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Abstract. We address the question of whether atomic bound states begin to stabilize in the short
ultra-intense field limit. We provide a general theory of ionization probability and investigate
its gauge invariance. For a wide range of potentials we find an upper and lower bound by
non-perturbative methods, which clearly exclude the possibility that the ultra intense field might
have a stabilizing effect on the atom. For short pulses we find almost complete ionization as
the field strength increases.

1. Introduction

Fermi’s golden rule, as one of the central elements in quantum mechanics, has served for
many years for the understanding of photoionization rates of atoms in weak radiation fields.
Its origin is, however, perturbative and therefore when applying very intense fields (with
intensities which are greater or of the order of one atomic unit 3.5 × 1016 W cm−2) one
leaves its range of validity. With the advance of laser technology this high-intensity region
has become accessible to real experiments in the form of laser pulses of 1 ps or less,
at frequencies ranging from the infrared to the ultraviolet [1]. The predictions of atomic
ionization rates are of practical importance for instance in the study of gas breakdown [2].

In order to treat the new regime, several alternative approximation methods have been
proposed. On one hand [3–5] they are based on a perturbation around the Gordon–Volkov
solution [6] of the Schr̈odinger equation. The question of convergence of these series and
their precise range of validity has not yet been put on firm grounds. Despite these problems,
these methods have been applied to find numerical solutions for the ionization probabilities.
On the other hand there exist a vast number of numerical studies, which make use of
numerical solutions of the Schrödinger equation, high-frequency approximations [7] or the
Floquet approximation [8]. Most computations have been carried out in one dimension
[9, 10], in the hope that the essentials of the full three-dimensional physics are already
present in this simplified situation. There exist arguments which put them in question
[11, 12], since in comparison with the full three-dimensional situation, they do not account
for the full angular dependence and may provide misleading results. Recently there have
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been full three-dimensional computations [13–15, 12, 16, 17]. But the complete problem has
not been solved yet and, as pointed out in [18], ‘even the simplest one-electron atom in
an intense laser field presents too great a challenge for trulyab initio numerical work, and
a variety of compromises have been developed’. These compromises are partly located in
the numerical methods themselves, but partly put constraints onto the physics, such as the
introduction of mask functions or the approximation of the continuum by cutting of the
high-energetic states, for instance.

Several authors claim to have found the very surprising and counter-intuitive result, that
the bound state of the atom stabilizes as the field strength increases [14, 15, 12, 17]. Similar
results have also been obtained by many authors for the one-dimensional situation [9]. In
fact these findings are so surprising that ‘a dramatic shift in viewpoint is required to explain
the physics of atoms in very strong laser fields’ [19]. We shall comment on these results
below and for the moment refer the reader to the review article on these findings by Eberly
and Kulander [19] and one by Geltman [20], who takes the opposite point of view that
atomic bound states do not stabilize as the field strength is increased and who asserts that
the ‘conventional interpretation of the theory of the interaction of radiation and atoms is
quite sound even in this regime’. The latter point of view is also supported in [21].

Evidence for atomic stabilization in superintense laser fields has also been obtained from
the study of several classical dynamical systems [22].

Up to now no data exist for intensities of one atomic unit, i.e. in the high-intensity
region for which the theoretical predictions are made, such that the controversy could be
settled from the experimental side. So far some experiments exist for lower intensities
1013 W cm−2, which provide evidence for some sort of stabilization [23].

The controversy is mainly based on numerical results and a detailed theoretical analysis
of the problem which involves analytic expressions only does not exist so far. The main
intention of our paper is to provide an alternative approach to the matter. We consider the
Schr̈odinger equation for an atom in a linear polarized electric field,

i
∂ψ
∂t

=
(

−1

2
+ V + zE(t)

)
ψ,

whereE(t) stands for the intensity of the field and is supposed to have finite duration (for
instance, 1 ps= 4.17 × 104 au). We do not specifyE(t) in more detail: it can be, for
instance, a pulse which contains a number of optical periods (the frequency of which is
determined by the frequency of the laser) possibly with some turn-on and turn-off parts.
Such kinds of pulses were used in the search for possible suppression of ionization. We
note that 1 ps pulses have a duration comparable with a classical Kepler period for the
highly excited Rydberg states (TK = 2πn3). Another example is half-cycle pulses with
duration of about 500 fs, generated in the experiments of Joneset al [24]. However, the
maximal intensity reached in these experiments was about 10−6 au, so that these pulses are
ultimately far from the ultra-intense limit.

We suppose furthermore that the wavefunctionψ(Ex, t) is given by the bound state
wavefunction of−1/2 + V before the pulse is turned on. One can easily estimate that
relativistic effects might be appreciable as soon asE(t) is so strong that the classical
theory predicts electron velocities approaching the speed of light, or more precisely when
in atomic units the electric field strength times the frequency is of the order of the fine-
structure constant. According to the estimates in [18] this occurs for typical frequencies for
laser intensitiesE ≈ 1018 W cm−2.

Our results below show that atoms do not become resistant to ionization when exposed
to short ultra-intense laser pulses. Our statements are of a qualitative nature, in the sense
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that they provide upper and lower bounds and do not predict precise values of the ionization
probabilities. The methods we use cover all possible pulses, i.e. also those which are very
popular in the literature with smooth turn on and off. Our arguments cover all frequency
regimes, including the high frequencies for which stabilization is supposed to occur. For
pulses which are not switched on smoothly, our results typically hold for very short times
of the order of one atomic unit. With a smooth switch on of the pulse one may extend the
region of validity. We provide expressions for two upper bounds, (3.2) and (3.14) valid in
the region when(

∫ τ

0 E(t) dt)2/2 (the classical energy transfer of the pulse) is smaller than
the binding energy and the other valid without restriction. The lower bound holds when
(
∫ τ

0 E(t) dt)2/2 > −E.
The paper is organized as follows. In section 2 we formulate a general theory of

ionization probability and prove its gauge invariance. We also make contact with the
various approximation methods based on perturbative expansions. In section 3 we briefly
discuss these methods in the context of quantum mechanical one-particle Stark Hamiltonians
and provide the proofs for the upper and lower bounds for the ionization probability for a
wide range of one-particle potentials, which in particular include all potentials appearing
in atomic and molecular physics. In section 4 we state our conclusions. In appendix A
we provide an upper bound for the Coulomb potential and in appendix B we optimize this
bound for the ground state of the hydrogen atom.

2. The general theory of ionization probability and its gauge invariance

In this section we will give a general discussion of the ionization probability and its gauge
invariance. Gauge invariance is of course necessary for observable quantities and it is
conventional wisdom for the case of the ionization probability. However, we were not able
to locate an explicit reference with a proof and will therefore include a discussion on this
issue. We will relate our arguments to familiar concepts in scattering theory and explicitly
discuss its relevance in the context of the Stark Hamiltonian. In the last part of this section
we will show the gauge covariance of time-dependent perturbation theory. In order to
convey the general ideas we will avoid bulky mathematical notations in this section.

Let H(t)(−∞ < t < ∞) be a general time-dependent selfadjoint Hamiltonian in some
Hilbert spaceH and letU(t, t ′) denote the resulting time evolution operator fromt ′ to t ,
i.e. U(t, t ′) satisfies

i∂tU(t, t ′) = H(t)U(t, t ′)
U(t, t ′)U(t ′, t ′′) = U(t, t ′′)
U(t, t) = 1

(2.1)

for all t, t ′, t ′′. In the context of the Stark Hamiltonians,U(t, t ′) exists for all t, t ′ and is
unitary (see below).

Assume now thatH(t) approaches an operatorH+ for t → ∞ andH− for t → −∞,
i.e.

H+ = lim
t→∞ H(t)

H− = lim
t→−∞ H(t)

(2.2)

holds in a suitable sense. It is important to note that we do not assumeH+ to equalH−. In
fact, for the Stark Hamiltonian in certain gauges, these operators will in general differ (see
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below). In analogy to the scattering matrix (see below) we define the abstractS-matrix to
be the following weak limit, i.e. the limit for matrix elements (if it exists)

S = lim
t→+∞
t ′→−∞

exp itH+U(t, t ′) exp−it ′H−. (2.3)

In particularS exists trivially and is unitary ifH(t) becomes stationary for all large|t |, i.e.
if H(t) = H+ for all t > t+ andH(t) = H− for all t 6 t− for suitable finitet−, t+. In this
case we will callH(t) a finitely pulsed Hamiltonian. S then takes the form

S = exp itH+U(t, t ′) exp−it ′H− (2.4)

for all t > t+ and all t ′ 6 t−. In particularS is then unitary.
Let P+ be the orthogonal projection onto the subspace spanned by the bound states of

H+. P− is defined analogously in terms ofH−. Then for any normalized stateψ in the
range ofP− its ionization probability is defined to be

I (ψ) = ‖(1 − P+)Sψ‖2. (2.5)

Here‖ψ‖ denotes the Hilbert space norm, i.e.‖ψ‖2 = 〈ψ, ψ〉. For the case whenH+ = H−
this agrees with the definition used in [25–27]. For a finitely pulsed Hamiltonian we have

I (ψ) = ‖(1 − P+)U(t+, t−)ψ‖2 (2.6)

wheneverψ is a bound state ofH−.
Abstract gauge transformations are now introduced as follows. LetA(t) (−∞ < t < ∞)

be a one-parameter family of unitary operators (suitably differentiable int). If ψ(t) is a
solution of the Schr̈odinger equation

i∂tψ(t) = H(t)ψ(t)

thenψ′(t) = A(t)ψ(t) is a solution of the equation

i∂tψ′(t) = i(∂tA(t))ψ(t) + A(t)i∂tψ(t)

= i(∂tA(t))A(t)−1ψ′(t) + A(t)H(t)A(t)−1ψ′(t)
= H ′(t)ψ′(t) (2.7)

with

H ′(t) = i(∂tA(t))A(t)−1 + A(t)H(t)A(t)−1 (2.8)

being formally selfadjoint. IfU ′(t, t ′) is the time evolution operator forH ′(t) then obviously

U ′(t, t ′) = A(t)U(t, t ′)A(t ′)−1. (2.9)

We note that the set of all gauge transformations forms a non-commutative group under
the obvious multiplication rule(A1A2)(t) = A1(t)A2(t), with unit 1(t) = 1 and inverse
A−1(t) = A(t)−1. The familiar interaction picture used in scattering theory is now a special
case. Indeed, to be more specific assumeH(t) to be of the formH(t) = H0 + HI(t),
where H0 is the ‘free’ Hamiltonian andHI(t) the (possibly time-dependent) interaction
Hamiltonian. Set

A(t) = exp itH0. (2.10)

Then

H ′(t) = H ′
I (t) (2.11)

is the Hamiltonian in the interaction picture with

H ′
I (t) = exp itH0 · HI(t) · exp−itH0. (2.12)



On the absence of bound-state stabilization 5655

In this case the limit (if it exists)

S(H, H0) = lim
t→+∞
t ′→−∞

U ′(t, t ′) = lim
t→+∞
t ′→−∞

exp itH0 · U(t, t ′) · exp−it ′H0 (2.13)

is called the scattering matrix (S-matrix) for the pair(H, H0). Let us elaborate briefly
in what sense there is an analogy between the quantity (2.3) and the case of ordinary
potential scattering, i.e. whereH0 is −1/2 andHI(t) = V is a potential. In the latter case
H = H0 + V is compared withH0 in spatial regions far out, i.e. whereV is small and
where the incoming and outgoing wavepackets are located for large|t |. In the case we are
interested in below,H(t) is compared withH+ for large positive times and withH− for
large negative times. To summarize: in one case we compare Hamiltonians for large spatial
coordinates and in the other case for large time coordinates.

To apply this general concept of gauge transformations and gauge covariance to our
discussion of ionization, assume now in addition thatA(t) approaches suitably unitary
operatorsA+ andA− when t → +∞ and t → −∞, respectively.

ThenH ′(t) (see (2.8)) approaches

H ′
+ = A+H+A−1

+ (2.14)

and

H ′
− = A−H−A−1

− (2.15)

as t → +∞ and t → −∞ respectively.
By formal manipulations we therefore have

S ′ = A+SA−1
− . (2.16)

In particular if H(t) is finitely pulsed and if in additionA(t) is stationary for all large|t |,
thenH ′(t) is also finitely pulsed,S ′ exists, is unitary and (2.16) holds.

In general, by (2.14) and (2.15), ifP ′
± are the orthogonal projections onto the space

spanned by the bound states ofH ′
±, we have

P ′
± = A±P±A−1

± . (2.17)

In particularA−ψ is in the range ofP ′
− if ψ is in the range ofP−. Inserting (2.16) and

(2.17) gives the desired gauge invariance in the form

I ′(A−ψ) = ‖(1 − P ′
+)S ′A−ψ‖2

= ‖A+(1 − P+)A−1
+ A+SA−1

− A−ψ‖2

= ‖(1 − P+)Sψ‖2 = I (ψ), (2.18)

since by assumptionA+ is unitary. In the example we will be interested inA− = 1. In this
caseH ′

− = H− and (2.18) takes the simpler formI ′(ψ) = I (ψ). From the proof we see
that gauge invariance is an important regulating principle in the following sense. One has
to choose the projectionP+ in (2.5) and notP− in order to obtain gauge invariance.

We now apply these concepts to the theory of the time-dependent Stark Hamiltonian. In
order to make notations more transparent we choose a linearly polarized electric field, which,
however, does not limit our discussion since more general fields may be simply obtained by
replacingz → Ex andE(t) → EE(t) (Ex ∈ R3, EE ∈ R3), such that particular other choices, such
as for instance circular polarized light, may easily be derived from there. We do, however,
assume a dipole approximation, such that the electric field becomes a function only of time
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and thus is independent of space. Then using atomic units ¯h = e = me = cα = 1 we
consider on the Hilbert spaceL2(R3, d3x) the three time-dependent Hamiltonians

H1(t) = −1

2
+ V + zE(t)

H2(t) = 1
2(−i∇ − b(t)ez)

2 + V

H3(t) = −1

2
+ V (Ex − c(t)ez).

(2.19)

Here V is an arbitrary potential,ez is the unit vector in thez-direction, andV (Ex − Ey)

is the shifted potential, i.e. the multiplication operator on wavefunctions given as(V (Ex −
Ey)ψ)(Ex) = V (Ex−Ey)ψ(Ex). Also E(t) is the electric field, assumed to vanish unless 06 t 6 τ

(i.e. t− = 0 and t+ = τ > 0 in the notation above). Apart from this condition the pulse
E(t) may be arbitrary. We only make the mathematical restriction, thatE(t) is piecewise
continuous, which means that the pulse may have jumps and all commonly used enveloping
shapes, for instance cosine squared, smooth adiabatic turn on and off, etc, are included.
Then the following quantitiesa(t), b(t) andc(t) are well defined

b(t) =
∫ t

0
E(s) ds (2.20)

c(t) =
∫ t

0
b(s) ds = tb(t) −

∫ t

0
sE(s) ds (2.21)

a(t) = 1
2

∫ t

0
b(s)2 ds. (2.22)

Note thatb(τ)ez describes the classical momentum transfer of the pulse, such that1
2b(τ)2 is

the classical energy transfer. Alsoc(τ )cz is the classical displacement caused by the pulse.
ThenH2(t) is obtained fromH1(t) by the gauge transformation

A2↼↽1(t) = exp ib(t)z.

H1(t) is obtained fromH3(t) by the Kramers–Henneberger transformation [28–30].

A1↼↽3(t) = T (t) = exp−ia(t) · exp−ib(t)z · exp ic(t)pz. (2.23)

Therefore we callH3(t) the Hamiltonian in the Kramers–Henneberger gauge. We note that
a corresponding transformation in quantum electrodynamics had already been introduced
by Pauli and Fierz in 1938 [31] but with a different motivation. The HamiltonianH1(t) is
usually referred to as the Hamiltonian in the length or electric field gauge, whereasH2(t)

is denoted as the Hamiltonian in the velocity, radiation or Coulomb gauge.
As a consequenceH2(t) is obtained fromH3(t) by the gauge transformation

A2↼↽3(t) = A2↼↽1(t)A1↼↽3(t) = exp−ia(t) exp ic(t)pz. (2.24)

The general gauge transformationAj↼↽i(t) for Hi(t) → Hj(t) is then obtained from the
rules

Aj↼↽i(t) = Ai↼↽j(t)
−1

Aj↼↽k(t) = Aj↼↽i(t)Ai↼↽k(t).
(2.25)

H1(t) and H2(t) are finitely pulsed. Note, however, that in generalH3(t) is not finitely
pulsed and hence does not always have a proper limit ast → +∞. This is due to the fact
that b(t) is constant fort > τ such thatc(t) grows linearly int > τ wheneverb(τ) 6= 0,
as is apparent from (2.21). Nevertheless the Kramers–Henneberger gauge is quite useful
as we shall see below. These observations are related to the fact thatA2↼↽1(t) becomes
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stationary for larget but in general notA2↼↽3(t) andA1↼↽3(t). Note that by assumption on
E(t), Aj↼↽i(−∞) = 1 and thus

H1,+ = H1,− = H2,− = H3,− = H0 + V. (2.26)

However, in generalH2,+ 6= H2,−.
The caseV ≡ 0 is of special interest, since it corresponds to the situation in which

the Schr̈odinger equation admits an exact solution, which is usually referred to as the
Gordon–Volkov solution [6]. Call the resulting operatorsH0,i (t) (i = 1, 2, 3), such that in
particularH0,3(t) = −1/2. The kernels of the resulting time-evolution operatorsU0,i (t, t

′)
can be calculated explicitly. Indeed, we start from the familiar relation for the free-particle
evolution operator (see e.g. [36])

U0,3(Ex, t; Ex ′, t ′) = 〈Ex|U0,3(t, t
′)|Ex ′〉 =

〈
Ex
∣∣∣∣exp i(t − t ′)

1

2

∣∣∣∣ Ex ′
〉

(2.27)

= 1

(2π i(t − t ′))3/2
exp i

(Ex − Ex ′)2

2(t − t ′)
. (2.28)

Obviously

〈Ex| exp ib(t)z|Ex ′〉 = exp ib(t)z · δ3(Ex − Ex ′)
〈Ex| exp ia(t)|Ex ′〉 = exp ia(t) · δ3(Ex − Ex ′)

and

〈Ex| exp ic(t)pz|Ex ′〉 = 〈Ex − c(t)ez, Ex ′〉 = δ3(Ex − Ex ′ − c(t)ez)

such that

〈Ex|T (t)|Ex ′〉 = 〈Ex ′|T (t)−1|Ex〉
= exp−ia(t) · exp−ib(t)z · δ3(Ex − Ex ′ − c(t)ez). (2.29)

By (2.9) we immediately obtain the following (again well known) relations (see e.g.
[32, 33, 6, 13]).

U0,1(Ex, t; Ex ′, t ′) = 1

(2π i(t − t ′))3/2
exp i(a(t ′) − a(t))

× exp i(b(t ′)z − b(t)z′) exp i
(Ex − c(t)ez − Ex ′ + c(t ′)ez)

2

2(t − t ′)

U0,2(Ex, t; Ex ′, t ′) = 1

(2πi(t − t ′))3/2
exp i(a(t ′) − a(t)) exp i

(Ex − c(t)ez − Ex ′ + c(t ′)ez)
2

2(t − t ′)
.

The kernel ofU0,1(t, t
′) is often called the Gordon–Volkov propagator (see e.g. [6, 32, 13]).

We finally give a discussion of time-dependent perturbation theory and its gauge
covariance. Returning to the general set-up, letH(t) be a ‘perturbation’ ofK(t). If
W(t, t ′) denotes the time evolution forK(t), we have the generalized Du Hamel’s formula
(see e.g. [34]) in the form

U(t, t ′) = W(t, t ′) −
∫ t

t ′

d

ds
[U(t, s)W(s, t ′)] ds

= W(t, t ′) − i
∫ t

t ′
U(t, s)[H(s) − K(s)]W(s, t ′) ds. (2.30)

We recall that in terms of the sometimes more familiar Green function

GH(t, t ′) = −iU(t, t ′)θ(t − t ′),
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which satisfies

(i∂t − H(t))GH(t, t ′) = δ(t − t ′)1,

relation (2.30) takes the form

GH(t, t ′) = GK(t, t ′) +
∫ +∞

−∞
GH(t, s)[H(s) − K(s)]GK(s, t ′) ds. (2.31)

Similarly one derives the relation

U(t, t ′) = W(t, t ′) − i
∫ t

t ′
W(t, s)[H(s) − K(s)]U(s, t ′) ds (2.30′)

and hence

GH(t, t ′) = GK(t, t ′) +
∫ +∞

−∞
GK(t, s)[H(s) − K(s)]GH(s, t ′) ds. (2.31′)

We recall that Du Hamel’s formula in the form (2.31) and (2.31′) is the time-dependent
version of the Lippmann–Schwinger equation (see e.g. [35, 36]) in the case where bothH(s)

and K(s) are actually time-independent. Indeed, the Lippmann–Schwinger equation may
be obtained from these relations by taking Laplace transforms.

The equations (2.30), (2.30′), (2.31) and (2.31′) may be iterated by introducing the
left-hand side into the right-hand side, resulting in a ‘power series expansion’ ofU(t, t ′) in
powers ofH(s) − K(s) and involvingW of the form

U(t, t ′) =
∞∑

n=0

Un(t, t
′) (2.34)

with U0(t, t
′) = W(t, t ′) and with an analogous expansion forGH . Let us consider

what happens under gauge transformations. Du Hamel’s formula is compatible with gauge
transformations in the sense that the relation

U ′(t, t ′) = W ′(t, t ′) − i
∫ t

t ′
U ′(t, s)[H ′(s) − K ′(s)]W ′(s, t ′) ds (2.35)

either follows directly for the pairH ′(t), K ′(t) or by applying the gauge transformation to
(2.30) and using (2.8) and (2.9). This implies in particular that

U ′
n(t, t

′) = A(t)Un(t, t
′)A(t ′)−1 (2.36)

for all n, which applies in particular to the choicesH(t) = Hi(t) and K(t) = H0,i (t)

given by (2.19) and the gauge transformations which relate them. However, some of the
approximation methods used for high intensities, on which we shall comment more below,
use the fact that one can decompose the Stark Hamiltonian in two different ways, that is
either treating the potential or the term related to the electric field as a perturbation. Hence
two versions of (2.30) are obtained which may be combined iteratively. The series generated
in this manner in general does not respect gauge invariance order by order. A discussion of
this problem and a remedy for restoring gauge invariance by including some terms of next
order, thus leading to cancellations, may be found in [32, 37].

In the case of the interaction picture (see above) and with the choiceK(t) = H0 such
that K ′(t) = 0, the iteration of (2.33) in powers ofH ′

I (t) = H ′(t) − K ′(t) is just the
famous Dyson series of theS-matrix S(H, H0) in the limit t → +∞, t ′ → −∞. In the
time-independent context of the Lippmann–Schwinger equation (see above) this corresponds
to iterating the Lippmann–Schwinger equation to obtain the Born series for theS-matrix
(see e.g. [36]). In the context we are presently interested in, such series expansions for the
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time-evolution operator of finitely pulsed Hamiltonians lead to a series expansion for the
ionization probability when inserted in (2.6). In the next section we will discuss the various
approaches used so far for the HamiltonianH1(t) and its gauge transformsH2(t) andH3(t)

given in (2.19).

3. Ionization of atoms in strong, short electric fields

Using the notions of the previous section we start with a review and comparison of methods
and results obtained by previous authors. Then we relate this in a first step to a new,
rigorous upper bound on the ionization probability, valid for all smallτ and small classical
momentum transferb(τ) and small displacementc(τ ) (see below for the upper bound). This
result is also compared with another rigorous upper bound previously obtained by two of
the authors (VK, RS) [26] as well as with a result obtained using a time–energy uncertainty
relation given by Pfeifer [38]. Secondly we prove a lower bound below, valid for all small
τ and all largeb(τ), which in particular proves the absence of stabilization.

Taking H(t) = H0 + V + zE(t) = H1(t) andK(t) = H0 + V in (2.30), the resulting
perturbation series in the time-dependent interactionH(t) − K(t) = zE(t) for U1(t, t

′), the
time-evolution operator forH1(t), has been used by Lambropolous [39]. Certainly for high
intensitiesE(t) this is very problematic, since one requires several terms in the expansion
to achieve a reasonable result.

A more promising approach has been advocated by Perelomovet al [4], who took
H(t) = H0+V +zE(t) = H1(t) andK(t) = H0+zE(t) = H0,1(t). ThenH(t)−K(t) = V ,
thus leading to a power-series expansion inV . Whenever|E| > |V | this seems to be a
very suggestive approximation and is based on the fact that the time-evolution operator
U0,1(t, t

′) for H0,1(t) is the Gordon–Volkov solution, which is known exactly (see equation
after (2.29)). By the discussion of section 2, in the Kramers–Henneberger gauge this
corresponds to a power-series expansion in suitable translates ofV .

A combination of these two methods has been proposed earlier in a seminal paper on
the subject by Keldysh [3], who took the series forU1(t, t

′) with zE(t) as a perturbation,
but in the second iteration step inserted the time-evolution operatorU0,1 instead of the
time-evolution operator forH0 + V . In fact, it was demonstrated by Davidovichet al [32]
that, to first order, the Keldysh approximation and the one of Perelomovet al [4] precisely
coincide. When carrying out the same steps in the velocity gauge, i.e. forH(t) = H2(t),
one obtains the so-called Faisal–Reiss approximation [5].

We want to point out that all such series expansions are somewhat problematic since a
proper convergence of the series has not yet been established (the only known case is the
Born series in scattering theory at high energies, see e.g. [36] and the references given there.
For the one-dimensional situation convergence may be shown for integrable potentials [32]),
and it is not straightforward to give precise quantum mechanical estimates of the first terms.
Most statements seem to be based on crude semiclassical estimates [40] or in the belief that
features which have been observed for relatively simple one-dimensional models, which are
anyway put in question [11], carry over in general [13, 10].

For realistic pulses for instance with smooth adiabatic turn on and off, the first terms
will only give reasonable results when the full power is reached but will be poor, if not
completely invalid near the turn on and turn off point.

We now give a new rigorous upper bound on the ionization probability. The proof
of this bound bypasses the problem of summing the whole perturbation series by staying
strictly with the Du Hamel formula. In what follows the potentialV will be supposed to
satisfy the conditions given in [26] which are tailored to ensure the existence of the time-
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evolution operators forHi(t) (i = 1, 2, 3) given in (2.19). In particular such potentialsV

are Kato small (see e.g. [30, 34]), i.e. there area < 1 andb < ∞ such that for allψ in the
domainD(H0) of H0 = −1/2

‖V ψ‖ 6 a‖ − 1ψ‖ + b‖ψ‖. (3.1)

Also the domainD(H) of H coincides withD(H0). We note that the potentials of atoms
or molecules arising from Coulomb pair potentials belong to this wide class. Also all
potentials (except theδ-potential) like smoothed or shielded Coulomb potentials used in
numerical computations in this context are Kato small. Also Hamiltonians with Kato
bounded potentials (3.1) are bounded below and if the (pair) potentials decay suitably at
infinity, then there are no positive eigenvalues. Indeed, it has been shown [34, 41] for a large
class of potentials including atomic and molecular ones that the eigenvalues are contained
in [inf σ(H), 0] whereσ(H) denotes the spectrum ofH . With these specifications onV
in mind we are now in the position to state, prove and comment on the first main result of
this section.

Upper bound 1. Let ψ be a normalized bound state ofH = H0 + V with energyE < 0.
Then for any pulseE(t) with 1

2b(τ)2 < −E, the ionization probability satisfies the upper
bound

I (ψ)
1
2 6

∫ τ

0
‖(V (Ex − c(t)ez) − V (Ex))ψ‖ dt + |c(τ )|‖pzψ‖ + |b(τ)|

−E − 1
2b(τ)2

‖pzψ‖. (3.2)

Note that the condition onE(t) just says that the classical energy transfer of the pulse
is less than the classical ionization energy.

The proof is based on a combination of arguments used in [25] and [26] and goes as
follows. Since

exp−itHψ = exp−itEψ, (3.3)

by using the Kramers–Henneberger transformation we have

I (ψ)
1
2 = ‖(1 − P)U1(τ, 0)ψ‖ = ‖(1 − P)T (τ)U3(τ, 0)ψ‖

= ‖(1 − P) exp−ib(τ)z · exp ic(τ )pzU3(τ, 0)ψ‖
6 ‖(1 − P) exp−ib(τ)z · exp ic(τ )pz(U3(τ, 0) − exp−iτH)ψ‖

+‖(1 − P) exp−ib(τ)z · exp ic(τ )pzψ‖. (3.4)

We start with an estimate of the first term on the r.h.s. of (3.4). Obviously it is bounded by

‖(U3(τ, 0) − exp−iτH)ψ‖. (3.5)

We now invoke Du Hamel’s formula to rewrite (3.5) as∥∥∥∥ ∫ τ

0
U3(τ, t)[V (Ex − c(t)ez) − V (Ex)] exp−i(τ − t)H · ψ dt

∥∥∥∥. (3.6)

Now we use the unitarity ofU3(τ, t) (besides the fact that we never iterate Du Hamel’s
formula, this is the crucial step in avoiding perturbation theory) and (3.3) to estimate (3.6)
by ∫ τ

0
‖(V (Ex − c(t)ez) − V (Ex))ψ‖ dt (3.7)

which is the first term on the r.h.s. of (3.2). To estimate the second term in (3.4), we use
the triangle inequality to obtain

‖(1 − P) exp−ib(τ)z| · exp ic(τ )pz · ψ‖
6 ‖(exp(ic(τ )pz) − 1 · ψ‖ + ‖(1 − P) exp−ib(τ)z| · ψ‖ (3.8)
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Now we use the estimate

‖(exp iA − 1)ψ‖ 6 ‖Aψ‖
valid for any selfadjoint operator to estimate the first term on the r.h.s. of (3.8) by

|c(τ )|‖pzψ‖ (3.9)

which is the second term on the r.h.s. of (3.2). It remains to estimate the second term in
(3.8). By assumption(1 − P)H > 0. Hence for anyδ > 0, (1 − P)(H + δ)−1 exists and
is norm bounded by 1/δ. Therefore

‖(1 − P) exp−ib(τ)zψ‖ = ‖(1 − P)(H + δ)−1(H + δ) exp−ib(τ)zψ‖
= ‖(1 − P)(H + δ)−1 exp−ib(τ)z exp ib(τ)z(H + δ) exp−ib(τ)zψ‖
6 1

δ
‖ exp ib(τ)z(H + δ) exp−ib(τ)zψ‖. (3.10)

We now use the fact that

exp ib(τ)zH exp−ib(τ)z = 1
2(−i∇ − b(τ)ez)

2 + V = H − b(τ)pz + 1
2b(τ)2. (3.11)

Inserting this into (3.10) gives

‖(1 − P) exp−ib(τ)zψ‖ 6 1

δ
‖(E − b(τ)pz + 1

2b(τ)2 + δ)ψ‖ (3.12)

Making the choice

δ = −E − 1
2b(τ)2 (3.13)

which by assumption onb(τ) is > 0 and inserting into (3.12) gives the third term in (3.2)
concluding the proof of the upper bound.

We now comment on this result.
Inspection of the proof of the main result in [26] shows that one has the alternative

Upper bound 2.

I (ψ)
1
2 6

∫ τ

0
‖(V (Ex − c(t)ez) − V (Ex))ψ‖ dt + |c(τ )|‖pzψ‖ + |b(τ)|‖zψ‖ (3.14)

which differs from (3.2) only in the last term. Typically near threshold, i.e. for small|E|,
both ‖zψ‖ and 1/(−E − 1

2b(τ)2) become large, whereas

‖pzψ‖ = 〈ψ, p2
zψ〉 1

2 6 (2〈ψ, H0ψ〉) 1
2

stays finite. Thus forV being the Coulomb potential

〈ψ, H0ψ〉 = −E (3.15)

by the virial theorem (see e.g. [42]). For s statesψn00 can be improved slightly since
‖pzψn00‖2 = 2

3〈ψn00, H0ψn00〉 = 1
3n2 . Similarly one has‖zψ‖2 6 〈ψ, r2ψ〉(= n2

2 [5n2 + 1 −
3`(` + 1)] if ψ = ψn`m, see e.g. [43]). Again for s states‖zψ‖2 = 1

3〈ψ, r2ψ〉, which is a
slight improvement. Therefore (3.2) and (3.14) are essentially equivalent.

We now discuss the first two terms in (3.2) and (3.14). In general, for Kato bounded
potentialsV (Ex)(−1 + 1)−1 is a bounded operator. Also since−1 is translation invariant,
we have

‖V (Ex − Ey)(−1 + 1)−1‖ = ‖V (Ex)(−1 + 1)−1‖. (3.16)

In particular for the choice of the Coulomb potential, we prove in appendix A that∥∥∥∥1

r
(−1 + 1)−1

∥∥∥∥ 6 6.35. (3.17)
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Thus for the general potentialsV considered, the first term in (3.2) and (3.14) is bounded
by

τ‖V (Ex)(−1 + 1)−1‖ ‖(−1 + 1)ψ‖ + τ‖V ψ‖
= τ‖V ψ‖ + τ‖V (Ex)(−1 + 1)−1‖‖(2H0 + 1)ψ‖ (3.18)

which involvesE(t) only through its duration but not its strength. For the eigenfunctions
ψn`m of the hydrogen atom, one has (see e.g. [43])

‖(2H0 + 1)ψn`m‖2 = ‖((2H + 1) − 2V )ψn`m‖2

= (2En + 1)2 + 2(2En + 1)

〈
ψn`m,

1

r
ψn`m

〉
+ 4

〈
ψn`m,

1

r2
ψn`m

〉
= 1 − 1

n4
+ 4

n3(` + 1
2)

. (3.19)

This quantity is6 8 and behaves like 1+ O( 1
n3 ) for n large uniformly in 06 ` 6 n − 1.

Hence the r.h.s. of (3.18) for bound states of the hydrogen atom is bounded by 19.4τ

uniformly in n and by 6.35τ for all largen.
For the ground stateψ100 of the hydrogen atom the first term in (3.2) and (3.14) has a

much better estimate. As shown in appendix B

‖(V (Ex − Ey) − V (Ex))ψ100‖ 6 2 (3.20)

holds for all Ey ∈ R3 such that the first term in (3.2) and (3.14) is now bounded by 2τ .
By a theorem of Pfeifer [38] for the survival probability|〈ψ, ψτ 〉| of a state with

ψτ = U(τ, 0)ψ for any time-dependent HamiltonianH(t) one has for all smallτ (see [38]
for precise conditions)

|〈ψ, ψτ 〉| > cos

( ∫ τ

0
1(t) dt

)
(3.21)

where in the present context withH(t) = H1(t) (see (2.19))

1(t) = |E(t)|aψ

aψ = (‖zψ‖2 − 〈ψ, zψ〉2)
1
2 6 ‖zψ‖.

(3.22)

This gives for the ionization probability

I (ψ) 6 1 − |〈ψ, ψτ 〉|2 6 a2
ψ

( ∫ τ

0
|E(t)| dt

)2

6
( ∫ τ

0
|E(t)| dt

)2

‖zψ‖2. (3.23)

This may be compared with the discussion above. Equation (3.23) is weaker than (3.2)
and (3.14) in the sense that it does not show independence of the field strength whenb(τ)

andc(τ ) are small or even zero. Otherwise it is basically equivalent to (3.2) and (3.14) or
even stronger whenever the last two terms there dominate. We note that the rigorous bound
(3.23) may be compared with first-order perturbation theory inE(t) which gives

I
(1)
pert =

( ∫ τ

0
E(t) dt

)2

‖Pzψ‖2 6
∣∣∣∣ ∫ τ

0
E(t) dt

∣∣∣∣2

‖zψ‖2. (3.24)

We now turn to a comparison with other approximation methods based on perturbative
expansions used in this context. Since all these approximations resolve around the
same principle, i.e. an expansion involving the Gordon–Volkov time-evolution operator
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U0,1(t, t
′), we will mainly concentrate on a recent work by Geltman [13], who presented an

explicit, partly analytical, partly numerical analysis of the full three-dimensional hydrogen
atom. Also a full discussion of other works may be found there. Geltman employs the
approximation method of Perelomovet al [4] in order to compute the excitation and
ionization rates for the 1s, 2s, 3s, 2p, 3p, 3d states of the hydrogen atom struck by a
linearly polarized monochromatic laser pulse of the formE(t) = E0 cosωt . The value for
the electric field strength in atomic units is chosen to beE0 = 5, 10, 20 and the frequency
ω = 1.5. Geltman obtained the following general features.

(a) At integer cycles, that is forτ = 2πn/ω the rate of ionization becomes independent
of the electric field strength. In particular for the non-s states it goes to zero.

This is reflected qualitatively in our results in the following way. At integer cycles
b(τ) = c(τ ) = 0 such that the last two terms in (3.2) and (3.14) vanish. Also the first term
is independent of the field strength, however, not zero and by the above discussion too large
for the above choices ofE0 andω.

(b) The maxima ofb(τ) andc(τ ) are located at half-integer cycles, i.e.τ = 2π(n+ 1
2)/ω.

For the applied pulse the bounds (3.2) and (3.14) also reproduce this feature qualitatively
but again we emphasize that these bounds hold in more generality for all Kato potentials
and all states.

Stabilization for strong, short electric fields has been a highly controversial issue with
disagreeing results between numerous authors on one hand, for a review see [20], as well
as on the other hand, see [19] for a review on these.

The following result shows absence of stabilization for sufficiently strong, short pulses,
namely whenb(τ) becomes large andτ small the ionization probability is close to 1.

Lower bound. Let ψ be a normalized bound state ofH = H0 + V with energyE < 0.
Then for any pulseE(t) with 1

2b(τ)2 > −E the ionization probability satisfies a lower
bound of the form

I (ψ) > 1 −
{∫ τ

0
‖(V (Ex − c(t)ez) − V (Ex))ψ‖ dt

+ 1

E + 1
2b(τ)2

‖(V (Ex − c(τ )ez) − V (Ex))ψ‖ + |b(τ)|
E + 1

2b(τ)2
‖pzψ‖

}2

. (3.25)

Note that now the condition onE(t) is that the classical energy transfer of the pulse is
larger than the classical ionization energy. Recall that by our previous discussion the norms
appearing in the first two terms in the bracket may be estimated independently of the field
strength, such that (3.25) gives a bound which involvesE(t) only throughτ andb(τ).

We turn to a proof. In order to obtain a lower bound on

I (ψ) = ‖(1 − P)U1(τ, 0)ψ‖2 = 1 − ‖PU1(τ, 0)ψ‖2

it suffices to obtain an upper bound on‖PU1(τ, 0)ψ‖. First we write

‖PU1(τ, 0)ψ‖ = ‖PT (τ)U3(τ, 0)ψ‖
= ‖P exp−ib(τ)z exp ic(τ )pzU3(τ, 0)ψ‖
6 ‖P exp−ib(τ)z exp ic(τ )pz(U3(τ, 0) − exp−iτH)ψ‖

+‖P exp−ib(τ)z exp ic(τ )pzψ‖. (3.26)

The first term on the r.h.s. is estimated by (3.5) yielding the first term in the bracket in
(3.25).
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The second term in (3.26) is treated as follows. By assumptionPH 6 0. Let δ > 0 be
arbitrary. ThenP(H − δ)−1 is a well defined operator with operator norm6 1/δ. Hence

‖P exp−ib(τ)z exp ic(τ )pzψ‖ = ‖P(H − δ)−1(H − δ) exp−ib(τ)z · exp ic(τ )pz · ψ‖
6 1

δ
‖(H − δ) exp−ib(τ)z · exp ic(τ )pz · ψ‖. (3.27)

In analogy to (3.11) we now use the relation

exp−ic(τ )pz · exp ib(τ)z · H · exp−ib(τ)z · exp ic(τ )pz

= 1
2(−i∇ − b(τ)ez)

2 + V (Ex − c(τ )ez)

= H − b(τ)pz + 1
2b(τ)2 + V (Ex − c(τ )ez) − V (Ex). (3.28)

Inserting this into (3.27) we obtain

‖P exp−ib(τ)z · exp ic(τ )pz · ψ‖ 6 1

δ
‖(V (Ex − c(τ )ez) − V (Ex)ψ‖

+1

δ
‖(E − b(τ)pz + 1

2b(τ)2 − δ)ψ‖. (3.29)

We now make the choice

δ = E + 1
2b(τ)2 (3.30)

which by assumption onb(τ) is > 0 and when inserted into (3.29) immediately yields the
remaining two terms in the bracket of (3.25), thus concluding the proof of the lower bound.

We note that these two theorems are compatible with the result in [25] on the Stark
kick, i.e. E(t) = F0δ(t). There it was shown that for fixed ionization probability of any
bound stateψn`m of the hydrogen atomF0 scales like 1/n, as predicted by Reinholdet al
[44].

We now return to a comparison between our results and those obtained by employing
approximation methods based on perturbative expansions and we will include the lower
bound in the discussion. We stress once more the point that the lower bound definitely
excludes the possibility of stabilization of the bound states for increasing electric field
strength, when the applied pulse is short in duration, since (3.7), despite the dependence on
c(t), may be estimated by a constant, sayC, independent of the electric field. Hence

lim
|E(t)|→∞

I (ψ) > 1 − τ 2C. (3.31)

This shows clearly that the electric field has no stabilizing effect and we are therefore in
disagreement with [12, 15, 14]. The lower bound also reproduces the result obtained through
an expansion around the Gordon–Volkov solution, namely for monochromatic linearly
polarized laser pulses at integer cycles, i.e.b(τ) = c(τ ) = 0, the ionization probability
becomes independent of the electric field strength. We may qualitatively relate the term
proportional toτ 2 to a term also observed in perturbative expansion methods and which is
interpreted as the spreading of the wave.

To illustrate our results further, we consider now the concrete example of the hydrogen
atom. For theψ100 state we obtain as our best estimate

I (ψ100) 6
(

2τ + |b(τ)| + 1√
3
|c(τ )|

)2

(3.32)

I (ψ100) > 1 −
(

2τ + 4

b(τ)2 − 1
+ 2√

3

|b(τ)|
b(τ)2 − 1

)2

. (3.33)
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Figure 1. Upper and lower bounds for the ionization probability for theψ100 state of the
hydrogen atom in the first cycle of an applied fieldEz = E0 cos(1.5t) for E0 = 5, 10, 20, when
neglecting the ‘spreading of the wave’.

Taking the pulse to be of the formEz(t) = E0 cosωt for 0 6 t 6 τ and zero otherwise, we
have

|b(τ)| = E0

ω
| sinωτ | and |c(τ )| = 2E0

ω2
sin2

(ωτ

2

)
. (3.34)

Figure 1 shows a plot of one cycle, when neglecting the term which is independent of
the electric field strength, i.e. the term 2τ , in the upper (3.32) and lower (3.33) bound. At
the far ends one observes the curves for the upper bounds, which approach the vertical for
increasingE0. That is starting from the outside and going inwards the full curve≡ E0 = 20,
dotted curve≡ E0 = 10 and the next full curve≡ E0 = 5. Next we have the lower bounds
for E0 = 20 ≡ dotted curve,E0 = 10 ≡ full curve andE0 = 5 ≡ dotted curve. We
have used the same values as in [13] and compare with figure 3 therein. Figure 1 clearly
reproduces the features of Geltman’s results, indicating the dips at the half cycles and
producing an increasing ionization probability for increasing field strength. However, we
do not observe any crossing for different field intensities. When including the 2τ -term, this
pattern will be moved above the trivial bound 1. This may be avoided when achieving a
better estimate for the factor in front ofτ , for instance when integrating explicitly (3.7) for
a given pulse [45]. Figure 2 shows the upper bound for four cycles and reproduces the
well known oscillatory behaviour superimposed by a spreading of the wavepacket of the
Gordon–Volkov solution, the so-called over-the-barrier ionization.

4. Conclusions

In conclusion we can say that, according to our arguments, atoms do not become resistant
to ionization when exposed to short ultra-intense laser pulses. We therefore disagree with
the opposite point of view, which is sustained through numerous numerical studies partly
based on explicit solutions of the Schrödinger equation and partly based on perturbative
methods. In particular we have commented above on the problems of the latter methods.
It is not the intention of this paper to discuss the problems of numerical methods, but we
would like to remark that those studies are in general very complex and subject to many
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Figure 2. Upper bound for the ionization probability for theψ100 state of the hydrogen atom
in the first four cycles of an applied fieldEz = 10 cos(50t).

possible errors which are difficult to check for second parties. We think that the virtue of our
arguments is that they are analytic and transparent to the reader. An extension of our results
to multiparticle systems (thus including atoms and molecules with several electrons and not
necessarily electrically neutral) may be found in [27]. Needless to say, since our results are
of a qualitative nature, in the sense that they merely provide bounds and that, since there
are no explicit solutions for the Schrödinger equation available, for precise predictions of
ionization rates one needs more numerical data.
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Appendix A

The aim of this appendix is to prove the following bound for the Coulomb potential
V (Ex) = − 1

r
(r = |Ex|) on L2(R3, d3x) = L2.

Lemma A.The following operator norm bound holds∥∥∥∥1

r
(−1 + 1)−1

∥∥∥∥ 6 6.35. (A.1)

The proof optimizes well knowna priori bounds which we take from [34].
Let L∞ be the space of all Lebesgue measurable functionsϕ on R3 such that

|ϕ(Ex)| 6 M < ∞ almost everywhere. The smallest suchM is denoted by‖ϕ‖∞. Then one
has thea priori estimate ([34] p 56)

‖ϕ‖∞ 6 a(ρ)‖ − 1ϕ‖2 + b(ρ)‖ϕ‖2 (A.2)
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where‖ ‖2 denotes theL2 norm, i.e.‖ϕ‖2 = ∫ |ϕ(Ex)2| d3x. Here

a(ρ) = cρ−1

b(ρ) = cρ3
(A.3)

with

c =
( ∫ +∞

−∞

1

(1 + λ2)2
dλ

)1
2

=
√

π

2
(A.4)

andρ > 0 may be chosen arbitrarily.
Let R > 0 be arbitrary and write

1

r
= V R

1 + V R
2

with

V R
1 (r) = θ(r < R)

r

V R
2 (r) = θ(r > R)

r
.

Then one has thea priori bound (see [34] p 165)∥∥∥∥1

r
ϕ

∥∥∥∥
2

6 a(ρ)‖V R
1 ‖2‖ − 1ϕ‖2 + (b(ρ) + ‖V R

2 ‖∞)‖ϕ‖2. (A.5)

Since the estimates‖ϕ‖2 6 ‖(−1 + 1)ϕ‖2, ‖ − 1ϕ‖2 6 ‖(−1 + 1)ϕ‖2 are trivially valid,
this gives ∥∥∥∥1

r
(−1 + 1)−1

∥∥∥∥ 6 a(ρ)‖V R
1 ‖2 + b(ρ) + ‖V R

2 ‖∞. (A.6)

Obviously

‖V R
1 ‖2 = (4πR)

1
2 ,

‖V R
2 ‖∞ = 1

R
.

(A.7)

Inserting (A.3), (A.4) and (A.7) into (A.6) gives∥∥∥∥1

r
(−1 + 1)−1

∥∥∥∥ 6 π
√

2ρ−1R
1
2 +

√
π

2
ρ3 + 1

R
. (A.8)

for all ρ > 0, R > 0. The claim now follows by optimizing w.r.t.ρ and R. A short
calculation finally gives∥∥∥∥1

r
(−1 + 1)−1

∥∥∥∥ 6 11
π

7
11

2
6
11 3

9
11

(A.9)

which is (A.1).
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Appendix B

In this section we will study the quantity〈ψ|V (Ex − Ey)k|ψ〉 for k = 1 and 2 where
V (Ex) = − 1

|Ex| (Ex ∈ R3) is the Coulomb potential and whereψ is the normalized ground-state
wavefunctionψ100 for the hydrogen atom, which is rotationally invariant. Therefore this
quantity depends on|Ey| only.

Lemma B.Both −〈ψ|V (Ex − Ey)|ψ〉 and〈ψ|V (Ex − Ey)2|ψ〉 are decreasing functions of|Ey| for
ψ = ψ100.

Intuitively this result is clear:ψ(Ex) has its maximum atEx = 0 and−V (Ex − Ey) > 0 has
its singularity atEx = Ey so their overlap is maximal whenEy = 0.

Before we give a proof, we first establish an important consequence. Indeed we claim
that for ψ = ψ100

‖(V (Ex − Ey) − V (Ex))ψ‖ 6 2 (B.1)

for all Ey ∈ R3. To see this we write

‖(V (Ex − Ey) − V (Ex))ψ‖2 = 〈ψ, V (Ex − Ey)2ψ〉 − 2〈ψ, V (Ex − Ey)V (Ex)ψ〉 + 〈ψ, V (Ex)2ψ〉
6 〈ψ, V (Ex − Ey)2ψ〉 + 〈ψ, V (Ex)2ψ〉 (B.2)

sinceV (Ex − Ey)V (Ex) > 0 as an operator. By lemma B, the r.h.s. of (B.2) takes its maximum
at Ey = 0 proving the claim since〈ψ| 1

|Ex|2 |ψ〉 = 2 (see e.g. [43]).
To prove the lemma, it suffices to considerEy to be of the formEy = cez with c > 0.

Now we use the well known formula

1

|Ex − cez| = 1

r>

∞∑
`=0

(
r<

r>

)̀
P`(cosϑ) (B.3)

wherer> = max(r, c), r< = min(r, c) and where(r = |Ex|, ϑ, ϕ) are the polar coordinates
of Ex. By the orthogonality relations of the Legendre polynomials and sinceψ is the ground
state we obtain

− 〈ψ|V (Ex − cez)|ψ〉 = 〈ψ| 1

r>

|ψ〉

= 4
∫ ∞

0
r2e−2r 1

r>

dr

= 4

c

∫ c

0
r2e−2r dr + 4

∫ ∞

c

re−2r dr. (B.4)

This function is differentiable inc for c > 0 and its derivative is easily seen to be
6 0, proving the first claim. Next we have (again by the orthogonality of the Legendre
polynomials)

〈ψ|V (Ex − cez)
2|ψ〉 =

〈
ψ

∣∣∣∣ 1

(r>)2

∞∑
`=0

(
r<

r>

)2` 1

2` + 1

∣∣∣∣ψ〉
= 4

c2

∫ c

0
r2e−2r

∞∑
`=0

( r

c

)2` 1

2` + 1
dr + 4

∫ ∞

c

e−2r
∞∑

`=0

(c

r

)2` 1

2` + 1
dr. (B.5)

Now for 0 < x < 1 we have
∞∑

`=0

x2` 1

2` + 1
= 1

x

∞∑
`=0

x2`+1

2` + 1
= 1

2x
(ln(1 + x) − ln(1 − x)). (B.6)
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Inserting (B.6) into (B.5) gives

〈ψ|V (Ex − cez)
2|ψ〉 = 2

c

∫ c

0
re−2r

(
ln

(
1 + r

c

)
− ln

(
1 − r

c

))
dr

+2

c

∫ ∞

c

re−2r
(

ln
(

1 + c

r

)
− ln

(
1 − c

r

))
dr. (B.7)

Now the r.h.s. is not differentiable inc. To remedy this we regularize and consider the
quantity(0 < ε < 1)

0 6 F(c, ε) = G(c, ε)

c
= 2

c

∫ c

0
re−2r

[
ln

(
1 + r

c

)
− ln

(
1 − r

c
(1 − ε)

)]
dr

+2

c

∫ ∞

c

re−2r
[
ln

(
1 + c

r

)
− ln

(
1 − c

r
(1 − ε)

)]
dr. (B.8)

Since limε→0 F(c, ε) = 〈ψ|V (Ex − cez)
2|ψ〉 it suffices to show that

d

dc
F (c, ε) = 1

c2

(
c

dG

dc
(c, ε) − G(c, ε)

)
6 0 (B.9)

for all 0 < ε < 1, since then (B.7) is also monotonically decreasing inc > 0. Now

d

dc
G(c, ε) = −2

∫ c

0
re−2r

[
r

c2

1

1 + r/c
+ r(1 − ε)

c2

1

1 − r/c(1 − ε)

]
dr

+2
∫ ∞

c

re−2r

[
1

r

1

1 + c/r
+ (1 − ε)

r

1

1 − (c/r)(1 − ε)

]
dr. (B.10)

The first integral on the r.h.s. of (B.10) is negative. By (B.8), (B.9) and (B.10) it therefore
suffices to show that for anyr > 0

c

r

1

1 + c/r
− ln

(
1 + c

r

)
6 0. (B.11)

and
c(1 − ε)

r

1

1 − (c/r)(1 − ε)
+ ln

(
1 − c

r
(1 − ε)

)
6 0. (B.12)

Now

ln
(

1 + c

r

)
= 1

r

∫ c

0

1

1 + c′/r
dc′ > 1

r

1

1 + c/r
c

which is (B.11). (B.12) is proved in the same fashion. This concludes the proof of lemma B.
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