First order quantum corrections to the classical reflection factor of th

Gordon model, Int. J. Mod. Phys. A 15 (2000) 4417–4432.
[49] E. Corrigan, A. Taormina, Reflection factors and a two-parameter family of boundary bound states

sinh-Gordon model, J. Phys. A 33 (2000) 8739–8754.
[50] M. Ablikim, E. Corrigan, On the perturbative expansion of boundary reflection factors of the supersym

sinh-Gordon model, Int. J. Mod. Phys. A 16 (2001) 625.
[51] M. Karowski, H.J. Thun, Complete S-matrix of the massive Thirring model, Nucl. Phys. B 130 (1977

[52] A.B. Zamolodchikov, A.B. Zamolodchikov, Factorized S-matrices in two dimensions as the exact solutions

of certain relativistic quantum field models, Ann. Phys. 120 (1979) 253–291.



Teor.

grable

s. Lett.

1

379

2174.
D 53

Phys.

iz. 23

egrees

eories

ansatz,
584 O. Castro-Alvaredo, A. Fring / Nuclear Physics B 682 [FS] (2004) 551–584

[53] A.B. Zamolodchikov, Exact two particle S-matrix of quantum sine-Gordon solitons, Pis’ma Zh. Eksp.
Fiz. 25 (1977) 499–502.

[54] S. Ghoshal, A.B. Zamolodchikov, Boundary S-matrix and boundary state in two-dimensional inte
quantum field theory, Int. J. Mod. Phys. A 9 (1994) 3841–3886.

[55] B. Schroer, T.T. Truong, P. Weisz, Towards an explicit construction of the sine-Gordon theory, Phy
B 63 (1976) 422.

[56] M. Karowski, H.J. Thun, T.T. Truong, P.H. Weisz, On the uniqueness of a purely elastic S-matrix in+ 1
dimensions, Phys. Lett. B 67 (1977) 321.

[57] A.B. Zamolodchikov, Exact S-matrix of quantum sine-Gordon solitons, JETP Lett. 25 (1977) 468.
[58] P. Dorey, Root systems and purely elastic S-matrices, Nucl. Phys. B 358 (1991) 654–676.
[59] A. Fring, D.I. Olive, The fusing rule and the scattering matrix of affine Toda theory, Nucl. Phys. B

(1992) 429–447.
[60] J.D. Kim, Boundary reflection matrix for A–D–E affine Toda field theory, J. Phys. A 29 (1996) 2163–
[61] J.D. Kim, Boundary reflection matrices for nonsimply laced affine Toda field theories, Phys. Rev.

(1996) 4441–4447.
[62] A.E. Arinshtein, V.A. Fateev, A.B. Zamolodchikov, Quantum S-matrix of the(1 + 1)-dimensional Toda

chain, Phys. Lett. B 87 (1979) 389–392.

[63] J.D. Kim, H.S. Cho, Boundary reflection matrix forD(1)
4 affine Toda field theory, hep-th/9505138.

[64] E. Corrigan, P.E. Dorey, R.H. Rietdijk, Aspects of affine Toda field theory on a half line, Prog. Theor.
Suppl. 118 (1995) 143–164.

[65] I. Arefeva, V. Korepin, Scattering in two-dimensional model with LagrangianL = 1/γ (1/2(∂muu)2 +
m2(cosu− 1)), Pis’ma Zh. Eksp. Teor. Fiz. 20 (1974) 680.

[66] S.N. Vergeles, V.M. Gryanik, Two-dimensional quantum field theories having exact solutions, Yad. F
(1976) 1324–1334.

[67] P. Baseilhac, K. Koizumi, Sine-Gordon quantum field theory on the half-line with quantum boundary d
of freedom, Nucl. Phys. B 649 (2003) 491–510.

[68] O. Castro-Alvaredo, A. Fring, Free parameters in boundary reflection matrices, in preparation.
[69] C. Ahn, P. Baseilhac, V.A. Fateev, C. Kim, C. Rim, Reflection amplitudes in non-simply laced Toda th

and thermodynamic Bethe ansatz, Phys. Lett. B 481 (2000) 114–124.
[70] C. Ahn, C. Kim, C. Rim, Reflection amplitudes of boundary Toda theories and thermodynamic Bethe

Nucl. Phys. B 628 (2002) 486–504.

[71] O. Castro-Alvaredo, A. Fring, M. Stanishkov, Boundary bootstrap equations versus classical boundary

conditions, in preparation.


	Universal boundary reflection amplitudes
	Introduction
	Scattering theory with reflecting boundaries
	Solutions of the combined bootstrap equations
	Bulk theory
	Theory with reflecting boundaries
	Integral representation versus blocks of hyperbolic functions

	Ri(theta,B) case-by-case
	Al(1)-affine Toda field theory
	A2(1)-affine Toda field theory
	Generic Al(1)-affine Toda field theory

	Dl(1)-affine Toda field theory
	E6(1)-affine Toda field theory
	E7(1)-affine Toda field theory
	E8(1)-affine Toda field theory
	(Bl(1),A2l-1(2))-affine Toda field theory
	(B2(1),A3(2))-affine Toda field theory
	Generic (Bl(1),A2l-1(2))-affine Toda field theory

	(Cl(1),Dl+1(2))-affine Toda field theory
	(F4(1),E6(2))-affine Toda field theory
	(G2(1),D4(3))-affine Toda field theory

	Breaking of the strong-weak duality
	Conclusion
	Acknowledgements
	The inverse of K and the evaluation of rho
	Al
	Dl
	E6
	E7
	E8

	References


