
3.4 Conic sections

Next we consider the objects resulting from

ax2 + bxy + cy2 + dx + ey + f = 0.

Such type of curves are called conics, because they arise from
different slices through a cone

Circles belong to a special class of curves called conic sections. Other
such curves are the ellipse, parabola, and hyperbola.
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In polar coordinates (r , θ) conics are parameterized as

0 = r − k
1− e cosθ

k > 0,e ≥ 0

e is called the eccentricity
k is an overall constant
Transform into Cartesian coordinates:

r = k + e r cosθ
r2 = (k + e r cosθ)2

With x = r cosθ and y = r sinθ

x2 + y2 = (k + ex)2 = e2(k/e + x)2
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Geometrical interpretation of x2 + y2 = e2(k/e + x)2:

F (0,0)

P(x , y)
FP =

√
x2 + y2D

x = −k
e

DP = x + k
e

FP = eDP

Thus a conic is described by all the points P, such that the distance to
a fixed point F is a fixed ratio to a line x = − k

e , called the directrix.
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3.4.1 The ellipse (e < 1)
Manipulating x2 + y2 = e2(k/e + x)2 gives

(1− e2)(x − ke
1− e2 )2 + y2 =

k2

1− e2

Transforming the variables:

x → X = x − ke
1− e2 y → Y

yields the normal form of the ellipse

X 2

a2 +
Y 2

b2 = 1

with a := k
1−e2 and b := k√

1−e2
.

We can also express k ,e in terms of a,b

k =
b2

a
e =

√
1− b2

a2

We shifted the focus by ke
1−e2 =: c = e a. e = 0 is a circle of radius k.
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Collecting everything gives

ae

−a/e a/e2a

2b

−ae

The distance 2a is called the major axis and the distance 2b is called
the minor axis.The foci are at ±e a. The two directrices are at ±a/e.
We can parametrise the ellipse by

X (φ) = acosφ Y (φ) = bsinφ

or with rational function by

X (t) = a
1− t2

1 + t2 Y (t) = b
2t

1 + t2 .
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3.4.2 The hyperbola (e > 1)
Similarly as for the ellipse

(1− e2)2

k2 X 2 +
(1− e2)

k2 Y 2 = 1

but now (1− e2) < 0.

Therefore the normal form of the hyperbola becomes

X 2

a2 −
Y 2

b2 = 1

with a := k
1−e2 and b := k√

e2−1
.

Expressing k ,e in terms of a,b

k = −b2

a
e =

√
1 +

b2

a2
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−ae ae

a/e−a/e

2a

−a a

The shortest distance between the two sections of the curve is called
the major axis, equalling 2a.

The two directrices are at ±a/e.

We can parametrise the hyperbola by

X±(φ) = ±acoshφ Y (φ) = bsinhφ
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3.4.3 The parabola (e = 1)
Now we have

x2 + y2 = (k + x)2

such that
y2 = 2kx + k2

Transforming the variables:

x → X = x +
k
2

y → Y

yields the normal form of the parabola

Y 2 = 4aX

with a := k/2.
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−a a

Now we have only one focus at

(a,0)

The directrix is at x = a.

The curve parabola can be parameterised by

X = at2 Y = 2at
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Example 3.4.1: Determine the foci and directices of the ellipse

(x − 2)2

25
+

(y + 3)2

16
= 1.

We compare with
X 2

a2 +
Y 2

b2 = 1.

To transform in this way we must have

X = x − 2 Y = y + 3 a = 5 b = 4.

Also b2 = a2(1− e2) implies that e = 3
5 . Therefore the centre of the

ellipse is at (2,−3), the major axis has length 2a = 10 and the minor
axis has length 2b = 8.
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The foci lie on the major axis at distance ae = 3 from the centre. So
the foci are

(5,−3) (−1,−3).

Directrices are perpendicular to the major axis and at distance

a
e

=
25
3

from the centre. So the directrices are

x =
31
3

x = −19
3
.
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Example 3.4.2: An ellipse has foci at (2,5) and (8,5) and eccentricity
e = 1

4 . Find its Cartesian equation.

The centre is midway between the foci, so lies at (5,5). The distance
from the centre to each focus is ae = 3, and so a = 12. Therefore

b2 = a2(1− e2) = 135.

From this we see that the equation is given by

(x − 5)2

144
+

(y − 5)2

135
= 1.
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Lecture 14
4. Calculus I: Differentiation

4.1 The derivative of a function

Suppose we are given a curve with a point A lying on it. If the curve is
‘smooth’ at A then we can find a unique tangent to the curve at A:

b ca

A
A A

Here the curve in (a) is smooth at A, but the curves in (b) and (c) are
not.
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If the tangent is unique then the gradient of the curve at A is defined to
be the gradient of the tangent to the curve at A.

The process of finding the general gradient function for a curve is
called differentiation.

Consider the chord AB. As B gets
closer to A, the gradient of the chord
gets closer to the gradient of the
tangent at A.

A

B
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For y = f (x), the gradient function is
defined by

lim
δx→0

(
δy
δx

)
= lim

δx→0

(
f (x + δx)− f (x)

δx

)
.

yδ

xδ

,y+(x+δx δy)

(x,y)

We denote the gradient function by dy
dx or f ′(x), and call it the derivative

of f . This is not the formal definition of the derivative, as we have not
explained exactly what we mean by the limit as δx → 0. But this
intuitive definition will be sufficient for the basic functions which we
consider.
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Example 4.1.1: Take f (x) = c, a constant function.

At every x the gradient is 0, so f ′(x) = 0 for all x .
Or

f (x + δx)− f (x)

δx
=

c − c
δx

= 0.

Example 4.1.2: Take f (x) = ax .

At every x the gradient is a, so f ′(x) = a for all x .
Or

f (x + δx)− f (x)

δx
=

a(x + δx)− ax
δx

=
aδx
δx

= a.
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Example 4.1.3: Take f (x) = x2.

Now we need to consider the second formulation, as we cannot simply
read the gradient off from the graph.

f (x + δx)− f (x)

δx
=

(x + δx)2 − x2

δx

=
x2 + 2xδx + (δx)2 − x2

δx

=
δx(2x + δx)

δx
= 2x + δx .

The limit as δx tends to 0 is 2x , so f ′(x) = 2x .
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Example 4.1.4: Take f (x) = 1
x .

f (x + δx)− f (x)

δx
=

1
δx

(
1

x + δx
− 1

x

)
=

x − (x + δx)

(δx)(x + δx)x

=
−δx

(δx)(x + δx)x
=

−1
(x + δx)x

.

The limit as δx tends to 0 is − 1
x2 , so f ′(x) = − 1

x2 .
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Example 4.1.5: Take f (x) = xn with n ∈ N and n > 1.

Recall that

an − bn = (a− b)(an−1 + an−2b + an−3b2 + · · ·+ bn−1)

and so
an − bn

a− b
= an−1 + an−2b + an−3b2 + · · ·+ bn−1

where the sum has n terms. As a→ b we have

lim
a→b

(
an − bn

a− b

)
= lim

a→b
(an−1 + an−2b + an−3b2 + · · ·+ bn−1) = nbn−1.

If a = x + δx and b = x then

lim
δx→0

(
f (x + δx)− f (x)

δx

)
= lim

a→b

(
an − bn

a− b

)
= nbn−1 = nxn−1.

Hence f ′(x) = nxn−1.
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Example 4.1.6: f (x) = sin x .

We use the identity for sin A + sin B.

f (x + δx)− f (x) = 2 sin
(
δx
2

)
cos

(
x +

δx
2

)
and so

f (x + δx)− f (x)

δx
=

sin
(

δx
2

)
δx
2

cos
(

x +
δx
2

)
.

We need the following fact (which we will not prove here):

lim
θ→0

sin θ
θ

= 1

and so

f ′(x) = lim
δx→0

sin
(

δx
2

)
δx
2

cos
(

x +
δx
2

)
= cos(x).
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Some standard derivatives, which must be memorised:

f (x) f ′(x)
—— ——
xk kxk−1

ex ex

ln x 1
x

sin x cos x
cos x − sin x
tan x sec2 x
cosec x − cosec x cot x
sec x sec x tan x
cot x − cosec2 x

Some of these results can be derived from the results in the following
sections, or from first principles. However it is much more efficient to
know them.
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Lecture 15
4.2 Differentiation of compound functions

Once we know a few basic derivatives, we can determine many others
using the following rules:
Let u(x) and v(x) be functions of x , and a and b be constants.

Function Derivative
———— —————

Sum and difference au ± bv a du
dx ± b dv

dx
Product uv v du

dx + u dv
dx

Quotient u
v

v du
dx−u dv

dx
v2

Composite u(v(x)) du
dz .

dz
dx where z = v(x).

The final rule above is known as the chain rule and has the following
special case

u(ax + b) a du
dx (ax + b)

For example, the derivative of sin(ax + b) is a cos(ax + b).
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Example 4.2.1: Differentiate

y = 2x5 − 3x3 +
4
x2 .

dy
dx

= 10x4 − 9x2 − 8
x3 .

Example 4.2.2: Differentiate

y =
x2 − 1
x2 + 1

.

dy
dx

=
(x2 + 1)2x − (x2 − 1)2x

(x2 + 1)2 =
4x

(x2 + 1)2 .
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Example 4.2.3: Differentiate

y = x2 ln(x + 3).

dy
dx

= 2x ln(x + 3) +
x2

x + 3
.

Example 4.2.4: Differentiate y = e5x .

Set z = 5x , then
dy
dx

=
dy
dz

dz
dx

= ez5 = 5e5x .
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Example 4.2.5: Differentiate y = 4 sin(2x + 3).

Set z = 2x + 3, then

dy
dx

=
dy
dz

dz
dx

= 4 cos(z)2 = 8 cos(2x + 3).

As we have already noted, some of the standard derivatives can be
deduced from the others.

Example 4.2.6: Differentiate

y = tan x =
sin x
cos x

.

dy
dx

=
cos x cos x − sin x(− sin x)

cos2 x
=

cos2 x + sin2 x
cos2 x

=
1

cos2 x
= sec2 x .
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Example 4.2.7: y = cosec x = 1
sin x .

dy
dx

=
sin x .(0)− 1. cos x

sin2 x
=
− cos x
sin2 x

= − cosec x cot x .

Example 4.2.8: y = ln(x +
√

x2 + 1), i.e. y = ln u where
u = x +

√
x2 + 1.

dy
dx

=
1
u

du
dx

and
du
dx

= 1 +
(x2 + 1)−

1
2

2
.2x

so

dy
dx

=
1

x +
√

x2 + 1

(
1 +

x√
x2 + 1

)
=

1
x +
√

x2 + 1

(√
x2 + 1 + x√

x2 + 1

)
=

1√
x2 + 1

.
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Example 4.2.9: y = xx .

We have y = (eln x)x = e(x ln x), i.e. y = eu where u = x ln x .

dy
dx

= eu du
dx

= ex ln x(ln(x) + 1) = xx(ln(x) + 1).

4.3 Higher derivatives

The derivative dy
dx is itself a function, so we can consider its derivative.

If y = f (x) then we denote the second derivative, i.e. the derivative of
dy
dx with respect to x , by d2y

dx2 or f ′′(x). We can also calculate the higher
derivatives dny

dxn or f (n)(x).
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Example 4.3.1: y = ln(1 + x2).

Let z = dy
dx = 2x

1+x2 .

d2y
dx2 =

dz
dx

=
(1 + x2).2− 2x(2x)

(1 + x2)2 =
2(1− x2)

(1 + x2)2 .

Example 4.3.2: Show that y = e−x sin(2x) satisfies

d2y
dx2 + 2

dy
dx

+ 5y = 0.

dy
dx

= −e−x sin 2x + 2e−x cos 2x = e−x(2 cos 2x − sin 2x)

d2y
dx2 = −e−x(2 cos 2x − sin 2x) + e−x(−4 sin 2x − 2 cos 2x)

= e−x(−3 sin 2x − 4 cos 2x).
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Writing s for sin 2x and c for cos 2x we have

y ′′ + 2y ′ + 5y = e−x(−3s − 4c − 2s + 4c + 5s) = 0.

Example 4.3.3: Evaluate

d3

dx3

(
1 + 3x2

(1 + x)2(1 + 3x)

)
at x = 0.

We could use the quotient rule, but this will get complicated. Instead
we use partial fractions.

y =
1 + 3x2

(1 + x)2(1 + 3x)
=

A
1 + x

+
B

(1 + x)2 +
C

1 + 3x
.

We obtain (check!) A = 0, B = −2, and C = 3.
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Now
dy
dx

=
4

(1 + x)3 −
9

(1 + 3x)2

d2y
dx2 =

−12
(1 + x)4 +

54
(1 + 3x)3

d3y
dx3 =

48
(1 + x)5 −

54× 9
(1 + 3x)4

and substituting x = 0 we obtain that

d3y
dx3 (0) = 48− 486 = −438.
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Lecture 16
Generally it is hard to give a simple formula for the nth derivative of a
function. However, in some cases it is possible. The following can be
proved by induction.

Example 4.3.4: y = eax .

dy
dx

= aeax and
d2y
dx2 = a2eax .

We can show that
dny
dxn = aneax .
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Example 4.3.5: y = sin(ax).

y ′ = a cos(ax) = a sin(ax + π
2 )

y ′′ = −a2 sin(ax) = a2 sin(ax + π)

y ′′′ = −a3 cos(ax) = a3 sin(ax + 3π
2 )

y (iv) = a4 sin(ax) = a4 sin(ax + 2π).

We can show that
dny
dxn = an sin(ax +

nπ
2

).
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4.4 Differentiating implicit functions

Sometimes we cannot rearrange a function into the form y = f (x), or
we may wish to consider the original form anyway (for example,
because it is simpler). However, we may still wish to differentiate with
respect to x .

Given a function g(y) we have from the chain rule

d
dx

(g(y)) =
d

dy
(g(y))

dy
dx
.
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Example 4.4.1: x2 + 3xy2 − y4 = 2.

d
dx

(x2 + 3xy2 − y4) =
d

dx
(2) = 0.

Therefore we have

2x +
d

dx
(3xy2)− d

dx
(y4) = 0

2x + 3y2 + 3x
d

dx
(y2)− 4y3 dy

dx
= 0

2x + 3y2 + 6xy
dy
dx
− 4y3 dy

dx
= 0.
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Example 4.4.2: 2
x2 + 3

y2 = 1
2 .

d
dx

(
2
x2 +

3
y2 ) =

d
dx

(
1
2
) = 0.

Therefore we have

− 4
x3 +

d
dx

(
3
y2

)
= 0

− 4
x3 −

6
y3

dy
dx

= 0.
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4.5 Differentiating parametric equations

Sometimes there is no easy way to express the relationship between x
and y directly in a single equation. In such cases it may be possible to
express the relationship between them by writing each in terms of a
third variable. We call such equations parametric equations as both x
and y depend on a common parameter.

Example 4.5.1: x = t3 y = t2 − 4t + 2.

Although we can write this in the form

y = x
2
3 − 4x

1
3 + 2

the parametric version is easier to work with.

Andreas Fring (City University London) AS1051 Lecture 13-16 Autumn 2010 36 / 40



To differentiate a parametric equation in the variable t we use

dy
dx

=
dy
dt

dt
dx

and
dt
dx

=
1
dx
dt
.

Example 4.5.1: (Continued.)

dy
dt

= 2t − 4
dx
dt

= 3t2

and so
dy
dx

=
2t − 4

3t2 .
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Example 4.5.2: Find the second derivative with respect to x of

x = sin θ y = cos 2θ.

We have
dx
dθ

= cos θ
dy
dθ

= −2 sin 2θ.

Therefore
dy
dx

=
−2 sin 2θ

cos θ
= −4 sin θ.

Now

d2y
dx2 =

d
dx

(
dy
dx

)
=

d
dx

(−4 sin θ) =
d
dθ

(−4 sin θ)
dθ
dx

=
−4 cos θ

cos θ
= −4.
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Note: The rules so far may suggest that derivatives can be treated just
like fractions. However

d2y
dx2 6=

d2y
dt2

d2t
dx2

in general. Moreover
d2y
dx2 6=

(
d2x
dy2

)−1

.
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Example 4.5.2: (Continued.) We have

d2y
dθ2 = −4 cos 2θ = 4(sin2 θ − cos2 θ)

and
d2θ

dx2 =
d

dx

(
dθ
dx

)
=

d
dθ

(sec θ)
(

dθ
dx

)
= sec2 θ tan θ.

Therefore
d2y
dθ2

d2θ

dx2 = 4 tan3 θ − 4 tan θ 6= −4 =
d2y
dx2 .
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