Maths for Actuarial Science Coursework 1

This is an assessed coursework, and will count towards your final grade. Solutions should be handed in to the **mathematics general office** (C123) by **3:00pm on Thursday 8th November**. Late submissions will be penalised.

1. (i) By considering the general term, find the coefficient of x^{14} in the expansion of

$$\left(x^3 + \frac{3}{x^2}\right)^{18}$$

expressing your answer as a product of primes.

(ii) Write down the expansion of $(1+x)^6$. Hence, by letting $x=z+z^2$, expand $(1+z+z^2)^6$ in ascending powers of z as far as the term in z^4 . [7]

2. (i) Find the points of intersection of the circles

$$x^{2} + y^{2} - 2x - 4y - 4 = 0$$
 and $x^{2} + y^{2} - 6x - 2y - 8 = 0$.

(ii) Find an equation for the ellipse with foci at (3,5) and (3,7) and major axis of length 6. [10]

3. (i) Using the identities for $\cos A + \cos B$, and for $\cos^2 C$ in terms of $\cos 2C$, show that for any values of α, β, γ we have

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 (\alpha + \beta + \gamma) = 2(1 + \cos(\beta + \gamma)\cos(\gamma + \alpha)\cos(\alpha + \beta)).$$

(ii) Find in terms of π the general solutions to

$$\sin 5\theta + \sin \theta = \sin 3\theta$$
.

[10]

4. (i) Differentiate the following functions:

(a)
$$(1+3x)^2 \ln(1+3x)$$
 (b) $\tan^2(x^3+1)$.

(ii) Find the second derivative (with respect to x) of the function

$$x = t^2 + t + 1$$
 $y = \ln(t)$.

[8]

5. Evaluate the following integrals:

(a)
$$\int \frac{x+2}{1-4x^2} dx$$
 (b) $\int_0^1 \frac{2x}{\sqrt{2x+1}} dx$

[8]

6. Express $\sin(2\tan^{-1}x)$ in terms of x only.

[7]