We saw in Example 5.4.2 that we sometimes need to apply integration X" n
by parts several times in the course of a single calculation. /x" cos 2x dx =5 sin(2x) — / Ex”‘1 sin2x dx
Example 5.4.4: For n > 0 let _ X?nsin(2x) N gx”" 082X
Sp= /x" cos 2x dXx. _ / 7'7(”; ! )x”*2 cos 2x dx
Find an expression for S, in terms of S,_», and hence evaluate Sy. _ %" sin(2x) + gX,H cos2x — n(n4 )Sn ,

Let u=x"and & = cos2x. Then & = nx"~' and v = § sin(2x).
where the second equality follows using integration by parts with
u=12x""and & = sin2x. Thus we have found a formula for S, in
terms of S,_o.

Integrating by parts we have
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Clearly Sp = [ cos2x dx = 3 sin2x + C. Hence In some examples integration by parts does not lead to a simpler
2 > 1 integral. However, even in these cases we can sometimes use this
S, = > sin(2x) + zxcos 2x — 1 sin2x + C’ method to solve the original problem.

Example 5.4.5: Calculate
for some constant C’ and P

/e"cosxdx.

A sm(2x) + x3 cos 2x

?
_ X dv _ ; i
(7 sin(2x) + 1 xcos oy %sm ox + C’) Let u = € and g = cos x. Integrating by parts we obtain
(

—6x2 4+ 3)sin2x + (2x —3x)cos2x + C" /excosxdx:exsinxf/e*sinxdx.

for some constant C”.
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Integrating by parts again we have
5.5 The definite integral

/excosxdx=e"sinx—[—e’(cosx+/e"cosxdx]. r
o . IE )+ C
The final integral is identical to that we first wished to calculate,
however we can now rearrange this formula to obtain then we define
. x)dx = G(b) — G(a
2/e"cosxdx:e*smx+e"cosx+0 /Eg( ) ) @
which we also denote by
; b
from which we deduce that [G(x)] )
1 ) a
/excosxdx = §(exsmx+ e*cosx + C)

Example 5.5.1: In the next example we will apply Example 5.2.3.
Example 5.5.2:

4 4
1 -1
/73201)( = 3 5 1 2
1 (x+3) X+3]4 / sin* x cos x dx :[ sinsx]
0
1 1
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When integrating a definite integral by substitution we must be careful
to convert the limits into the new variable.

Example 5.5.3: Calculate
2
/ V4 — x2 dx.
0
Let x = 2sinf, so ¢ = 2cos 6. We have

4-x2=4—4sin?0 =4cos? 0

and in changing variable we have

x=0 — 6=0
™
XxX=2 — 0= 5
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Lecture 22
5.6 Integration as a measure of content

The area contained between the

y=f(x) curve y = f(x), the lines x = aand
x = b (for a < b) and the x-axis is
given by
b
a b / f(x) dx.
a
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So for

a bvc

/:f(x)dx: 7/bcf(x)dx

although the total area is clearly non-zero.

/ab f(x)dx = —/:f(x) dx.

(This must clearly be the case from the definition of integration using
the antiderivative.)

we have

If b < awe define
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Example 5.6.2: Find the area contained in the third arc of the curve

y =xsinx
for x > 0.
0 i 3
3
area = / X sin x dx (use integration by parts)
2r

3 3r

= [7xcosx - /(— cos X) dx] = [—xcosx+ sin x
2m 2r

= [(—37)(—1)+0] — [(—27)(1) + 0] = 5.

Combining these observations we obtain

2 s
/ V4 — x2dx —/22003920039d9
0 0

z
=/ 4c0s?6 do
0

- /2 2(1 + cos 20) d
0
1 z
- {2 <9 + 7sin29>]
2 0

=2[g+0—0—0] =
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This follows from the definition of integration as a measure:

n
f(x) area & Y f(xc)6Xi
k=1
and the fundamental theorem
of calculus which states that
this definition agrees with that
X coming from the antiderivative.

‘ Xy

Note that this result relies on the convention that area below the x-axis
is negative. When calculating area we do not use this convention, so
the answer will have to be adjusted appropriately.
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Example 5.6.1: Find the area contained between the quadratic
y=38+2x—x2
and the x-axis.

We have y = (3 — x)(x + 1), and
from the graph we see that

3
area = / 34 2x — x?dx
1

3

> X8 32

= |3x+x°— 3 =3
—1

Note that if the example had asked for the second and third arcs, we
would have calculated

3 2r
/ xsinxdxf/ X sin x dx.
2 T

T

Example 5.6.3: Find the area enclosed by the line y = 2x and the
curve

y =2x% - 3x2.
Line and curve intersect when
2x% —3x% = 2x
i.e. when

x(2x +1)(x —2)=0.
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Let y; = 2x and y» = 2x® — 3x2. Then

0
areaA = [ yp—yrdx = /‘ 2x3 — 3x% — 2x dx Lecture 23
z 2 6. Real functions Il
4 0
X 3 .2 3 . - .
= [5 — X=X ] T3 6.1 Inverse trigonometric functions
2

We would like to define the inverse of sin, cos, and tan, to be denoted
and sin~!, cos~, and tan~1.

Note: (i) For these to be functions we have to restrict the range.

2
— (2, _ _ _0y3 2
areaB = Jyy1 —y2dx = /0 2x° +3x" + 2x dx (ii) sin~" y does not mean (sin y)~'. This is an unfortunate problem

4 2 with using sin” y = (sin y)". If n = —1 we must not do this!
= |-+ x3+x?| =4
2 0
Therefore the total area is A+ B = 131
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X i e The graphs of these functions are:
Function Domain Range Definition grap
oq . .
y=sin"'x [x]<1 -Z<y<3Z x=siny y=sin""¢ y=cos '
y=cos'x |x| <1 0<y<m x=cosy -
y=tan"'x R -I<y<% x=tany
Note that sin~! and tan~" are increasing, odd functions, while cos™'is W2
decreasing.
Sometimes we write arcsin x for sin~! x and similarly arccos x for
cos~" x and arctan x for tan~" x. -1 0 1
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Example 6.1.2: Express sin(2cos™" x) in terms of x only.
y=tan"'9 Let y = cos™' x. Then

1

sin(2cos™' x) =sin2y =2sinycosy.

Now cos~' x = y gives cos y = x with 0 < y < 7, and

sinffy=1—cos?y =1—x2

fffffffffffffff L Note that siny > 0as 0 < y <, and so
v —ain—1(1\ impli R |
Example 6.1.1: o = sin™'(35) implies that sina = 5 and -5 < a < 7. siny — NS
Hence a = §.
Therefore
sin(2cos™' x) = 2xv/1 — x2.
Proposition 6.1.4: We have
o tan~'a+tan~' b=tan™’ chil +pr
Proposition 6.1.3: We have for —1 < x < 1 that = 1-ap) P
cos'x =2 _sin~"x. where .
2 -1 if-r<tan'a+tan"'b< -3
p=<{ 0 if —Z<tan'at+tan'b<3
Proof: Let y = sin™" x. 1 if3<tan'a+tan'b<r.
Then x = siny with -3 <y < 7, and x = cos(5 — y) where
0<% —y < . Therefore Proof: Let o =tan~"aand g = tan~' b, so -5 <a,f< % and
tana = aand tan 3 = b. We have
A, _ T T a1
Cos " Xx=g-y=z-sin X a+b  tana+tanp

T-26 1 _tanatanj =tan(a + 3) = tan(a + 3 + nm)
(forall n € Z) and -7 < a + 3 < . Now tan™" (% must lie
between —7 and 7, and equal « + 8 + n, for some value of n. The
result now follows by inspection. ]
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Example 6.1.5: Find u such that

tan~" g+tan*1 % =tan""u.

Leta=tan™' 2, sotana = Jwith —F <a < Z. Let g=tan"' 3, so
tans = & with —% < 3 < 5. Clearly 0 < , 3 < T and so

0 < a+ 3 < 5. Hence by the last Proposition we have

3, 5
tan~" % +tan~! S _tan! <14+7125> —tan—1 28

3 .
12 -35 33
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Now suppose that x > 1, i.e T <tan™'x < 5. Then —1 < =% < 0, so

1+x
—% <tan~' 1% < 0. Hence for x > 1 we have

0<tan"x +tan™’ 1=x <T
1+x 2

Thus for all x > 0 we have

1-x 2
1- X+ 1
tan~" x +tan~! =X _ tan~" ﬁ =tan™’ <X ha )

1+x 1-x 1+ x2
T=x{17x
1 ™
=tan'(1) = Z.
M=z
[ioas ing (Gt vy Lonior) [t etamtae amzto 27128

Lety = cos~' x. Thencos™' x = § —sin™" x and hence

1
VIi—x2

d
a(cos‘1 X) =

Finally let y = tan~" x. By definition x = tan y with -z <y<g. We
differentiate with respect to x:

dy y_ 1
dx dx ~ sec?y’

sec’y-—— =1 so

Now sec? y = 1 +tan? y and so sec? y = 1 + x2. Thus we have shown
that

d 1
-1
—(tan™' x) = ——.
dx 1+x
[ incroasFing (G Unvorsiy London) | ASi081 Lorezi24 | A 2010 29135

6.3 Integration and inverse trigonometric functions
First suppose that y = sin~"(x/a). Then

1

dy _ 1
VAR CIC

Va2 —x2’

L=

Hence

/ﬁ dx = sin™" (g) +C.
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Example 6.1.6: Simplify
tan " x +tan T %
1+x
for x > 0.

First suppose that 0 < x < 1,i.e 0 <tan'x < Z. Then
=14+ 42 andso0 < 5% < 1jie.

T+x = 14+x =
1-x _«
0<tan’ <.
1+x ~ 4
Hence for 0 < x < 1 we have
1—-x «
0<tan 'x+tan”’ <z,
1+x — 2
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Lecture 24
6.2 Differentiation of inverse trigonometric functions

Let y = sin~" x. By definition x = sin y with —5<y<%. We
differentiate with respect to x:
dy

cosy—

_ a1
dx

dx ~ cosy’
Now cos?y =1 —siny and - < y < T, hence

cosy = +1/1 — sin y. Thus we have shown that

1
VI=x2

d oty
d—x(sm X) =
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Example 6.2.1: Differentiate sin~'(v/x).

P . 1 1
Let y = sin~" u with u = xz, so & = Ix~z. Then

y_ 1
du V1—?
and
dy dydu 1 1 1

dx T dudx  VI—x2Vx  2(/x(1-x)

Example 6.2.2: Differentiate tan~"(2x + 1).
Lety =tan~'(2x +1). Then
dy 2 2 1

dx  T+(@x+12 4x2+ax+2 2x2+2x+1°
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Next suppose that y = tan~"(x/a). Then

a
%+ x2

dy 1

.
X1+ (EPa

Hence ; ]
_ ' o=t (X
/X2+a2dx_atan (a)+C.

We can now integrate rational functions with quadratic denominators.
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Example 6.3.2: Integrate
Example 6.3.1: Integrate

/ X+
X2 +2x+5 "
Note that & (x? + 2x + 5) = 2x + 2. Thus

1
/ X+3 o — /2(2x+2)+2dx

x24+2x+5 N X2 4+2x+5
1 2x 42 1
= - 2
2/x2+2x+5dx+ /(x+1)2+4dx

1 1
Eln(x2+2x+5)+tan’1 <X+ > +C.

1
/x2+2x+5dx'

The denominator does not factorise, so we complete the square.

1 -~ 1 71 1 (x+1
/x2+2x+5d"*/(x+1)2+4dX*2ta” ( 2 >+C'

2
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E e 6.3.3: We can also deal with more complicated rational functions by using
xample 6.9.5: these methods together with partial fractions.
/ 1 dx — / 1 dx Finally, we consider the integrals of inverse trigonometric functions. To
2x2 +2x +1 2(x2 + x + }) integrate sin~! x we use integration by parts with u = sin~! x and
1 1 vV =X.
- 5/(x+1)2+1dx \ N
2 4 , /sin”x:xsin”xf/7dx:xsin‘1x+\/17x2+C.
V(1) ot (X2 Vi-x2
= 3l7 tan 1 +C
2 2 Similarly
= tan"'(2x+1)+C. X ]
. /tan“x:xtanqxf/de:xtan‘1xffln(x2+1)+0.
(Compare with Ex 6.2.2.) X241 2
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